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ABSTRACT 
 

The prevalent problem of air pollution in Nigeria is attributable to the country’s huge population, put 
in excess 160 million and the trend of industrial growth. In 2010, the country witnessed a rare 
occurrence of 9-day period of heavy dust episode (HDE). The dust reduced visibility to < 1 km, 
causing cancellation of several flights. The aim of this study is to assess the level of aerosol mass 
loadings and, nature and sources of the HDE aerosols. Two fractions of particulate matter (PM) 
were collected for about two months including the period of the HDE. Samples were collected on 
Whatman polycarbonate filters using low-volume GENT sampler equipped with a stacked filter unit 
(SFU) to hold two 47 mm filters. 7-day back trajectory analysis was performed using UGAMP 
trajectory model driven by ECMWF wind analyses data. Morphological analysis of the PM was 
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done using Scanning Electron Microscopy (SEM), chemical compositions determined with Energy 
Dispersive X-ray (EDX) and particle number per unit area of filter (particle density) was estimated 
using optical microscopy. The range of mass concentration of PM2.5, PM2.5-10 and PM10 are 1.24 – 
58.7, 5.1 – 354.9 and 8.33 – 379.2 µg m-3, respectively. EDX detected twelve (12) elements: Fe, 
Na, Mg, Al, Si, S, K, P, Cl, Ca, Mo and O. Elements of crustal origin (Si, Al, Fe, Ca and Mg) 
account for a high percentage of the elemental composition of the PM. Four distinct classes of 
particles - mineral dust, NaCl containing agglomerate, Calcium-rich dust and alumina-silicate - were 
identified from the morphological and compositional analysis of the PM. From the backward 
trajectory analyses, most of the crustal components of the HDE dust can be attributed to long-
range dust transport from North Africa and the Sahel region, while maritime aerosols are 
attributable to the marine environment in the Atlantic, down South. 
 

 
Keywords: Dust episode; Nigeria; SEM/EDX; air-mass trajectory; optical microscopy. 
 
1. INTRODUCTION 
 
Airborne Particulate Matter (PM) are pollutants 
emitted into the ambient air in condensed form; 
solid and/or gaseous phase [1]. They are emitted 
into the atmosphere from either anthropogenic or 
natural sources [2-4]. Their impacts on human, 
the environment, animal and plant have been of 
major concern to every stakeholder. Extensive 
studies have been carried out to provide 
adequate understanding of the nature, sources 
and impact of PM. Elevated PM concentrations 
have been linked to high morbidity and mortality 
rate, increased hospital admission for respiratory 
related illnesses, chronic respiratory and heart 
diseases [5-12]. PM have also been identified as 
a major contributor to climate forcing [13-16], 
reduced crop yield [17] and damage of 
vegetation [18-20]. 
  
The intensity of these impacts on human, 
vegetation and the environment varies with the 
mass concentration, particle size, morphology 
and the elemental composition of the PM [18]. 
Emission from vehicles, industrial processes, 
domestic heating and cooking and, traffic related 
(mainly from tyres and brake lining) have been 
identified as major anthropogenic sources of PM 
[21,22]. Identified natural sources are re-
suspended dust, sea spray, volcanic eruption 
and long-range dust transport [4,23]. Adequate 
knowledge of their chemical composition and 
structure (morphology) will enhance a better 
understanding of their detrimental effects on 
human health and a possible pointer to their 
sources [24,25].  
 
Dust episodes enable long-range transport of 
disease causing pathogens - bacteria, virus and 
fungi - even across hemispheres [26-28]. At 
various places around the globe, increased 
cases of conjunctivitis, rhinitis [29,30] and, 

allergic and non-allergic respiratory illnesses – 
asthma [31], silicosis/pulmonary fibrosis, severe 
cough and respiratory tract infection  [32,33] - 
have been attributed to desert dust which is often 
associated with elevated level on bacteria, fungi 
and virus in ambient air during and after the dust 
episode [34-36].   
 
Trajectories have been defined as the paths of 
infinitesimally small particles of air [37]. Back 
trajectories analysis has been a useful tool to 
track and understand the history of air parcel 
arriving at a location of in situ measurements 
[38,39], remote measurements [40], and 
measurement platforms on flights [41,42]. At the 
measurement locations, sources contributing to 
aerosol measurements can be identified and 
further investigated using the history of air mass 
arriving at such locations.    
 
