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ABSTRACT 
 

The modified simple equation (MSE) method is an important mathematical tool for searching 
closed-form solutions to nonlinear evolution equations (NLEEs). In the present paper, by using the 
MSE method, we derive some impressive solitary wave solutions to NLEES via the strain wave 
equation in microstructured solids which is a very important equation in the field of engineering. 
The solutions contain some free parameters and for particulars values of the parameters some 
known solutions are derived. The solutions exhibit necessity and reliability of the MSE method. 
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1. INTRODUCTION 
 
Physical systems are in general explained with 
nonlinear partial differential equations. The 
mathematical modeling of microstructured solid 
materials that change over time depends closely 
on the study of a variety of systems of ordinary 
and partial differential equations. Similar models 
are developed in diverse fields of study, ranging 
from the natural and physical sciences, 
population ecology to economics, infectious 
disease epidemiology, neural networks, biology, 
mechanics etc. In spite of the eclectic nature of 
the fields wherein these models are formulated, 
different groups of them contribute adequate 
common attributes that make it possible to 
examine them within a unified theoretical 
structure. Such study is an area of functional 
analysis, usually called the theory of evolution 
equations. Therefore, the investigation of 
solutions to NLEEs plays a very important role to 
uncover the obscurity of many phenomena and 
processes throughout the natural sciences. 
However, one of the essential problems is to 
obtain theirs closed-form solutions. For that 
reason, diverse groups of engineers, physicists, 
and mathematicians have been working tirelessly 
to investigate closed-form solutions to NLEEs. 
Accordingly, in the recent years, they establish 
several methods to search exact solutions, for 
instance, the Darboux transformation method [1], 
the Jacobi elliptic function method [2,3], the He’s 
homotopy perturbation method [4,5], the tanh-
function method [6,7], the extended tanh-function 
method [8,9], the Lie group symmetry method 
[10], the variational iteration method [11], the 
Hirota’s bilinear method [12], the Backlund 
transformation method [13,14], the inverse 
scattering transformation method [15], the sine-
cosine method [16,17], the Painleve expansion 
method [18], the Adomian decomposition method 

[19, 20], the �� ′ �⁄ �-expansion method [21-26], 

the first integration method [27], the F-expansion 
method [28],  the auxiliary equation method [29], 
the ansatz method [30,31], the Exp-function 
method [32,33], the homogeneous balance 
method [34], the modified simple equation 

method [35-47], the ))(exp(  -expansion 

method [48,49], the Miura transformation method 
[50], and others. 
 
Microstructured materials like crystallites, alloys, 
ceramics, and functionally graded materials have 
gained broad application. The modeling of wave 
propagation in such materials should be able to 
account for various scales of microstructure [51]. 

In the past years, many authors have studied the 
strain wave equation in microstructured solids, 
such as, Alam et al. [51] solved this equation by 

using the new generalized �� ′ �⁄ � -expansion 

method. Pastrone et al. [52], Porubov and 
Pastrone [53] examined bell-shaped and kink-
shaped solutions of this engineering problem. 
Akbar et al. [54] constructed traveling wave 
solutions of this equation by using the 

generalized and improved �� ′ �⁄ � -expansion 

method. The above analysis shows that several 
methods to achieve exact solutions to this 
equation have been accomplished in the recent 
years. But, the equation has not been studied by 
means of the MSE method. In this article, our 
aim is, we will apply the MSE method following 
the technique derived in the Ref. [55] to examine 
some new and impressive solitary wave solutions 
to this equation. 
 
The structure of this article is as follows: In 
section 2, we describe the method. In section 3, 
we apply the MSE method to the strain wave 
equation in microstructured solids. In section 4, 
we provide the physical interpretations of the 
obtained solutions. Finally, in section 5, 
conclusions are given. 
 

2. DESCRIPTION OF THE METHOD 
 
Assume the nonlinear evolution equation has the 
following form 
 

���, ��, ��, ��, ��, ���, ���, ���, ���, ⋯ � = 0, (2.1) 

 
where � = �(�, �, �, �) is an unidentified function, 
P  is a polynomial function in � = �(�, �, �, �) and 
its partial derivatives, wherein nonlinear term of 
the highest order and the highest order linear 
terms exist and subscripts indicate partial 
derivatives. To solve (2.1) by using the MSE 
method [35-47], we need to perform the 
subsequent steps: 
 
Step 1: Now, we combine the real variable x  

and t  by a compound variable ξ  as follows: 

 
� = � + � + � ± ��,   �(�, �, �, �) = �(�),       (2.2) 

 
Here � is called the wave variable it allows us to 
switch Eq. (2.1) into an ordinary differential 
equation  
(ODE): 
 

���, �′, �′′, �′′′, ⋯ � = 0,                                      (2.3) 
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where �  is a polynomial in �(�)  and its 

derivatives, where �′(�) =
��

��
 . 

