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ABSTRACT 
 

In this work, we give the power series solutions around an ordinary point, in the case of variable 
coefficients, homogeneous sequential linear conformable fractional differential equations of order 
2�. Further, we introduce the conformable fractional Hermite differential equations, conformable 
fractional Hermite polynomials and basic properties of these polynomials. 
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1. INTRODUCTION 
 
The idea of fractional derivative was raised first 
by L'Hospital in 1695. Since then, related to the 
definition of fractional derivatives have been 
given many definitions. The most popular ones of 
these definitions are Grunwald-Letnikov, 
Riemann-Liouville and Caputo definitions. For 
Riemann-Liouville, Caputo and other definitions 
and the characteristics of these definitions, we 
refer to the reader to [1-3]. 
 
Although the fractional calculus was not striking 
for a long time, it became the most popular 
working area along with fractional differential 
equations after its powerfull applications showed 
up and there has been made a lot of studies 
related to its theory and physical applications [4-
10]. 
 
Since the analytic methods fell behind for exact 
solutions of the most fractional differential 
equations, there has been a tendency towards 
numerical and approximate analytic solution 
methods [11-17].  
 
Recently, Khalil et al. [18] give a new definition of 
fractional derivative and fractional integral in. 
This new definition benefit from a limit form as in 
usual derivatives. They also proved the product 
rule, the fractional Rolle theorem and mean value 
theorem. In [19], Abdeljawad improve this new 
theory. For instance, definitions of left and right 
conformable fractional derivatives and fractional 

integrals of higher order (i.e. of order 1  ), 
Taylor power series representation and Laplace 
transform of few certain functions, fractional 
integration by parts formulas, chain rule and 
Gronwall inequality are provided by him. The 
definition is found attractive and a large number 
of studies has been applied in this field in a short 
time [20-22]. 
 
In this work, we analyze the existence of 
solutions around an ordinary point of 
conformable fractional differential equation of 
order 2� . Then, we give solution of Hermite 
fractional differential equation. For this solution, 
we obtain Hermite fractional polynomials with 
certain special initial conditions. Finally, we 
introduce the basic properties of Hermite 
fractional polynomials. 
 

2. CONFORMABLE FRACTIONAL 
CALCULUS 

 
Definition 2.1. [18] Given a function �: [0,∞) →
ℝ. Then the conformable fractional derivative of f 
order � is defined by 
 

�(�)(�) = lim
�→�

�(� + �����) − �(�)

�
 

 
for all �> 0, � ∈ (0,1]. 
 
Theorem 2.1. [18] Let � ∈ (0,1] and �, �  be � -
differentiable at a point � > 0. Then 
 

(1) 
��

���
(�� + ��) = �

���

���
+ �

���

���
, for all �, � ∈ ℝ 

(2) 
��

���
(��) = �����, for all � ∈ ℝ 

(3) 
��

���
(�) = 0 , for all constant functions 

�(�) = � 

(4) 
��

���
(��) = �

��

���
(�) + �

��

���
(�) 

(5) 
��

���
(�/�) =

�
��

���
(�)��

��

���
(�)

��
 

(6) If, in addition, �  is differentiable, then  
��

���
��(�)� = ����

��

��
(�). 

 
Theorem 2.2. [19] Assume �  is infinitely � -
differentiable function, for some 0 < � ≤ 1 at a 
neighborhood of a point �� . Then �  has the 
fractional power series expansion: 
 

�(�) = �
�(��)(��)(� − ��)

��

���!
,

∞

���

 

 
�� < � < �� + ��/�, � > 0. 

 
Here, �(��)(��)  means the application of the 
fractional derivative � times. 
 

3. CONFORMABLE SEQUENTIAL FRAC-
TIONAL DIFFERENTIAL EQUA-TION 
AND SOLUTIONS AROUND AN 
ORDINARY POINT 

 
The most general sequential linear 
homogeneous conformable fractional differential 
equation is 

��� + ����(�) ���+...+��(�)��� + ��(�)� = 0,����                                                                       (1) 
 

where ��� = ���� … ���
� , n times. 
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Definition 3.1. Let � ∈ (0,1], �� ∈ [�, �], � (��) be 
a neighborhood of �� and �(�) be a real function 
defined on [�, �]. In this case �(�) is said to be 
� -analytic at ��  if �(�) can be expressed as a 
series of natural powers of (� − ��)

�  for all 
� ∈ � (��). In other word, �(�) can be expressed 
as following: 
 

� ��(� − ��)
��       (�� ∈ �)

∞

���

 

 
This series being definitely convergent for 
|� − ��|< �  (� > 0) . �  is the radius of 
convergence of the series. 
 