The Nigerian weather has two predominant 
seasons; the rainy (May – October) and dry 
season (November-April). The month of March is 
usually the peak of the dry season. Heavy dust 
episodes (HDE) are very rare occurrence in 
Nigeria especially in the South-western part of 
the country. As such, the HDE experienced 
between March 17 and 26, 2010 came as a huge 
surprise. Its intensity peaked between the 21st 
and 25th, reducing visibility significantly to less 
than a kilometer causing the cancellation of 
several flights. 
 
To the best of our knowledge, there has not been 
a study on the analysis of the composition, 
morphology and sources of aerosols from dust 
episodes in Nigeria. As such, this study aim to 
provide a pioneering work in this regards. This 
study explores an analysis of the air-mass history 
and composition - morphology, particle density 
(particle number) and elemental - of the HDE 
aerosols. This will enable an assessment of the 
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contribution of the two fractions – fine and coarse 
- sampled, elemental composition of aerosol 
loadings and identification of the possible major 
origin(s) of these aerosols. 
 
2. MATERIALS AND METHODS 
 
2.1 Sample Collection 
 
Samples of PM2.5 (fine) and PM2.5-10 (coarse) 
were collected on nuclepore polycarbonate filters 
using a low volume Gent sampler [43,44]. The 
sampler was equipped with a stacked filter unit 
(SFU) to hold two 47 mm filters of 8.0 and 0.4 
µm pore size. The filter holder was placed facing 
downwards, at a height of about 1.6 m, to avoid 
passive settling of particles on the filters. 
Polycarbonate filters are best suited for the 
microscopic analysis of PM [45]. Ambient air was 
sampled at an average rate of 16 L/min on a 24-
hour basis. The sampling was carried out at the 
top of the two-storey Physics building of the 
Obafemi Awolowo University, Osun state, Nigeria 
(7.52°N, 4.52°E and 294 m above sea level). The 
maps in Fig. 1 show the location of Nigeria (study 
site) in relation to North Africa and the Sahel 
region - the dominant source of dust on the 
Africa continent. It also shows the map of Nigeria 
and a blown-up Google map showing the 
sampling location within Nigeria. Samples with 
identification number 42, 46, 47, 50 and 54 (fine 
and coarse) were all collected between March 9 
and 31, 2010, both days inclusive. Samples 46, 
47 and 50 were collected during the peak days of 
the HDE. 
 
The filters were humidity conditioned in 
desiccators before and after sampling and 
allowed access to ambient air in the laboratory 
so as to equilibrate with ambient air condition. To 
avoid contamination of the aerosol samples, the 
filters were handle with a sterilized forceps and 
were kept in well labelled sample dish. Pre- and 
post-sampling weights of the filters were 
determined using an electric microbalance 
(Sartorius model CP2P-F). The difference in the 
weights - pre and post-sampling - gives the mass 
concentration of the PM on the filters, measured 
in µg m-3. 
 
2.2 SEM/EDX Measurement 
 
Scanning Electron Microscopy (SEM) uses a 
focused beam of high-energy electrons to 
generate a variety of signals at the surface of 
solid specimens. The signals that derive from 

electron-sample interaction reveal information 
about the sample including external morphology 
(texture), chemical composition, and crystalline 
structure and orientation of materials making up 
the sample. The morphology and elemental 
analysis of the aerosol samples were done using 
Hitachi S-4700-II Scanning Electron Microscope 
with Energy Disperse X-ray Spectroscopy (EDX) 
facility attached [45-47]. The filters were mounted 
on the SEM stub with adhesive carbon tape. For 
each of the filters, secondary electrons were 
acquired to produce the SEM micrograph images 
at different magnification under 10 kV 
accelerating voltage with a working distance of 
10 mm.  
 
