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ABSTRACT

In this paper, we developed a new continuous block method using the approach of collocation of the differential system
and interpolation of the power series approximate solution. A constant step length within a half step interval of integra-
tion was adopted. We evaluated at grid and off grid points to get a continuous linear multistep method. The continuous
linear multistep method is solved for the independent solution to yield a continuous block method which is evaluated at
selected points to yield a discrete block method. The basic properties of the block method were investigated and found
to be consistent and zero stable hence convergent. The new method was tested on real life problems namely: SIR model,
Growth model and Mixture Model. The results were found to compete favorably with the existing methods in terms of

accuracy and error bound.

Keywords: Approximate Solution; Interpolation; Collocation; Half Step; Converges; Block Method

1. Introduction

We consider the numerical solution of first order initial
value problems of the form:

y'=f(%Yy).¥(%)="Y (1)

where f is continuous and satisfies Lipchitz’s condition
that guarantees the uniqueness and existence of a solu-
tion.

Problem in the form (1) has wide application in physi-
cal science, engineering, economics, etc. Very often,
these problems do not have an analytical solution, and
this has necessitated the deviation of numerical schemes
to approximate their solutions.

In the past, scholars have developed a continuous lin-
ear multistep in solving (1). These authors proposed me-
thods with different basis functions and among them
were [1-6] to mention a few.

These authors proposed methods ranging from predic-
tor corrector method to discrete block method.

Scholars later proposed block method. This block
method has the properties of Runge-kutta method for
being self-starting and does not require development of
separate predictors or starting values. Among these au-
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thors are [7-12]. Block method was found to be cost ef-
fective and gave better approximation.

This paper is divided into sections as follows: Section
1 is the introduction and background of the study; Sec-
tion 2 contains the discussion about the methodology
involved in deriving the continuous multistep method
and the continuous block method. Section 3 considers the
analysis of the block method in terms of the order, zero
stability and the region of absolute stability. Section 4
focuses on the application of the new method on some
numeric examples and Section 5 is on the discussion of
result. We tested our method on first order ordinary dif-
ferential equations and compared our result with existing
methods.

2. Methodology

Consider power series approximate solution in the form

S+r—1

y(x)= Z a;x’ )
j=0

where S and r are the number of interpolation and collo-
cation points respectively.
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The first derivative of (2) gives

S+r—1

Collocating (3) at X ,.,S= O(éj% and interpolating

(x)= 2 jax™ 3) . . .
s (2) at x, gives a system of non-linear equation in the
o . . form
Substituting (3) into (2) gives
sero1 AX =U ®)
_ i i1
f(x,y)— ZO Ja;x 4) where
J:
- A S - - -
Xn Xn Xn Xn Xn Xn Xn yn
0 1 2x, 3x 4x  5xi 0 6x xS o f,
0 1 2x , 3¢, 4, 5x', 6, 7, % f
n+— n+— n+— n+— n+— n+— a n+—
12 12 12 12 12 12 1 12
2 3 4 5 6
0 1 2x , 3x*, 4x, 5x', 6x, 7Ix°, a, f
n+— n+— n+— n+— n+— n+— n+
6 6 6 6 6 6 a 6
0 1 2x , 3, 4, 5x', 6ex, 7x°, A=| 7 LU=| |
n+— n+— n+— n+— n+— n+— a n+—
4 4 4 4 4 4 4 4
0 1 2x , 3%, 4, 5x*, 6ex, 7x°, 5 f
n+— n+— n+— n+— n+— n+— n+—
3 3 3 3 3 3 a6 3
0 1 2x , 3x, 4, 5x', 6x , 7x°, f
n+— n+— n+— n+— n+— n+— 7 n+—
12 12 12 12 12 12 - - 12
0 1 2x , 3, 4, s5x*, ex, 7x°, f
n+— n+— n+— n+— n+— n+— n+—
L 2 2 2 2 2 2 L 2 |

