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ABSTRACT 
 

The economic production capacity of a farm could be effectively ascertained with the aid of crop 
map. With the help of yield maps farmer could benefit by increasing the effective placement input 
management and better map their profitability. While this yield sensing technology is being used for 
field crops but very few examples are observed for horticultural crops. So, in spite of many 
conventional technologies new inventions have been done for sensing yields of horticultural crops. 
This paper presents different review for examining yields that can be bifurcated in Proximal and 
Space Borne Sensors Sensing System. It gives us a better prediction about the yield of different 
crops prior to harvest. For yield sensing two methods i.e. Proximal sensing and Space borne 
sensors sensing system has been discussed in this review paper for crops like Capsicum, Potato, 
Carrot, Tomato, Melon, Apple, Pear etc. This review also demonstrated the need for more solutions 
to be explored in future for yield sensing of different crops. Proximal and space borne sensing 
system based yield sensing technology has been studied in different countries like Chile, Turkey, 
India, China, USA, UK etc. and their results has been discussed. 
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1. INTRODUCTION 
 
“Farm yield is an important issue for the farmers 
as it directly impacts on their financial position. 
The information of each crop on their field will 
affect their decision during the crop growing 
season and to enhance management measures 
for subsequent season” [1]. Conventional yield 
monitoring systems of early 1990’s could not 
work at satisfactory level because of that new 
yield monitoring systems came in vogue [2]. 
Presently, there are several global challenges i.e. 
increasing population pressure, limited land and 
water resources, deterioration in climatic 
conditions, therefore improvement in crop yield is 
necessary [3-6]. “Uncertainty in agriculture 
requires knowledge about production efficiency 
within each farm to maintain sustainability. Thus, 
if the farmers will have the information on farm 
yield during the growing season, help them in 
taking management measures for subsequent 
season” [7]. 
 
One of the best technologies in the present time 
is spatial yield mapping or geographical 
information system based georeferenced crop 
yield data that helps to draw spatial yield maps, 
which further improved to go for sensing systems 
to predict crop yield [8]. In many countries 
combine harvester mounted system yield 
sensors are being widely used to prepare yield 
maps [9]. Moreover, other yield monitoring 
sensing systems (sensors mounted on 
unmanned aerial vehicle and satellite) are also 
available in present time [10]. Yield assessment 
of horticultural crops using sensing technology is 
still in infancy stage, in spite of lot of spatial 
variability in crop yield [11]. The following section 
explains different advantages of crop yield 
estimation. 
 

2. ADVANTAGES OF CROP YIELD 
ESTIMATION 

 

2.1 Necessity of Yield Sensing 
 
During the growth period of crop, the 
management measures adopted and climatic 
conditions are reflected as yield of the crop 
[12,13]. This is further realized that, this output of 
crop yield when, shown in the form of spatial 
map shows variability of crop yield in each field 
[14]. This yield monitoring helps the decision 
makers in strengthening the supply chain and 
storage of crop yield [15]. In case of horticultural 

crops, it is more important as the horticultural 
crops are highly perishable in nature [16]. 
Therefore, storage of these crops should be 
done at the proper time before they deteriorated 
in quality [17]. In addition, how much yield 
volume the horticultural crops are bringing will 
help the factories plan their management 
strategies. 
 

2.2 Finding Areas of Low and High Yield 
 
For finding out the different causes, the areas 
giving low or high yield are very important that 
can be shown by yield map only [18]. Therefore, 
the further investigation can be carried out in 
these areas that what type of soil is there in low 
or high yielding areas. This helps further that 
particular crop can be grown only in particular 
areas, which are giving better yield. Therefore, 
yield map will help to draw a strategic plan [19]. 
 

2.3 Determination of Management Zones 
 
Spatial yield pattern can be found out based on 
previous years yield maps [20]. This will help to 
find the different zones for planning and 
developing the management zones [21]. 
 

2.4 Nutrient Removal from the Crop 
 
Crop nutrients like nitrogen, phosphorus and 
potash removal can be measured in the form of 
spatial variation map utilizing yield maps of the 
area [22]. “If phosphate and potash content of 
harvested crop is known either by any analysis or 
from any sampling method, which can be utilized 
to prepare a nutrient uptake map by the crop” 
[23]. “Therefore, there are several benefits of 
yield mapping of horticultural crops and latest 
technologies should be followed to improve the 
yield mapping of their cropping system” [24]. 
“Different technologies and techniques are 
available at present time to predict or assess the 
yield of horticultural crops” [7]. The objective of 
this review paper is to provide an overview of 
different available technologies for estimating or 
assessing the yield of different crops using 
different sensing methods/principles/approaches.  
 