 

Step 2: We assume that Eq. (2.3) has the 
traveling wave solution in the following form, 
 

�(�) = � �� �
�′(�)

�(�)
�

��

���

,                                        (2.4) 

 

where ��  (� = 0, 1, 2, ⋯ , �)  are arbitrary 
constants, such that �� ≠ 0 , and �(�)  is an 
unidentified function which is to be determined 

later. In �� ′ �⁄ �-expansion method, Exp-function 

method, tanh-function method, sine-cosine 
method, Jacobi elliptic function method etc., the 
solutions are initiated through several auxiliary 
functions which are previously known, but in the 
MSE method, �(�)  is neither a pre-defined 
function nor a solution of any pre-defined 
differential equation. Therefore, it is not possible 
to speculate from formerly, what kind of solution 
can be found by this method. 
 

Step 3: We determine the positive integer N , 
come out in Eq. (2.4) by taking into account the 

homogeneous balance between the highest 
order nonlinear terms and the derivatives of the 
highest order occurring in Eq. (2.3). 
 
Step 4: We calculate the necessary derivatives 
�′, �′′, �′′′ etc., then insert them into Eq. (2.3) and 
then taken into consideration the function �(�). 
As a result of this insertion, we obtain a 

polynomial in ��′(�) �(�)⁄ � . We equate all the 

coefficients of ��(�)�
��

, (� = 0, 1,2, ⋯ , �)  to this 

polynomial to zero. This procedure yields a 
system of algebraic and differential equations 
whichever can be solved for getting ��  (� =
0, 1,2, ⋯, �, �� and the value of the other  
parameters. 
 

3. APPLICATION OF THE METHOD 
 
In this section, we will execute the application of 
the MSE method to extract solitary wave 
solutions to the strain wave equation in 
microstructured solids which is a very important 
equation in the field of engineering. Let us 
consider the strain wave equation in 
microstructured solids: 

 
��� − ��� − � ��(��)�� − ������� + �������� − (��� − ����)����� 
+��(�������� + �������) = 0.                                                                                                                             (3.1) 

 
3.1 The Non-dissipative Case  
 
The system is non-dissipative, if � = 0 and determined by the double dispersive equation (see [52], 
[53], [56], [57] for details). 

 
��� − ��� − � ��(��)�� + �������� − �������� = 0.                                                                                    (3.2) 

 
The balance between dispersion and nonlinearities happen when � = �(�) Therefore, (3.2) becomes 

 
��� − ��� − � {��(��)�� − ������� + �������} = 0.                                                                                      (3.3) 

 
In order to extract solitary wave solutions of the strain wave equation in microstructured solids by 
using the MSE method, we use the traveling wave variable 
 

�(�, �) = �(�),     � = � − � �.                                                                                                                             (3.4) 
 
The wave transformation (3.4) reduces Eq. (3.3) into the ODE in the following form: 
 

(�� − 1) �′′ − ����( ��)′′ − (�� − ����) �(��)� = 0.                                                                                   (3.5) 

 
where primes indicate differential coefficients with respect to � . Eq. (3.5) is integrable, therefore, 
integration (3.5) as many time as possible, we obtain the following ODE: 
 

(�� − 1) � − ������ − (�� − ����) �′′� = 0.                                                                                                (3.6) 
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where the integration constants are set zero, as we are seeking solitary wave solutions. Taking 
homogeneous balance between the terms �′′  and ��  appearing in Eq. (3.6), we obtain � = 2 . 
Therefore, the shape of the solution of Eq. (3.6) becomes 

 

�(�) = �� +
���′

�
+

����′�
�

��
 .                                                                                                                              (3.7) 

 
wherein ��, �� and �� are constants to be find out afterward such that �� ≠ 0, and �(�) is an unknown 
function. The derivatives of � are given in the following: 

 

�′ = −
����′�

�

��
−

2����′�
�

��
+

���′′

�
+

2���′�′′

��
.                                                                                             (3.8) 

 
 

�′′ = �� �
2(�′)�

��
−

3�′�′′

��
+

�′′′

�
� + 2�� �

(�′′)�

��
+

�′�′′′

��
−

5(�′)��′′

��
+

3(�′)�

��
�.                                     (3.9) 

 
Inserting the values of �, �′ and �′′ into Eq. (3.6), and setting each coefficient of ���, � = 0, 1, 2, ⋯ to 
zero, we derive, successively 
 