Solving (5) for the as and substituting back into (4) where @) = 1 and the coefficients of f, ; gives
gives a continuous multistep method in the form

: ENEAY
Y00 =ay, +hE A 00, 1-0( 5] ©

By = (ﬁ](124416t7 —254016t° +211680t° ~92610t* +22736t" —3087t* +210t)

/;1 ( 315j(—124416t7—241920t6—187488t5 +73080t* ~14616t° +1260t" )

3 ) 311040’[7—57456t"+414288t5 —145215t4+24570t3—1575t2)

1
70

( 0 ] 1244160t7 —2177280t° —1463616t° +468720t* —71120t* +4200t2)

j 622080'[ -1028160t° + 647136t —193410t4+27720t3—1575'[2)

[ j 124416t7+193536t6—114912t5+32760t4—4536t3+252t2)

(%) 62208t” —90720t° + 51408t° ~14175t* +1918t> ~105t* )
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_Xn

where t= X . Solving (6) for the independent solu-

tion gives a continuous block method in the form

-1 h m m S
Yook = Z(JT?)IS] )+ > oy (%)
! j=0

=0

O]

where p is the order of the differential equation S is the
collocation points. Hence the coefficient of f  ; in (7)

o, = (L)(124416t7 —254016t° + 211680t
120
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o, = (Lj(mosﬁ ~90720t° + 51408t°
105

~14175t* +1918t3 —105t2)

X—X
where t= n

1(1)1
Evaluating (2.5) at t=—| — |— gives a discrete
g @3 12(12}2 g

block formula of the form

Y, =ey, +hdf (y,)+hdf (Y,) ®)
—92610t* +22736t* —3087t> +210t) )
where e,d,are rxr matrix
1 . . s where
o, =|-—— (—124416t —241920t° —187488t
= 35 d
+73080t4—14616t3+1260t2) _[19087 1139 137 143 3715 41 T
| 725760 45360 5376 5670 145152 1680
o, =(§j<311040t7 —57456t° +414288t° T
4 3 P Ym:|:y 1’y 13y 1’y 13y S’y 1:|
—145215t* + 24570t —1575t) M Mg Mg My Mg T
1 : . 5 (0 0 0 0 0 1]
alz(—mj(—1244160t —2177280t° —1463616t 00000 1
1
+468720t4—71120t3+4200t2) e= 00000
000001
al=(ij(622080t7—1028160t°+647136t5 000001
3 \70 0000 0 1]
—-193410t* + 27720t —1575t2)
o, = (—ij(—124416t7 +193536t° —114912t°
2 35
+32760t* —4536t° + 252t2)
[ 2713 —15487 293 —6737 263 -863 |
30240 241920 5670 241920 30240 725760
47 11 83 -269 11 -37
378 15120 2835 15120 1890 45360
27 387 17 243 9 -29
bo| 224 8960 210 8960 1120 26880
ue o 376 29 4 2
945 945 2835 1890 945 2835
725 2125 125 3875 235 275
6048 48384 1134 48384 6048 145152
9 v 19 9 4
70 560 105 560 70 1680 |
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3. Analysis of the Basic Properties of Our
New Method

3.1. Order of the Method

Let the linear operator L{y(x) : h} associated with the

A.A.JAMES ET AL.

called the error constant and implies that the local trun-
cation error is given by
t, =C,,h""y" (xn)+0(h"”).

For our method;