For the EDX analysis, different particles from the 
samples were selected and analysed for 
elemental composition. X-ray spectra were 
collected with an accelerating voltage of 20 kV 
and emission current of 21 kA. The EDX 
counting time was 20 s lifetime for each particle 
at magnification ranging between 3000x and 
10000x. The net x-ray intensities of various 
elements were obtained and the spectrum 
plotted [48]. These intensities were also 
converted to weight fractions and atomic 
fractions using EDX software with ZAF (Z is the 
atomic number, A, the absorbance and F, the 
fluorescence values of the element) 
quantification. The EDX spectra were analysed 
to determine the relative abundance of 12 
elements - Al, Si, S, Cl, Na, Mg, Ca, Fe, K, P, O 
and Mo. 
 
2.3 Optical Microscopy 
 
The optical microscope, often referred to as the 
‘light microscope’, is a type of microscope which 
uses visible light and a system of lenses to 
magnify images of small samples. Olympus BH2 
optical microscope with top illumination approach 
was used for the microscopic analysis of 
particles on the filters. Four different areas were 
photographed and analysed on each filter. Each 
of the micrograph was analysed using Olympus 
Stream Essentials 1.7 (Olympus Corporation). 
The average area covered during each shot on 
the filters was 2 x 105 µm2. Table 1 show the 
particles number in each photographed area 
(particle density) on the filters. 
 
2.4 Trajectory Analysis 
 
With a view to investigate the history of air mass 
arriving at the sampling site, 7-day backward 
trajectory analysis was undertaken. The 
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trajectories were calculated using the UK 
Universities Global Atmospheric Modeling 
Programme (UGAMP) trajectory model. The 
model is described extensively elsewhere [49]. 
The model is driven by the 6-hourly European 
Centre for Medium-Range Weather Forecast 
(ECMWF) wind analysis data. The UGAMP 
which uses the fourth-order Runge-Kunta 
integration method, is a well-tested, widely used 
and validated offline trajectory model [50]. It has 

been used in several in-situ and air flight 
measurement campaigns to study contributions 
of prevailing air-mass trajectories to 
measurements [51-55]. Twenty-five (25) 
trajectories are released at 12:00 UTC from the 
sampling site at an atmospheric pressure of 900 
hPa on each of the days investigated. The back-
trajectories contain information output at time-
steps of 0.6 hours on each of the clusters. 

 

 
 

Fig. 1. Map showing the location of Nigeria on the map of Africa and blown-up Google map 
showing the sampling site 
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3. RESULTS AND DISCUSSION 
 
3.1 Mass Concentration of PM 
 
During the period of the HDE, the mass 
concentrations of the coarse (PM2.5-10) and fine 
(PM2.5) fractions were about 8- and 4-folds of 
the non-HDE period, respectively, as shown in 
Fig. 2. The highly bloated mass concentration of 
the coarse fraction underpins the fact that a large 
proportion of the HDE PM is due to long-range 
dust transport rather than vehicular emission or 
open burning processes that had been identified 
by previous studies as the prominent sources of 
PM in Nigeria [4,56]. The PM mass 
concentrations obtained for PM2.5 and PM10 
during the HDE period ranged between 1.24 – 
58.7 and 8.33 – 379.2 µgm-3 respectively. These 
values are 2- and 7-folds of the World Health 
Organization’s limits of 25 and 50 µgm-3 for 
PM2.5 and PM10 respectively. Samples 46, 47 
and 50 were collected during the peak period of 
the HDE. The particle counts on the coarse 
fraction of these samples (46, 47 and 50) are 
higher compared to samples 42 and 54, which 
are pre- and post-HDE samples respectively (see 
Table 1). In Table 1, the areas represented as I – 
IV are portions of approximately 2 x 105 square 

micrometres on some filters of the HDE aerosols. 
Fig. 3 shows images obtained from optical 
microscopy analysis of individual particles in the 
area photographed on some filter samples of the 
HDE aerosol. Figs. 3a and b are coarse fraction 
while c and d are fine PM fraction. As shown 
from the microscopy images and PM mass 
concentration, the HDE aerosols are mainly in 
the coarse fraction. This can be attributed to 
long-range dust transport from the Sahara during 
the HDE period. 
 