��(−1 + �� − � ����) = 0.                                                                                                                               (3.10) 

��{(−1 + �� − 2�����)�� + �(�� − ����)����} = 0.                                                                             (3.11) 

−�����{������ + 3(�� − ����)���} + 2���(�� − ����)������

+ ��{(−1 + �� − 2�����)(��)� + 2�(�� − ����)(���)�} = 0.                             (3.12) 

−2�(��)�{��(���� − �� + ����)�� + 5��(�� − ����)���} = 0.                                                          (3.13) 

−���(���� − 6�� + 6����)(��)� = 0.                                                                                                          (3.14) 

From Eq. (3.10) and Eq. (3.14), we obtain 
 

�� = 0,   
−1 + ��

���

  and   �� =
6(�� − ����)

��

,     scince �� ≠ 0. 

 
Therefore, for the values of ��, there arise the following cases: 
 
Case 1: When �� = 0, from Eqs. (3.11)-(3.13), we obtain 
 

�� = ±
6√1 − ����� − ����

√���

 

 
and 

�(�) = �� +
���(−�� + ����)

−1 + ��
 �

∓
������

√��������� , 

 
where �� and ��  are integration constants. 
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Substituting the values of ��, ��, �� and �(�) into Eq. (3.7), we obtain the following exponential form 
solution: 

 

�(�) =
6�

± 
������

√���������(−1 + ��)�����(−�� + ����)

�� �(−1 + ��)�� �
± 

��������

√��������� + ���(−�� + ����)�

� .                                                          (3.15) 

 
Simplifying the required solution (3.15), we derive the following close-form solution to the strain wave 
equation in microstructured solids (3.3): 
 

�(�, �) = {6(−1 + ��)�����(−�� + ����)}

/ ��� �± � sin�(� − ��)��{(−1 + ��)�� + ���(�� − ����)}

+ cos�(� − ��)��{(−1 + ��)�� + ���(−�� + ����)}�
�

�                                       (3.16) 

 

where �
������

�√���������
. Solution (3.16) is the generalized solitary wave solution of the strain wave 

equation in microstructured solids. Since ��  and ��  are arbitrary constants, one might arbitrarily 
choose their values. Therefore, if we choose �� = (−1 + ��)  and �� = �(−�� + ����)  then from 
(3.16), we obtain the following bell shaped soliton solution: 
 

��(�, �) =
3(−1 + ��) 

2���

 sech� �
(� − ��)√−1 + ��

2√��−�� + ����

�.                                                                               (3.17) 

 
Again, if we choose �� = (−1 + ��)  and �� = −�(−�� + ����) , then from (3.16), we obtain the 
following singular soliton: 
 

��(�, �) = −
3(−1 + ��) 

2���

 csch� �
(� − ��)√−1 + ��

2√��−�� + ����

�.                                                                           (3.18) 

 
On the other hand, when �� = (−1 + ��) and �� = ±� �(−�� + ����), from solution (3.16), we obtain 
the following trigonometric solution: 
 

��(�, �) =
3(−1 + ��) 

2���

 sec� �
1

4
�� +

2(� − ��)√−1 + ��

√���� − ����

��.                                                                (3.19) 

 
Again when �� = (−1 + ��) and �� = ∓� �(−�� + ����), then the generalized solitary wave solution 
(3.16) can be simplified as: 

 

��(�, �) =
3(−1 + ��) 

2���

 csc� �
1

4
�� +

2(−� + ��)√−1 + ��

√���� − ����

��.                                                             (3.20) 

 
If we choose more different values of �� and ��, we may derive a lot of general solitary wave solutions 
to the Eq. (3.3) through the MSE method. For succinctness, other solutions have been overlooked. 

Case 2: When 
1

2

0
1




a , then Eqs. (3.11)-(3.13) yield 
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�� = ±
6√−1 + ����� − ����

√���

 

 
and 
 

�(�) = �� +
���(�� − ����)

−1 + ��
 �

∓ 
�������

√��������� , 

 
where �� and ��  are constants of integration. 
 