3. REVIEW OF YIELD ESTIMATION 
TECHNIQUES IN DIFFERENT CROPS 

 

Yield estimation techniques can be broadly 
categorized as i.e. proximal and remote sensing 
(aerial and space borne sensors) approach. 
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3.1 Proximal Remote Sensing Approach 
 
Proximal remote sensing is a technique in which 
sensors are used to detect the characteristics of 
plant in the close vicinity of plant [25-27]. In 
proximal remote sensing approach two 
techniques are used such as computed 
tomography and magnetic resonance imaging. 
Proximal remote sensing has provided 
observations of plants from the cell [28] to the 
population [29], from above ground [30] to 
underground [31], and from indoor (controlled) 
environments to field conditions on multiple 
spatial [25,32,33] and temporal scales [34-36]. 
Over the last ten years, these technologies 
helped the breeders for characterizing genotypes 
performance in different environment [37] growth 
of plant and yield monitoring [38] and, crop yield 
forecasting [39]. The progress of proximal remote 
sensing in interdisciplinary applications is 
witnessed in some of the article. These attempts 
mainly related to improvement of proximal 
remote sensing sensors [40] different platforms 
like unmanned aerial vehicle [41]. The 
development and popularity of proximal remote 
sensing has led to the crop yield sensing and has 
been tested in different countries like Chile, 
Turkey, India, China, USA, UK etc. and their 
results are given in subsequent text. 
 
A study was conducted on non-destructive water 
stress for different crops that can be determined 
by using thermal and hyper spectral data by 
Camoglu et al. [42]. This study is aimed to find 
out water stress not visible from the naked eye. 
The optimum threshold to initiate irrigation and 
also to estimate yield of pepper (Capsicum 
annum L.) utilizing thermal imaging and 
hyperspectral data at different level of water 
stress. The findings show that chlorophyll 
content, relative water content and pepper yield 
reflects that thermal and spectral indices were 
affected adversely by water stress. Therefore, 
these indices can be successfully used to 
determine water stress. Ahmed et al. [43] utilized 
visible NIR spectroscopy to assess various 
internal characteristics like colour, firmness, 
vitamin C, β carotene and moisture content for 
carrot. 400-1000 nm and 900-1700 nm spectral 
range were used for the crop to find out 
characteristics of carrot (Dacus carota). Abbas et 
al. [44] utilized the potential of proximal remote 
sensing technique to find out variables 
responsible for crop yield of potato (Solanum 
tuberosum L.). In some of the field of Atlantic 
Canadian provinces of Prince Edward Island and 
New Brunswick for the year 2017-18. The data of 

soil and crop properties collected through 
proximal remote sensing were analysed by 
different machine learning algorithms. Weng et 
al. [45] successfully employed potential of 
proximal remote sensing to find out drought of 
tomato (Solanum lycopersicum L.) using the 
multi features of hyperspectral imaging and 
subsample fusion for tomato crop. Marino and 
Alvino [46] applied proximal remote sensing on 
drip irrigated tomato field. This study was aimed 
to evaluate different vegetation indices like NDVI, 
WI (water index) and TSAVI (Transformed Soil 
Adjusted Vegetation Index) and to correlate VIs 
with tomato yield. Hamdane et al. [47] involved 
proximal remote sensing to compare the RGB 
and multispectral data collected during 2016 to 
2020 of melon (Cucumis melo), tomato, eggplant 
(Solanum melongena L.) and peppers to study 
plant health using hand held sensors like SPAD 
and Duelex, portable spectroradiometer, 
porometer and infrared thermometer. For high 
production of horticultural crops N management 
is important. Optimal N status of vegetable crops 
whether it is deficit adequate or excessive is very 
important because this will affect the yield of crop 
[48-53]. 
 
“Proximal remote sensors can provide rapid and 
periodic assessment of crop nitrogen” [54]. “N 
content in plant tissue cannot be directly 
measured with the help of optical sensors but 
provide indices of radiation measurement and 
indirect measurement of indicator compound that 
are sensitive to the crop N status” [55-57]. “Many 
studies have reported linear relationship between 
chlorophyll meter value versus crop/leaf N 
content for measurements made at a particular 
time or growth stage” [58-62]. However, some 
studies have reported a plateau response, 
where, at relatively high N content, the linear 
relationship tends to “flatten out” [63,64]. 
 