3.2 Elemental Distribution and Particle 

Morphology 
 
Three sets of particle photomicrographs (SEM 
and optical microscopy) and EDX elemental 
spectra were obtained for each of the ten (10) 
filter samples. The EDX ZAF quantification of the 
elements on the HDE coarse and fine filters (46, 
47 and 50) shows higher concentrations for 
crustal elements (Al, Si, Mg, Ca, Fe), especially 
for the coarse PM fraction. There were trace 
concentrations of open burning signature 
elements (P, K, S, and Mo) which might have 
been picked up as the air masses travel between 
the source and receptor sites. Table 2 gives the 
elemental concentrations obtained from EDX

 
Table 1. Particle count (PC) in the photographed areas on the filters 

 
Sample Id Date Area I Area II Area III Area IV Average PC 
C42 09/03/2010 196 189 187 187 189.8 
C46 17/03/2010 363 309 309 313 323.5 
C47 19/03/2010 299 309 360 360 332.0 
C50 23/03/2010 257 257 268 268 262.5 
C54 31/03/2010 176 190 164 196 181.5 
F42 09/03/2010 235 247 307 300 272.3 
F46 17/03/2010 330 269 237 288 281.0 
F47 19/03/2010 451 469 526 513 489.8 
F50 23/03/2010 101 96 112 93 100.5 
F54 31/03/2010 331 297 307 348 320.8 

 
Table 2. Elemental concentration of PM samples (% weight) 

 
 Al Si S Cl Na Mg Ca Fe K P Mo O Date 
C42 0.31 0.23 - 2.25 4.53 0.16 4.99 - 0.24 - - 19.74 09/03/2010 
C46 1.69 6.54 0.3 0.21 0.97 0.43 2.37 0.82 0.61 0.7 - 26.33 17/03/2010 
C47 0.30 1.27 0.72 - 0.05 - 9.53 - 0.77 - - 22.58 19/03/2010 
C50 11.04 13.2 - 0.22 0.31 0.1 1.97 5.07 1.38 - 0.44 30.85 23/03/2010 
C54 3.36 5.73 0.13 0.21 0.86 - - 1.94 0.87 0.23 - 25.6 31/03/2010 
F42 0.21 0.05 1.99 0.7 1.53 - 5.18 - 1.14 - - 14.38 09/03/2010 
F46 3.15 9.67 0.71 0.51 0.78 0.15 1.1 1.86 2.21 - - 25.15 17/03/2010 
F47 5.39 9.06 - - 0.23 0.06 2.05 - 0.7 - 0.4 27.36 19/03/2010 
F50 7.03 7.35 - - - - 0.32 2.98 0.32 - - 30.81 23/03/2010 
F54 2.2 7.35 2.57 0.2 0.94 0.08 - 1.8 2.53 - - 20.4 31/03/2010 
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analysis for the samples, as percentage weight. 
Carbon was not used for the classification of the 
particles, as it was difficult to quantify the 
contribution of the polycarbonate filter to the 
carbon abundance. The particles classification 
was done taking into consideration the particle’s 
elemental composition and morphology. The 
identified classifications are mineral dust, NaCl 
containing agglomerate, calcium-rich dust and 
alumino-silicate. 
 
3.2.1 Mineral dust particles 
 
These particles have a high concentration of 
silicon (~41.6 %), which is presumed to be made 
up of SiO2 (such as quartz). Aluminium, iron, 
sulphur, magnesium, potassium and sodium 
make up the remaining ~58.4%. They are 
predominantly crustal elements which must have 
been due to soil re-suspension and largely to 
long-range dust transport from North Africa and 
the Sahel region. This is evident in the elevated 
concentration of PM2.5-10 during the period of 
HDE. Mineral dusts constitute a huge chunk of 
atmospheric global aerosol and are aeolian in 
nature [57-59]. The SEM/EDX spectra and 
micrographs of particles in this class are shown 
in Figs. 4a and b. This class of particles 
dominate the samples collected during the peak 
periods of the HDE. 

3.2.2 NaCl containing agglomerate 
 
Particles in this classification contain mainly 
sodium and chloride, with trace amount of 
calcium, potassium and molybdenum. In Nigeria, 
studies have attributed NaCl to contribution from 
sea-salt [4,21]. This class of particles are found 
in higher concentrations, in both the fine and 
coarse fractions, on the pre- and post-HDE 
samples. The morphology of this class of particle 
shows an almost cubic shape often attributed to 
NaCl particles (Fig. 4c). The slight deformation of 
the cube-shaped image might be due to the 
presence of Ca and Mo as ‘impurities’. 
Molybdenum in ambient air PM loading is a 
maker element for the iron and steel smelting 
industry [60]. 
 