Now, by means of the values of ��, ��, ��  and �(�) , from Eq. (3.7), we obtain the subsequent 
solution: 
 

�(�) =
−1 + ��

���

+
6(−1 + ��)�����(−�� + ����)�

± 
�������

√���������

�� �(−1 + ��)���
± 

�������

√��������� + ���(�� − ����)�

� .                                         (3.21) 

 
Now, transforming the required exponential function solution (3.21) into hyperbolic function, we obtain 
the following solution to the strain wave equation in the microstructured solids: 

 
�(�, �) = (−1 + ��)�(−1 + ��)��cosh�2�(� − ��)� + sinh�2�(� − ��)����

�

+ ���cosh�2�(� − ��)� − sinh�2�(� − ��)����
�(�� − ����)�

+ 4�(−1 + ��)����(−�� + ����)�

/ �����(−1 + ��)�cosh��(� − ��)� + sinh��(� − ��)����

+ ��cosh��(� − ��)� − sinh��(� − ��)����(�� − ����)�
�
�.                                (3.22) 

 
Thus, we acquire the generalized solitary wave solution (3.22) to the strain wave equation in 

microstructured solids, where � =
������

�√���������
. Since ��  and ��  are integration constants, therefore, 

somebody might randomly pick their values. So, if we pick �� = (−1 + ��) and �� = −�(�� − ����), 
then from (3.22), we obtain the subsequent solitary wave solution: 

 

��(�, �) =  
(−1 + ��) 

2���

�2 + 3 csch� �
(� − ��)√−1 + ��

2√���� − ����

��.                                                                 (3.23) 

 
Again, if we pick �� = (−1 + ��) and �� = �(�� − ����), then the solitary wave solution (3.22) reduces 
to: 
 

��(�, �) = −
(−1 + ��) 

2���

�−2 + 3 sech� �
(� − ��)√−1 + ��

2√���� − ����

��.                                                           (3.24) 

 
Moreover, if we pick �� = (−1 + ��)  and �� = ∓� �(�� − ����) , then from (3.22), we derive the 
following solution: 
 

��(�, �) =
(−1 + ��)

���

�1 −
3

2
 csc� �

�

4
−

1

2

(� − ��)√−1 + ��

√��−�� + ����

��.                                                          (3.25) 

 
Again, if we pick �� = (−1 + ��) and �� = ±� �(�� − ����), then from (3.22), we obtain the following 
solution: 
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��(�, �) =
(−1 + ��)

���

�1 −
3

2
 csc� �

�

4
+

1

2

(� − ��)√−1 + ��

√��−�� + ����

��.                                                          (3.26) 

 
Forasmuch as, �� and ��  are arbitrary constants, if we choose more different values of them, we may 
derive a lot of general solitary wave solutions to the Eq. (3.3) through the MSE method easily. But, we 
did not write down the other solutions for minimalism. 
 
Remark 1: Solutions (3.17)-(3.20) and (3.23)-(3.26) have been confirmed by inserting them into the 
main equation and found accurate. 
 

3.2 The Dissipative Case 
 
If � ≠ 0, then the system is dissipative. Therefore, for )( O , the balance should be between 

nonlinearity, dispersion and dissipation, perturbed by the higher order dissipative terms to the strain 
wave equation in microstructured solids (see [52], [53], [56], [57] for details) 
 

��� − ��� − � {��(��)�� + ������ − ������� + �������} = 0.                                                                 (3.27) 
 
where ,0  so the higher order term are omitted. 

 
The traveling wave transformation (3.4) reduces Eq. (3.27) to the following ODE: 
 

(�� − 1) �′′ − ����( ��)′′ − � ���′′′ − (�� − ����) �(��)� = 0.                                                             (3.28) 

 

where prime stands for the differential coefficient. Integrating Eq. (3.28) with respect to  , we get 

 
(�� − 1) � − ������ − � ���′ − (�� − ����) �′′� = 0.                                                                          (3.29) 

 
The homogeneous between the highest order nonlinear term and the linear terms of the highest order, 
we obtain � = 2. Thus, the structure of the solution of Eq. (3.29) is one and the same to the form of 
the solution (3.7). 
 
Inserting the values of �, �′ and  �′′ into Eq. (3.29) and then setting each coefficient of ���, � = 0, 1, 2,
⋯ to zero, we successively obtain 
 

��(−1 + �� − �����) = 0.                                                                                                                                 (3.30) 
 

���(−1 + �� − 2�����)�′ + �����′′ + �(�� − ����)�′′′� = 0.                                                             (3.31) 

 

−����′�(���� + ���)�′ + 3(�� − ����)�′′� + 2����′�����′′ + (�� − ����)�′′′�

+ �� �(−1 + �� − 2�����)��′�
�

+ 2�(�� − ����)��′′�
�

� = 0.                              (3.32) 

 

−2���(���� − �� + ����)��′�
�

− 2��������′ + 5(�� − ����)�′′���′�
�

= 0.                                (3.33) 

 

−���(���� − 6�� + 6����)��′�
�

= 0.                                                                                                          (3.34) 

 
From Eqs. (3.30) and (3.34), we obtain 
 

�� = 0,   
−1 + ��

���

   and   �� =
6(�� − ����)

��

,     scince �� ≠ 0. 