- 1 f
block formular be defined as y o 1 Eh f"
n+— .
L{y(x):h} = A, —ey, —h“df (y,)~h"bF (Y,) y HEREn 5
1
(9) n+g 6 fI'\+l
6
expanding in Taylor series and comparing the coeffi- yn+l 1 lh f
cient of h gives L{y(x);h}: 4 ‘1‘ [v.]- n% -0
Y 1
L{y(x);h} = ¢,y (x)+chy™ +chy"™..c hPy® (x) SN ot
+Cp+1hp+]yp+l(X)+Cp+2hp+2yp+2 y”*% 1 ih f s
(10) v 12 "2
Definition:-The linear operator L and the associated L "2 |1 lh fn+,
continuous linear multistep method (3.1) are said to be of L2 - -
order p if ¢,=¢ =c,=---=c,=0andc,,, #0 is Expanding in Taylor series expansion gives
1 i
i(lz) yiy 19087 R | 2713 (ijJ“ 15487 (lj"
= oqr Tt Tt 725760 7t gt T 30240012 241920\ 6
293 [1jj+ 6737 (1jj+ 263 [gjj_ 863 (ljj
5670\ 4 241920\ 3 30240\ 6 7257601\ 2
5)
°°6j< 1139 ., &h* 4701y 11 (1Y
D U My L) S T —(—) ool e
i ! 45360 = ! 378\12 15120\ 6
L (lj"_ 269 (l)j_ 11 (ijj_ 37 (ljj
2835\4) 15120\3 1890\ 12 453601\ 2
5]
z 4) j 137 = hit o 27(1)" 387(1jj
N/ _ __h r_ ]+ P B + _
;; j! Yo =¥ 5376 Yo JZ:; j!y“ 224\ 12 8960\ 6
5 -25(0) el sl
21004/ 8960\ 3 1120012 26880\ 2
i)
- 3) ,- 143 Zhi oL 116(1jj 32(1)"
N/ _ __h r_ ]+ = 4+ | =
JZ:; i " Se70 JZ:; j!y” 945\12) 945\ 6
376[1jj 29 [1)" 4 [5)" 2 (1}"
+ —| + -+ =| ——| =
2835\4) 1890\ 3 945\ 12 2835\ 2
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5
725

145152

i=0

i J!
125 (1)1 3875 (1)" 235 (5 j"
+ — |+ | +==|=
1134\ 4)  48384\3) 6048\ 12
41 2 hit o9 [ 1 jj
AT Y, = ; j'y” 70
17(1]" 9 (1)" 9(5}" 41 (1)"
= | == | +=—=| = | ———| =
105\4) 560\3) 70l12) 1680\ 2

Equating coefficients of the Taylor series expansion to
zero yield

2 (L
14515212

W(z )i 3715 ., &hito [1)"
_vy — h i+ =
25 Xl 6048\ 12
/]
1 ]
+__
560(6}

9
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2125 (1Y
+— —
48384 6

Hence we arrived at a uniform order 6 for our method
with error constants

¢, =[3.78(~09)2.53(~09)3.49(~09)1.85(~09)1.68(~08)5.56(~08) |

3.2. Zero Stability

Definition: The block (8) is said to be zero stable, if the
roots Zs, s=1,2,---,N of the characteristic polynomial
p(2) defined by p(z)det(zA” —E) satisfies [z,[<1
and every root satisfying |Zs| <1 have multiplicity not

S O O o o =
S O O O = O
S O O = O O
S O = O O O
S = O O O O

r(2)=

3.3 Region of Absolute Stability

z°(z-1). Hence our method is zero stable.

The block formulated as a general linear method
where it is partition in the form

A S

The elements of A and A, are obtained from the
coefficients of the collocation points, B, and B, are
obtained from the interpolation points.

Applying the test equation y'= Ay leads to the re-

Open Access

—_ O O O O O

exceeding the order of the differential equation. More-
over as h—>0,p(z)=2""(z-1)" where u is the
order of the differential equation, r is the order of the
matrix A and E.

For our method

S O O O O O
S O O O o O
S O O O O O
S O O O O O
S O O O o O
—_ e e e e e

currence equation
y*"'=M(2Z)y', Z=4hi=12,, u-1
The stability function is given by
M(Z)=B,+ZA,(1-ZA)™
and the stability polynomial of the method is given as
p(4,Z)=det(A1-M(2))
The region of absolute stability of the method is de-
finedas p(4,2)=1, |A|<1.