3.2.3 Calcium-rich dust 
 
Calcium strongly dominants this class, making up 
for about 75% of the elemental concentration of 
the class. Contributions from silicon, sulphur and 
potassium make up the remainder of the class. 
Some of these particles are probably limestone 
(CaCO3) which is from dust (clay) and industrial 
processes. The SEM micrograph showing the 
morphology and the EDX elemental spectra of 
the particles in this class are shown in Fig. 4d. 

 

 
 

Fig. 2. Time series plot of the mass concentration of PM fractions before, during and  
after the HDE 
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Fig. 3. Optical micrograph obtained from optical microscopy showing particle counts on 
photographed areas on some HDE filter samples 

 
 3.2.4 Alumino-silicate 
 
Aluminium and silicon together account for over 
90 % of the elemental concentration of particles 
in this class with trace contribution from iron. The 
SEM micrograph and x-ray spectra are shown in 
Fig. 4e. The major sources of this class of 
particles are wind-blown rock and soil particles 
[61]. This underpins the fact that aerosols in the 
HDE are predominantly aeolian soil dust due to 
long-range dust transportation which is 
responsible for the bloated mass concentration of 
PM during the HDE period at the study site. 
 
3.3 Back Trajectory Analysis 
 
Figs. 5(a – g) show the trajectory plot for periods 
before (March 12 and 17), during (March 19, 22, 
25 and 26) and after (March 31) the HDE. Fig. 5h 
shows the colour coding of the atmospheric 
pressure, in hPa, as the air masses travel from 
the source to the sampling location. Plots 5a and 
b show that pre-HDE aerosols are contributed, 

predominantly, by air masses from the South and 
South-east over the Atlantic. Aerosols sampled 
during this period show elevated concentration of 
maritime aerosol as indicated by the Na and Cl 
concentrations. Plots 5c, d, e and f of air masses 
trajectories during the HDE period, show air 
masses from North Africa and the Sahel region 
as the major contributor to the aerosol sampled 
during period. These plots (5c, d, e and f) show 
that the bloated mass concentration of the 
coarse fraction experienced during the HDE are 
due to long-range transport from North Africa and 
the Sahel region. Plot 5g shows a return of the 
dominant contributing source to the South 
maritime area after the HDE period. This 
trajectories analysis shows that a sufficient 
number of the air masses from the source of the 
aerosol to the sampling location during the HDE 
period are within 900 and 1000 hPa - the 
planetary boundary layer (PBL) suggesting that 
the HDE aerosols are within the areas of direct 
contact with human and as such can be easily 
inhaled at high ‘doses’. 
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Fig. 4. Morphology and elemental X-ray spectral from EDX for selected particulates from HDE aerosol samples (a and b: mineral dust particles;  
c: NaCl agglomerate; d: Ca-rich dust and e: Alumino-silicate) 
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Fig. 5. 7-day backward trajectory analysis for the pre-, post- and HDE periods 
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4. CONCLUSION 
 
This pioneering work on the analysis of the 
composition, morphology and origin of dust 
episode aerosols in Nigeria identified highly 
elevated mass concentration of two fractions of 
PM: ~ 8- and 4-folds of non-HDE periods for fine 
and coarse fractions, respectively. Element of 
crustal origin (Al, Ca, Mg, Si, Fe) are of higher 
concentrations in the HDE PM while those of 
maritime origin (Na and Cl) have elevated 
concentration in the pre – and post-HDE 
samples. The study identified four classes of 
particle in the samples, namely, mineral dust, 
NaCl containing agglomerate, calcium-rich dust 
and alumina-silicate, majority of which were due 
to soil re-suspension and long-range dust 
transport. Air-mass trajectory analyses show that 
maritime aerosols were contributed by air parcel 
originating from the South and South-east over 
the Atlantic while aerosols of crustal origin were 
contributed by air masses emanating from North 
Africa and the Sahel region. As shown in the 
trajectory plots, air masses travelled within the 
PBL (atmospheric pressure > 950hPa), through 
Nigeria cities and town, from the source region to 
the receptor site. This suggests likely inhalation 
of the dust in high ‘doses’ by man and animal.  
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