 
Therefore, depending on the values of ��, the following different cases arise: 
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Case 1:  When �� = 0, from Eqs. (3.31) - (3.33), we get 
 

�(�) = �� +
30��(�� − ����)

−5���� − 6���

 �
�(�����������)

��(�������) , 

 

�� = 0,   ω = ±

�6���
� − 25(�� + ��) + �{6���

� − 25(�� + ��)}� − 2500����

−��

5√2
= ±θ, 

 
and 

�� =
3 �3������ + 5����

�{�����
� + 4(−1 + ��)(−�� + ����)}�

5���
� ,

ω = −

�25 +
6���

�

��
+

25��

��
±

�(−6���
� − 25�� − 25��)� − 2500����

��

5√2
, 

 

where �� and �� are integration constants. 

 

Hence for the values of �� and ω,  there also arise three cases. But when �� ≠ 0 then the shape of the 
solutions for dissipative case is distorted and the solution size is very long. So we have omitted the 
other value of �� and discussed only for �� = 0. 

 

When �� = 0 then we get also the solutions to the above mentioned equation depends for the values 
of ω. Thus, 

 

�(�) = �� −
5��(�� − ����)

���

 �
� 

����
�(�������) 

 

Now, by means of the values of ��, ��, ��  and �(�) from Eq. (3.7), we achieve the subsequent 
solution: 

 

�(�) = −
6����

���
�(−�� + ����)

�� �������
����

��������� − 5��(�� − ����)�

� .                                                                              (3.35) 

 

Simplifying the required solution (3.35), we derive the following close-form solution of the strain wave 
equation in microstructured solids for dissipative case (3.27): 

 

�(�, �) = �6���−cosh�2�(� − ��)� + sinh�2�(� − ��)����
���

�(−�� + ����)�

/ ������cosh��(� − ��)� + sinh��(� − ��)������

+ 5�−cosh��(� − ��)� + sinh��(� − ��)����(�� − ����)�
�

�.                            (3.36) 

 

where � =
� ��

��(�������)
,  ω = ±θ or  and ��, �� are integrating constants. Since �� and �� are integration 

constants, one might arbitrarily select their values. If we choose �� = ��� and �� = −5(�� − ����), 
then from (3.36), we obtain 

 

��(�,   �) =
3����

�

50��(�� − ����)
�1 + tanh �

�(−� + ��)��

10(�� − ����)
��

�

.                                                               (3.37) 
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Again if we choose �� = ���  and �� = 5(�� − ����) , then from (3.36), we attain the subsequent 
soliton solution: 
 

���(�,   �) =
3����

�

50��(�� − ����)
�1 + coth �

�(−� + ��)��

10(�� − ����)
��

�

.                                                             (3.38) 

 

Case 2: When 
1

2

0

1




a , from Eq.(3.31)-(3.33), we obtain 

 

�(�) = �� +
30��(�� − ����)

−5���� − 6���

 �
�(�����������)

��(�������) , 

 

where �� and �� are integration constants and 
 

�� = 0,   ω =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

±

�6���
� + 25�� + 25�� − �{6���

� + 25(�� + ��)}� − 2500����

��

5√2
= ±��(say)

±

�6���
� + 25�� + 25�� + �{6���

� + 25(�� + ��)}� − 2500����

��

5√2
= ±��(say);

� 

 

�� =
3 �3������ + 5����

�{�����
� + 4(−1 + ��)(�� − ����)}�

5���
� ,   

 

ω = −

�−6���
� + 25�� + 25�� ± �{6���

� − 25(�� + ��)}� − 2500����

��

5√2
; 

 

�� =
3 �3������ − 5����

�{�����
� + 4(−1 + ��)(�� − ����)}�

5���
� , 

 

ω =

�−6���
� + 25�� + 25�� ± �{6���

� − 25(�� + ��)}� − 2500����

��

5√2
. 

 
Hence for the values of �� and ω,  there arises also three cases. When �� ≠ 0, then the form of 
solutions to the strain wave equation in microstructured solids for dissipative case (3.24) indistinct and 
the solution size is very lengthy. So we omitted the extra value of �� and only discuss for �� = 0. 

 
When �� = 0 then we find also the solutions to the above revealed equation depends for the values of 
ω, i.e. ω = ±�� and ω = ±��. Therefore, 

 

�(�) = �� −
5��(�� − ����)

���

 �
� 

����
�(�������) 

 

 
where . ω = ±�� or ω = ±��, 1c  and 2c  are constants of integration. 