Definition 3.2. Let � ∈ (0,1], �� ∈ [�, �] and the 
functions ��(�)  be � -analytic at �� ∈ [�, �] for 
� = 0,1,2, … , � − 1 . In this case, the point 
�� ∈ [�, �] is said to be an �-ordinary point of (1). 
If a point �� ∈ [�, �] is not �-ordinary point, then it 
is said to be � singular. 
 
Example 3.1. a) We consider following the 
conformable fractional differential equations: 
 
��� − ��� = 0, 
 
��� − 2��� = 0� , 

 
��� ��� − 2����� + ���� = 0�  

 
Any point � = �� > 0 is an ordinary point for the 
above equations. 
 
b) Let be 
 

(� − 1)���� − � = 0, 
 
(� − 1)�� ��� − 2(� − 1)���� + (� − 1)��� = 0� . 

 
For these equations, any point � = �� > 1 is an 
ordinary point. 
 
Theorem 3.1. Let � ∈ (0,1] and �� ∈ [�, �] be an 
�-ordinary point of the equation 
 
����� + �(�)��� + �(�)� = 0.                        (2) 

 
Then, there exists a solution to the equation (2) 
as 
 
� = ∑ ��(� − ��)

��∞
���                                     (3) 

 
for � ∈ (��, �� + �) with �= min {��, ��} and initial 
conditions �� = �(��), ��� = ���(��).  
 
Proof. Since �� is an �-ordinary point of (2), by 
definition 3.1 and 3.2 we can write 
 
�(�) = ∑ ��(� − ��)

��∞
���       (� ∈ [��, �� +

�1; �1>0                                                                  (4) 
 

and 
 

 �(�) = ∑ ��(� − ��)
��∞

���      
 
(� ∈ [��, �� + ��]; �� > 0).                                     (5) 

 
We seek a solution in form (3) of (2). Substituting  
(3) and its conformable fractional derivatives in 
(2), then we obtain 
 

∑ ��(� + 2)(� + 1)����(� − ��)
��∞

��� + (∑ ��(� − ��)
��∞

���  )(∑ �(� + 1)����(� − ��)
��∞

��� ) + (∑ ��(� −
∞
���

�0���=0∞���−�0��=0                                                                                                                                                        (6) 

 
We also can write 
 

�� ��(� − ��)
��

∞

���

 ��� �(� + 1)����(� − ��)
��

∞

���

�= � �� �(�+ 1)��������

�

���

�(� − ��)
��

∞

���

 

(7) 
and 
 

�� ��(� − ��)
��

∞

���

��� ��(� − ��)
��

∞

���

�= � �� ������

�

���

�(� − ��)
��

∞

���

. 

         (8) 
Hence, if we substitute (7) and (8) in (6), we obtain 
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� ���(� + 2)(� + 1)���� + � �(�+ 1)��������

�

���

+ � ������

�

���

�

∞

���

(� − ��)
�� = 0. 

 
So, the coefficients �� must satisfy 
 

            ��(� + 2)(� + 1)���� = − ∑ ��(�+ 1)��������+�������
�
��� .                                                  (9) 

 
 
We show that if the coefficient ��  are defined by (9), for � ≥ 2, then the series 
 

� = � ��(� − ��)
��

∞

���

 

 
is convergent for |� − ��|< �. Let us fix � (0 < �< �). Since the series in (4) and (5) are convergent 
for |� − ��|= �, there is a constant � > 0 such that 
 

������≤
����

���
           (� ∈ ��;0 ≤ �≤ �)                                                                                          (10) 

 
and 
 

������≤
����

���
           (� ∈ ��;0 ≤ �≤ �).                                                                                         (11) 

 
Using (10) and (11) in (9), we obtain 
 

  ��(� + 2)(� + 1)|����|≤
�

���
∑ ��(�+ 1)������+ ������

���
���  

  ≤
�

���
∑ ��(�+ 1)������+ ������

���
��� + ��������

�.                                                                         (12) 

 
Now, we define 
 

�� = |��|,�� = |��| 
 
and �� by 
 

 ��(� + 2)(� + 1)���� =
�

���
∑ ��(�+ 1)���� + ����

���
��� + ������

�                                             (13) 

 
for � ≥ 2. 
 