For our method, writing the block in partition form
gives
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Yo¥ Y Y aY 1Y sYaa

12 6 4 3 12

0 0 0 0 0 0 0 0 1]
19087 2713 15487 293 —6737 263  —863 0 1 [ hf, ]
725760 30240 241920 5670 241920 30240 725760 ht |
1139 47 11 83 2690 11 -37 0 1| E
45360 378 15120 2835 15120 1890 45360 el
ooz % 1 28 9 29 ol
5376 224 8960 210 8960 1120 26880 nel
143 116 32 376 2% 4 -2 o 1l hf .

| 5670 945 945 2835 1890 945 2835 e
Tl 3715 725 2125 125 3875 235 275 o 1Nt s
145152 6048 48384 1134 48384 6048 145152 B
I T ]

1680 70 560 105 560 70 1680 :

: : : : : : : i
19087 2713 —15487 293 6737 263  —863 N
725760 30240 241920 5670 241920 30240 725760 hi
L Y . ) O RN
| 1680 70 560 105 560 70 1680 |

4. Real Life Problems
4.1. Problem 1: (SIR MODEL)

The SIR model is an epidemiological model that com-
putes the theoretical numbers of people infected with a
contagious illness in a closed population over time. The
name of this class of models derives from the fact that
they involves coupled equations relating the number of
susceptible people S(t), number of people infected I(t)
and the number of people who have recovered R(t). This
is a good and simple model for many infectious diseases
including measles, mumps and rubella [13-15]. The SIR
model is described by the three coupled equations.

ds

- H(1=8)-p18 (11)
dl
il ARy S (12)
ds
- R+ (13)

where u,y and f are positive parameters. Define Y
to be

y=S+I1+R (14)

Adding Equations (11)-(13), we obtain the following
evolution equations for Y

y'=u(l-y) (15)

Open Access

Taking x4 =0.5 and attaching an initial condition
y(0)=0.5 (for a particular closed population), we ob-
tain,

y’(t)=0.5(1—y),y(0)=0.5 (16)
whose exact solution is,
y(t)=1-0.5¢"" (17)

Applying our new half step numerical scheme (8) to
solve SIR model simplified as (17) gives results as
shown in Table 1.

4.2. Problem 2 (Growth Model)

Let us consider the differential equation of the form;
dN
dt

Equation (18) represents the rate of growth of bacteria
in a colony. We shall assume that the model grows con-
tinuously without restriction. One may ask; how many
bacteria are in the colony after some minutes if an indi-
vidual produces an offspring at an average growth rate of

0.2? We also assume that N (t) is the population size at

time t (Table 2).

The theoretical solution of (18) is given by;

aN, N(0)=1000, t €[0,1] (18)

(19)

s
Note that, growth rate o =0.2 in (18).
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Table 1. Showing results for SIR model problem.

X Exact Result Computed Solution Error in half step method Error in Sunday et al.
0.1 0.5243852877496430 0.5243852877496429 1.110223e—016 5.574430e—012
0.2 0.5475812909820202 0.5475812909820202 0.000000e+000 3.946177e—012
0.3 0.5696460117874711 0.5696460117874710 1.110223e—016 8.183232¢—012
0.4 0.5906346234610092 0.5906346234610089 2.220446¢-016 3.436118¢-011
0.5 0.6105996084642976 0.6105996084642973 3.330669¢—016 1.929743e-010
0.6 0.6295908896591411 0.6295908896591410 1.110223e-016 1.879040e-010
0.7 0.6476559551406433 0.6476559551406429 4.440892¢—016 1.776835¢—010
0.8 0.6648399769821805 0.6648399769821799 5.551115e-016 1.724676e—010
0.9 0.6811859241891134 0.6811859241891132 2.220446e—016 1.847545¢—010
1.0 0.6967346701436834 0.6967346701436828 5.551115e-016 3.005770e-010
Table 2. Showing results for growth model problem.
X Exact Result Computed Solution Error in half step method Error in Sunday et al.
0.1 1020.2013400267558 1020.201340026755 0.000000e+000 1.830358¢—011
0.2 1040.8107741923882 1040.8107741923882 0.000000e+000 1.250555¢—011
0.3 1061.8365465453596 1061.8365465453596 0.000000e+000 1.227818¢—011
0.4 1083.2870676749587 1083.2870676749585 2.273737¢-013 3.137757¢-011
0.5 1105.1709180756477 1105.1709180756475 2.273737¢-013 2.216893e—010
0.6 1105.1709180756477 1127.4968515793755 2.273737¢-013 2.060005e—010
0.7 1150.2737988572273 1150.2737988572271 2.273737¢—013 2.171419¢—010
0.8 1173.5108709918102 1173.5108709918102 0.000000e+000 2.216893¢—010
0.9 1197.2173631218102 1197.2173631218102 0.000000e+000 2.744400e—010
1.0 1221.4027581601699 1221.4027581601699 0.000000e+000 4.899903¢—010