 
Substituting the values of ��, ��, �� and �(�) into Eq. (3.7), we accomplish the following solution: 
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�(�) =
−1 + ��

���

−
6����

���
�(−�� + ����)

�� �������
����

��������� − 5��(�� − ����)�

� .                                                            (3.39) 

 
Simplifying the required exponential function solution (3.39) into trigonometric function solution, we 
derive the solution of Eq. (3.27) as follows: 
 

�(�, �) = ���(−1 + ��)�cosh�2�(� − ��)� + sinh�2�(� − ��)����
���

�

+ �cosh�2�(� − ��)� − sinh�2�(� − ��)����
�(�� − ����){6�����

�

− 25(−1 + ��)(−�� + ����)} + 10�(−1 + ��)������(−�� + ����)�

/ �������cosh��(� − ��)� + sinh��(� − ��)������

+ 5�−cosh��(� − ��)� + sinh��(� − ��)����(�� − ����)�
�
�.                           (3.40) 

 
Therefore, we obtain the generalized soliton solution (3.40) to the strain wave equation in 

microstructured solids for dissipative case, where � =
� ��

��(�������)
 and . ω = ±��  or ω = ±�� . But, 

since �� and �� are arbitrary constants, someone may arbitrarily choose their values. So, if we choose 
�� = ��� and �� = 5(�� − ����), from (3.20), we get the subsequent soliton solutions: 
 

���(�,   �) =
(−1 + ��)

���
−

3����
�

 50��(−�� + ����)
�−1 + coth �

�(� − ��)��

10(�� − ����)
��

�

.                           (3.41) 

 

Again, if we choose �� = ��� and �� = −5(�� − ����), the solitary wave solution (3.40) becomes 

 

���(�,   �) =
(−1 + ��)

���
+

3�����
�

50���(�� − ����)
�−1 + tanh �

�(� − ��)��

10(�� − ����)
��

�

.                             (3.42) 

 

As ��  and �� are arbitrary constants, one may 
pick many other values of them and each of this 
selection construct new solution. But for 
minimalism, we have not recorded these 
solutions. 
 
Remark 2: The solutions (3.37)-(3.38), where 
ω = ±��  or  ω = ±��  and the solutions (3.41)-
(3.42) ω = ±�� or ω = ±�� have been confirmed 
by satisfying the original equation. 
 

4. PHYSICAL INTERPRETATIONS OF 
THE SOLUTIONS 

 
In this sub-section, we draw the graph of the 
derived solutions and explain the effect of the 
parameters on the solutions for both non-
dissipative and dissipative cases. The solution 

1u  in (3.17) depends on the physical parameters 

 ,,, 431  and the group velocity ω  . Now, 

we will discuss all the possible physical 
significances for 2,,,2 431   , and 

soliton exists for |�| > 1  and |�| < 1 . For the 
value of parameters 0,,, 431   and |�| >

1 , the solution 1u  in (3.17) represents the bell 

shape soliton and when 1  then the solution 

1u  represents the anti-bell shape soliton. It is 

shown in Fig. 1. Also if the values of the 

parameters are 0,,,0 431    and 1 , 

then the solution 1u  represents the anti-bell 

shape soliton and when 1 , then the solution 

1u  represents the bell shape soliton. It is shown 

the Fig. 2. Again, for 0,0,, 431    and 

1 , the solution 1u in (3.17) represents the 

multi-soliton and when 1 , the solution 1u  

represents the anti-bell shape soliton. It is plotted 
in Fig. 3. Again, if the values of the physical 
parameters are 0,0,,0 431    and

1 , then the solution 1u  represents the anti-

bell shape soliton and when 1  then the 

solution 1u  represents the bell shape soliton. It is 

shown in Fig. 4. We can sketch the other figures 
of the solution 1u  for different values of the 

parameters. But for page limitation in this article 
we have omitted these figures. So, for other 
cases we do not draw the figures but we discuss  
for other cases with the following table: 
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0  1  0,0,0 431    Anti-bell shape soliton 

0,0,0 431    Bell shape soliton 

0,0,0 431    Bell shape soliton 

0,0,0 431    Bell shape soliton 

  