We can see that an induction yields 
 

|��|≤ ��, �� ≥ 0, (� = 0,1,2, … ) 
 
Now, we analyze for what � the series 
 

∑ ��(� − ��)
��∞

���                                                                                                                          (14) 
 

is convergent. 
 
Using (13), we obtain 
 

 ��(�)(� + 1)���� =
�

�(���)�
∑ ��(�+ 1)���� + ����

�����
��� + ����

�                                                   (15) 
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 ��(�)(� − 1)�� =
�

�(���)�
∑ ��(�+ 1)���� + ����

�����
��� + ������

� .                                                 (16) 

 
From (15) and (16), we find 
 

 ����(�)(� + 1)���� =  ��(�)(� − 1)�� + ������� + ����
��. 

 
Hence,  
 

����
��

=
 ��(�)(� − 1) + ����� + ����

 ����(�)(� + 1)
 

 
is obtained. By the help of the ratio test, we have that 
 

lim
�→∞

�
����(� − ��)

(���)�

��(� − ��)��
�= �

|� − ��|

�
�

�

< 1 

 
Thus, the series (14) converges for |� − ��|< �. This implies that the series (3) converges for 
|� − ��|< �. Since � was any number satisfying 0 < �< �, the series (3) converges for |� − ��|< �. 
 
Example 3.2.  Find the general solution to the equation 
 

��� − ����� − � = 0 .�                                                                                                                  (17) 
 

We seek a solution in the form (3). Substituting (3) and conformable fractional derivatives of (3) in 
(17), we have  
 

�� =
1

2��
�� 

 
and 
 

���� =
�� + 1

��(� + 1)(� + 2)
��     � = 1,2, …  

 
Hence,  
 

�� =
�

���
��                        �� =

�Γ�
���

��
���

�.Γ�
�

��
���Γ(�)

�� 

�� =
Γ�

�

��
���

�����Γ�
�

��
���Γ(�)

��         �� =
��Γ�

���

��
���

��Γ�
���

��
���Γ(�)

�� 

�� =
Γ�

�

��
���

�����Γ�
�

��
���Γ(�)

��         �� =
��Γ�

���

��
���

��Γ�
���

��
���Γ(�)

�� 

⋮ 

��� =
Γ�

�

��
���

��������Γ�
�

��
���Γ(����)

��       ����� =
��Γ�

���

��
�����

��Γ�
���

��
���Γ(����)

�� 

 
is obtained. The general solution of (17) is founded as 
 

�(�) = �� � �
Γ�

1
2�

+ ��

2�������Γ�
1
2� + 1�Γ(2� + 1)

�����
∞

���

+ �� � �
2�Γ�

1 − �
2�

+ � + 1�

��Γ�
1 − �
2� + 1�Γ(2� + 2)

��(����)�
∞

���
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4.  CONFORMABLE SEQUENTIAL FRACTIONAL HERMITE DIFFERENTIAL EQUATION 
AND CONFORMABLE FRACTIONAL HERMITE POLYNOMIALS 

 
Consider the conformable fractional Hermite differential equation 
 

��� − 2������ + 2���� = 0�                                                                                                      (18) 
 

where � ∈ (0,1], �  is a real number. If � = 1, then equation (18) becomes the classical Hermite 
differential equation. Let  �  be a nonnegative integer. � = 0 is an ordinary point of  (18). Now we seek 
a solution as in (3) of (18). Substituting (3) and its conformable fractional derivatives in (18), we have  
 

�� = −��� 
 
and 
 

���� =
2(� − �)

(� + 1)(� + 2)
��     � = 1,2, …  

 
Hence,  

�� = (− 1)
��

�!
��            �� = (−1)

�(���)

�!
�� 

�� = (−1)�
��� (� ��)

�!
��         �� = (− 1)�

��(���)(� ��)

�!
�� 

�� = (−1)�
��� (� ��)(� ��)

�!
��       �� = (− 1)�

��(���)(� ��)(� ��)

�!
�� 

⋮ 

��� = (−1)�
��� (� ��)… (� �����)

(��)!
��       ����� = (− 1)�

��(� ��)(� ��)… (� �����)

(����)!
�� 

 
is obtained. The general solution of (18) is found as 
 

�(�) = �� + �� � �(−1)�
2��(� − 2) … (� − 2� + 2)

(2�)!
�����

∞

���

+ ���
�

+ �� � �(− 1)�
2�(� − 1)(� − 3) … (� − 2� + 1)