Applying our new half step numerical scheme (8) to
solve the Growth model (17) gives results as shown in
Table 2 [16].

4.3. Problem 3 (Decay Model)

A certain radioactive substance is known to decay at the
rate proportional to the amount present. A block of this
substance having a mass of 100 g originally is observed.
After 40 mins, its mass reduced to 90 g. Find an expres-
sion for the mass of the substance at any time and test for
the consistency of the block integrator on this problem
for te [0,1] .
The problem has a differential equation of the form;

%=—aN, N (0)=100, t€[0,1] 21)

where N represents the mass of the substance at any time
t and o is a constant which specifies the rate at which
this particular substance decays. Note that,

f(0)=100 g, t =40 mins, f (40)=90 g

Since for any growth/decay problem,

Open Access

f(t)=f(0)e"

90 =100e*
(ln 9-Inl 0)
o =———==-0.0026
40
Thus, the theoretical solution to (20) is given by,
f (t) =100e % (22)

which is also the expression for the mass of the substance
at any time t.

Applying our new half step numerical scheme (8) to
solve the Growth model (22) gives results as shown in
Table 3[16,17] (Table 3).

5. Discussion of the Result

We have considered three real-life model problems to
test the efficiency of our method. Problems 1 and 2 and 3
were solved by Sunday et al. [17]. They proposed an
order six block integrator for the solution of first-order
ordinary differential equations. Our half-step block
method gave better approximation as shown in Tables
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Table 3. Showing results for decay model problem.
X Exact Result Computed Solution Error in half step method Error in Sunday et al.
0.1 99.9740033797070850 99.9740033797070850 0.000000e+000 0.000000e+000
0.2 99.9480135176568470 99.9480135176568330 1.421085¢-014 1.421085e-014
0.3 99.9220304120923400 99.9220304120923400 0.000000e+000 0.000000e+000
0.4 99.8960540612571460 99.8960540612571460 0.000000e+000 0.000000e+000
0.5 99.8700844633952300 99.8700844633952440 1.421085e-014 0.000000e+000
0.6 99.8441216167510670 99.8441216167510820 1.421085¢-014 0.000000e+000
0.7 99.8181655195695610 99.8181655195695750 1.421085e-014 0.000000e+000
0.8 99.7922161700960970 99.7922161700960970 0.000000e+000 0.000000e+000
0.9 99.7662735665764730 99.7662735665764730 0.000000e+000 0.000000e+000
1.0 99.7403377072569700 99.7403377072569700 0.000000e+000 0.000000e+000
06 [4] B. L Zarina and S. I. Kharil, “Block Method for General-
e T

0.4 T

0.2

0.2
0.4
N
06
0.8
0 0.2 0.4 0.6 058 1 1.2 1.4

Figure 1. Showing region of absolute stability of our
method.

1-3 because the iteration per step in the new method was
lower than the method proposed by [17]. Our method
was found to be zero stable, consistent and converges.
Figure 1 shows the region of absolute stability. From the
numerical examples, we could safely conclude that our
method gave better accuracy than the existing methods.
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