0,0,0 431    Bell shape soliton 

0,0,0 431    Anti-bell shape soliton 

0,0,0 431    Anti-bell shape soliton 

0,0,0 431    Anti-bell shape soliton 

1  0,0,0 431    Bell shape soliton 

0,0,0 431    Anti-bell shape soliton 

0,0,0 431    Anti-bell shape soliton 

0,0,0 431    Anti-bell shape soliton 

0,0,0 431    Anti-bell shape soliton  

0,0,0 431    Bell shape soliton 

0,0,0 431    Bell shape soliton 

0,0,0 431    Periodic bell shape solution 

0  1  0,0,0 431    Bell shape or Periodic bell shape solution 

0,0,0 431    Anti-bell shape soliton or Periodic anti-bell shape solution 

0,0,0 431    Anti-bell shape soliton 

0,0,0 431    Periodic anti-bell shape solution 

0,0,0 431    Periodic anti-bell shape solution 

0,0,0 431    Bell shape soliton 

0,0,0 431    Periodic bell shape solution 

0,0,0 431    Periodic bell shape solution 

1  0,0,0 431    Anti-bell shape soliton or Periodic anti-bell shape solution 

0,0,0 431    Bell shape or Periodic bell shape solution 

0,0,0 431    Periodic bell shape solution 

0,0,0 431    Bell shape or Periodic bell shape solution 

0,0,0 431    Bell shape soliton 

0,0,0 431    Periodic anti-bell shape solution 

0,0,0 431    Anti-bell shape soliton or Periodic anti-bell shape solution 

0,0,0 431    Anti-bell shape soliton 

 

Also the soliton 2u  in (3.18) depends on the 

parameters  ,,, 431  and  . Now, we will 

discuss all the possible physical significances for 
2,,,2 431   , and soliton exists for 

1and1   . For the value of parameters 

contains 0,,, 431   and 1 , then the 

solution 2u in (3.18) represents the singular anti-

bell shape soliton and when 1  then the 

solution 2u  represents the singular bell shape 

soliton. It is shown in Fig. 5. Also, for 

0,0,, 431    and 1 , then the 

solution 2u in (3.18) represents the periodic 

singular anti-bell shape solution and when 
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Fig. 1. Sketch of the solution 1u  for 5.1,001.0 431    and 

75.0,001.0 431    respectively 

 

  
 

Fig. 2. Plot of the solution 1u  for 5.1,001.0 431   and 

75.0,001.0 431   respectively 

 

1  then the solution 2u  represents the 

periodic singular bell shape solution. It is plotted 
of the Fig. 6. On the other hand, the solutions 3u  

in (3.19) and 4u  in (3.20) exist for 

  0,02
43    or   0,02

43    

when 1  or 1 . For the value of the 

parameters are 
1,2,1.0,25.1 431   , when 

96.0 , the solution 3u  in (3.19) represents the 

anti-bell shape soliton and ,1.0,5.1 31    

1,24   , when 5.1 , the solution 4u  

represents the periodic solution. It is shown in 
Fig. 7. Again, the travelling wave solution 5u  in 

(3.23) represents the bell shape singular solitons 
for ,1 31    ,14  5.0 ,  5.1  and 

5.0  respectively, in Fig. 8 and Fig. 9 from   in 
(3.24) represents the bell shape soliton, when 

5.1  and the anti-bell shape soliton, when 

75.0 . In Fig. 10, we have plotted of the 
periodic bell shape and anti-bell shape solution 
for 25.131   , ,14   7.0 ,  2.1  

and 25.131   , ,14   7.0 , 25.0  

respectively to the solution of 7u  in (3.25) and 

Fig. 11 plotted the periodic anti-bell shape 
solution and bell shape solution for ,25.11   

25.13  , ,14   7.0 ,  2.1  and 

25.131   , ,14   7.0 ,  25.0   

respectively to the solution of 8u  in (3.26). Figs. 

12 and 13 represent the kink shape solutions 9u  

given in (3.37) are respectively, for ,11   ,12   

,5.13  14   and ,11  ,12   
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,5.13   14   respectively, when 1   

and for ,11   ,12   ,5.13   14   and 

,11   ,12   ,5.13   14   

respectively, when 2  . Also sketch the 

Figs. 14 and 15, singular bell shape solutions 10u  

in (3.38) for ,11   ,12   ,5.13   14   

and ,11   ,12   ,5.13   14 

respectively, when 1   and for ,11   

,12   ,5.13   14    and ,11  ,12   

,5.13  14    respectively, when 2  . 

On the other hand, Figs. 16 and 17 are singular 
bell and singular anti-bell shape soliton solitons 

11u  in (3.41) for ,11   ,12   ,13   ,14   

5.0  and ,11   ,12   ,13   ,14   

5.0  respectively, when 1   and for 

,11   ,12   ,13   ,14  5.0  and 

,11   ,12   ,13   ,14  5.0  

respectively, when 2  . Also, draw the Figs. 