(2� + 1)!
��(����)�

∞

���

 

 
Now, we pick initial conditions the following as 
 

�(0) = �� = (−2)
�
� (� − 1)‼ 

 
���(0) = ��� = 0 → �� = 0 

 
where 
 

(� − 1)‼= �
(� − 1)(� − 3) … 3.1      (� − 1) ���
(� − 1)(� − 3)… 4.2     (� − 1) ����

� 

 
If �� = 0, then all �� = 0 when � is odd. For these initial conditions, the solution is 
 

�(�) = (− 2)
�

� (� − 1)‼�1+ ∑ �(−1)�
��� (� ��)… (� �����)

(��)!
�����∞

��� �.                                               (19) 

 
Specially, for � = 6, the solution is 
 

�(�) = 64��� − 480��� + 720��� − 120. 
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This is the 6
th
 order conformable fractional Hermite polynomial. That is 

 
��
�(�) = 64��� − 480��� + 720��� − 120. 

 
To get the odd order Hermite polynomials, we specify the initial conditions 
 

�(0) = �� = 0, 
 

���(0) = ��� = −�(− 2)
� ��
� (�)‼→ �� = − (− 2)

� ��
� (�)‼. 

 
If �� = 0, then all �� = 0 when � is even. For these initial conditions, the solution is 
 

�(�) = − (− 2)
� ��

� (�)‼��� + ∑ �(− 1)�
��(� ��)(� ��)… (� �����)

(����)!
��(����)�∞

��� �                                   (20) 

 
Specially, for � = 5, the solution is 
 

�(�) = 32��� − 160��� + 120��. 
 

This is the 5
th
 order conformable fractional Hermite polynomial. That is 

 
��
�(�) = 32��� − 160��� + 120��. 

 
Properties of classical hermite polynomials [23] can be generalized to fractional hermite polynomials 
as following: 
 
Property 4.1. 
 

(I) ��
� (�) = �� (�

�) 

(II) �����
� (�)� = 2������

� (�) 

(III) �����
� (�)� = 2� �!���  

(IV) ����
� (�) = 2����

� (�) − 2��� ��
� (�) 

(V) ����
� (�) = 2����

� (�) − ��������
� (�)� 

(VI) ��
� (�) = (− ���)� ��

��
����

������  

(VII) ∫ ��
� (�)

∞

�∞
��
�(�)���

��
��(�) = 0   � ≠ � ��� � =

�

����
  �∈ �  

(VIII) ∫ ��
� (�)

∞

�∞
��
�(�)���

��
��(�) =

�

�
2��!√�   � = � ��� � =

�

����
  �∈ �  

 
Proof.  
 

(I)  Proof is obvious. 
(II)  Let �  be even.  Then, ��

� (�) is found by the help of (19). Applying conformable derivative to 
(19), we get 

 

�����
� (�)� = 2�� �− (− 2)

�

� (� − 1)‼��� + ∑ �(− 1)�
��(� ��)… (� ���)

(����)!
��(����)�∞

��� ��. 

 
For � − 1 is odd, we can write 
 

�����
� (�)� = 2������

� (�). 

 
Conversely, let �  be odd. Then ��

� (�) is found by the help of (20). The conformable derivative of 
order � is 
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�����
� (�)� = 2�� �(− 2)

� ��

� (� − 2)‼�1+ ∑ �(− 1)�
��(� ��)(� ��)… (� �����)

(��)!
��(��)�∞

��� ��. 

 
For � − 1 is even, similarly, we can write 
 

�����
� (�)� = 2������

� (�).                                                                                                          (21) 

 
(III)  We use induction to prove. For � = 1, property is provided. That is 

 

�����
�(�)� = 2�. 

 
Assume that the property is true for � = �. That is 
 

��
� ���

�(�)� = 2��!��.                                                                                                                 (22) 

 
From (II), we have 
 

�������
� (�)� = 2(� + 1)���

�(�).                                                                                                   (23) 

 
Applying conformable fractional derivative of order �, � times, we get 
 

��
��� �����

� (�)� = 2(� + 1)� ��
� ���

�(�)�.                                                                                    (24) 

  
Substituting (22) in (24), we obtain 
 

��
��� �����

� (�)� = 2���(� + 1)����.                                                                                             (25) 

 
Hence, proof is completed. 
 