18 and 19 are kink shape solitons 12u  in (3.42) 

for ,11   ,12   ,13   ,14  5.0  and 

,11   ,12   ,13   ,14  5.0  

respectively, when 1   and for ,11   

,12   ,13   ,14  5.0  and ,11   

,12   ,13   ,14  5.0  respectively, when 

2  . All figures are drawn within 

10,10  tx . 

 

  
        

Fig. 3. Sketch of the solution 1u  for 5.0,2.1431    and 

25.1,5.0,2.1431    respectively 

 

  
    

Fig. 4. Sketch of the solution 1u  for 2.1,75.0 431   , 5.0 , 25.1  and 

5.0,5.0,2.1,75.0 431    respectively 
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There is another kind of solution which is not a 
kink, anti-kink, dark or bell-shape soliton, known 
as Love wave [58,59]. A Love wave is define to 
be a surface wave having a horizontal motion 
that is transverse or perpendicular to the 
direction the wave is traveling. 

We can discuss the solutions 2u  to 12u  for other 

values of the parameters. But for page limitation 
in this article we have omitted these figures in 
details.

 

  
        

Fig. 5. Sketch of the singular dark and singular bell shape soliton 2u  for 5.0431   , 

75.0 , 5.1  and 5.0431   , 75.0 , 25.0  respectively 

 

  
       

Fig. 6. Sketch of the periodic singular solution 2u  for 5.1431   , 75.0 , 5.1  and 

5.1431   , 75.0 , 25.0  respectively 

  
    

Fig. 7. Sketch of the solution 3u  and the solution 4u  for ,25.11   ,1.03   ,24  1 ,  

96.0  and ,5.11   ,1.03   ,24   1 , 5.1  respectively 
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Fig. 8. Sketch of the solutions 5u  for ,1 31    ,14  5.0 ,  5.1  and 5.0  

respectively 
       

  
 

Fig. 9. Sketch of the bell shape soliton and anti-bell shape soliton 6u  for ,1431    

5.0 ,  5.1  and 75.0  respectively 

         

  
 

Fig. 10. Sketch of the solutions 7u  for 25.131   , ,14   7.0 ,  2.1  and 

25.131   , ,14   7.0 , 25.0  respectively 
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Fig. 11.  Sketch of the solutions 8u  for ,25.11   25.13  , ,14   7.0 ,  2.1  and 

25.131  , ,14   7.0 ,  25.0   respectively 

 

  
        

Fig. 12. Kink shape soliton obtained from 9u  for ,11   ,12   ,5.13   ,14  5.0  and 

,11   ,12   ,5.13   ,14  5.0  respectively, when 1   

    

  
 

Fig. 13. Kink shape soliton obtained from 9u  for ,11   ,12   ,5.13   ,14  5.0  and 

,11   ,12   ,5.13   ,14  5.0  respectively, when 2   
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Fig. 14.  Singular bell shape and anti-bell shape soliton 10u  for ,11   ,12   ,5.13   

,14  5.0  and ,11   ,12   ,5.13   ,14  5.0  respectively, when 1   
 

  
      

Fig. 15. Singular anti-bell shape and bell shape soliton 10u  in (3.38) for ,11   ,12   

,5.13   ,14  5.0  and ,11   ,12   ,5.13   ,14  5.0  respectively, when 

2   
     

  
 

Fig. 16. Sketch of the singular bell type and anti-bell soliton 11u  for ,11   ,12   ,13   

,14  5.0  and ,11   ,12   ,13   ,14  5.0  respectively, when 1   
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Fig. 17. Singular anti-bell shape and bell shape soliton 11u  for ,11   ,12   ,13   ,14 

5.0  and ,11   ,12   ,13   ,14  5.0  respectively, when 2   
     

  
 

Fig. 18. Kink shape soliton 12u  for ,11   ,12   ,13   ,14  5.0  and ,11   ,12   

,13   ,14  5.0  respectively, when 1   
 

  
      

Fig. 19. Kink shape soliton 12u  for ,11   ,12   ,13   ,14  5.0  and ,11   

,12   ,13   ,14  5.0  respectively, when 2   
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5. CONCLUSION 
 
In this article, we have implemented the MSE 
method to obtain soliton solutions to the strain 
wave equation in microstructured solids for both 
non-dissipative and dissipative cases. In fact, we 
have derived general solitary wave solutions to 
this equation associated with arbitrary constants, 
and for particular values of these constants 
solitons are originated from the general solitary 
wave solutions. We have illustrated the solitary 
wave properties of the solutions for various 
values of the free parameters by means of the 
graphs. This work shows that the MSE method is 
competent and more powerful and can be used 
for many other equations NLEEs applied 
mathematics and engineering. 
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