(IV)  For ����
� (�) is a solution of (18), we can write 

 

�������
� (�)� − 2����������

� (�)� + 2�������
� (�) = 0� .                                                            (26) 

 
Using (II), we have 
           

����
� (�) = 2����

� (�) − 2�����
� (�).                                                                                            (27) 

  
(V)  Using (21) and (27), the result is found. 
(VI) We prove by induction. For � = 1, the property is provided.  
 

Assume the property is true for � = �. That is 
 

��
�(�) = (− ���)���

��
����

������ .                                                                                                (28) 

 
If (28) is substituted in the property (V), then 
 

����
� (�) = (−���)�����

��
����

��������  

 
is obtained. Hence, proof is completed. 
 

(VII) The definition 2.1 is given for � > 0. To avoid the problem of being undefined on (−∞, 0]�, we 

assume � =
�

����
, with � any natural number. Since ��

� (�)  and ��
�(�)  are solution for the 

equation (18), respectively, then 
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�����
� (�)� − 2��������

� (�)� + 2�����
� (�) = 0�                                                                        (29) 

 

�����
� (�)� − 2��������

� (�)� + 2�����
� (�) = 0�                                                                        (30) 

 

Multiply (29) by ���
��
��
�(�) and (30) by ���

��
��
� (�) and subtract the resulting equation to get 

 

 ����
���������

� (�)����
�(�) − ����

���������
�(�)����

� (�) + 2��(� − �)���
��
��
�(�)��

� (�) = 0     (31) 

 
If we apply the fractional integral to equation (31), then we get 
 

� �����
���������

� (�)����
�(�) − ����

���������
�(�)����

� (�)����
∞

�∞

+ 2��(� − �)� ���
��
��
�(�)��

� (�)���
∞

�∞

= 0 

 
If we apply fractional integration by parts to the first fractional integral in the above equation, we find 
the result of this fractional integral as zero. Hence proof is completed. 
 

(VIII)  The definition 2.1 is given for � > 0. To avoid the problem of being undefined on (−∞, 0]�, we 

assume � =
�

����
, with � any natural number.  Let us define 

 

�� ,� = � ��
� (�)

∞

�∞

��
�(�)���

��
��(�) 

 
Then 
 

����,��� = � ����
� (�)

∞

�∞

����
� (�)���

��
��(�) = 0 

 
Using the property (IV), we get 
 

∫ ����
� (�)

∞

�∞
�2����

�(�) − 2�����
� (�)����

��
��(�) = 0. 

 
i.e. 
 

∫ 2������
� (�)��

�(�)
∞

�∞
���

��
��(�) = 2�����,���.                                                                            (32) 

 
 

Recall that 
 

��
�(�) = (− ���)���

��
����

������ . 

 
Thus, equation (32) becomes 
 

− (���)���� ∫ 2����
��
� ����

�������� �� ����
������ �

∞

�∞
��(�) = 2�����,���.                                     (33) 

 
Note that 
 

2����
��

����
�������� =

1

�
����

��� ����
�������� � −

1

�
��

��
����

������ . 

 
Then, equation (33) becomes 
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� (���)����
��

����
������

∞

�∞

����
�������(�)

� − (���)�� � ����
��� ����

�������� � ����
�������(�)

�
∞

�∞

= 2�����,��� 
 
Using the property (IV) and integration by parts for conformable fractional derivative, we have 
 

��,�− (�
��)�����

��
����

�������� ����
������ �

�∞

∞
+ ∫ (���)����

��
����

�������� ����
�������(�)

���∞

�∞
=

2�����,���. 
 

We also have following equations: 
 

� (���)����
��

����
�������� ����

�������(�)
���

∞

�∞

= ����,��� = 0, 

 

− (���)�����
��

����
�������� ����

������ �
�∞

∞
= 0. 

 

Hence, recurrence equation 
 

��,� = 2�����,��� 
 
is obtained. Repeating this operation n times 
yields the result 
 

��,� = 2��!��,� 
 
where  
 

��,� = � ���
��

∞

�∞

��(�) =
√�

�
 

 
Hence proof is completed. 
 

5. CONCLUSION 
 
In this work, we give power series solutions 
around an ordinary point in homogenous case of 
sequential linear differential equation of 
conformable fractional of order 2�  with variable 
coefficients. In addition, solving Hermite 
fractional differential equation, we obtain Hermite 
fractional polynomials for certain initial 
conditions. It is appeared that the results 
obtained in this work correspond to the results 
which are obtained in ordinary case.  
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