3.2 Remote Sensing (Aerial and Space 
Borne Sensors) Approach  

 
Proximal remote sensing has its limitations as it 
gives instantaneous data to generate yield maps 
of a small field only [65]. “This scale of data 
collection is however cumbersome and error 
prone especially for water status measurement of 
large areas at the same time affect the yield 
prediction” [66]. “Therefore, to monitor and 
observe farms at a large spatial scale, several 
earth observation satellite systems are operating 
at an altitude of 180–2000 km” [67-71]. “Manned 
high altitude aircraft (operating within few km) 
and more recently unmanned aerial vehicle 
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(operating under 120 m) drastically filled the 
spatial gap between high resolution ground 
measurements and relatively low-resolution 
satellite measurements” [72,73]. “For water 
status estimation of horticultural crops and their 
yield, the entire above aforementioned remote 
sensing platform are utilized depending on the 
used requirements” [74-76]. Each remote 
sensing platform has its own advantages and 
disadvantages. Therefore, satellite manned 
aircraft and unmanned can be useful for regional 
scale characterization.  
 
In order to explore method of calculating number 
of flowers in each apple (Malus domestica) tree 
based on aerial multispectral image Xiao et al. 
[77] used multispectral camera mounted on 
unmanned aircraft. This study explored a simple 
and effective method based on multispectral 
images to estimate the number of flowers on 
apple tree in blossom, and it could contribute 
through flower thinning and fruit production 
forecasting in the future. 
 
Horton et al. [78], in their study, investigated 
development of an image-processing algorithm 
to detect peach (Prunus persica) blossoms on 
trees. Aerial images of peach trees were 
acquired with the help of unmanned aerial 
vehicle system equipped with multispectral 
camera. Result of this study showed that image-
processing algorithm could detect peach 
blossom with an average detection rate of 84.3% 
and demonstrated good potential as a monitoring 
tool for orchard management. 
 
Moechel et al. [79] conducted their study in 
Bengaluru, India, for estimation of vegetable crop 
parameter by multi-temporal unmanned aerial 
vehicle-borne images. The objective of their 
study was to assess the applicability of 
unmanned aerial vehicle imagery for capturing 
crop height information of three vegetables i.e. 
eggplant, tomato, cabbage (Brassica oleracea 
var. capitata) with the complex vegetation 
canopy surface during a complete growth cycle 
to infer biomass. The results of the study 
demonstrated that point cloud generated from 
unmanned aerial vehicle based RGB imagery 
can be used effectively to measure vegetable 
crop biomass in larger areas by applying some 
biomass prediction models. 
 
Mango mapping was done using unmanned 
aerial vehicle required imageries by Sarron et al. 
[80] in Niayes region, West Senegal. Three 
structure parameters (height, crown area, 

volume) of spices and mango (Mangifera indica) 
cultivars were measured using unmanned aerial 
vehicle photogrammetry and geographic object 
based image analysis. This procedure reached 
and average overall accuracy of 0.89 for 
classifying tree species and mango cultivars and 
their yield.  
 
The wild tomato species (Solanum 
pimpinellifolium L.) was evaluated by Johansen 
et al. [81] “through field and unmanned aerial 
vehicle based assessment of 600 control and 
600 salt treated plants. The aim of this research 
was to determine if unmanned aerial vehicle 
based imagery collected one, two, four, six, 
seven and eight weeks before harvest could 
predict fresh shoot mass, tomato fruit numbers 
and yield mass at harvest and if predictions 
varied for control and salt treated plants. A 
random forest approach was used to model 
biomass and yield. This research demonstrated 
that it is possible to predict biomass and yield of 
tomato plants up to four weeks prior to harvest 
and potentially earlier in the absence of severe 
weather events”. 
 
Di gennaro et al. [82] developed “an automated 
early yield estimation system (5 weeks before 
harvest) using high resolution RGB images, 
acquired through an unmanned aerial vehicle 
(UAV) platform in a representative zone of vigour 
variability of the whole vineyard. An 
unsupervised recognition algorithm was applied 
to drive the number of clusters and size, which 
have been used to estimate production. This fast 
and accurate methodology, which operate with a 
low cost setup, has shown high accuracy in yield 
prediction providing interesting potential to 
support grape production management in 
vineyard”. 
 
“A low altitude unmanned aerial vehicle (UAV) 
was used to acquire RGB and hyperspectral 
imaging data for a potato crop canopy at two 
growth stages to estimate the above-ground 
biomass and predict crop yield” by Li et al. [83]. 
Crop yield was predicted using four narrow band 
vegetation indices and crop height with imagery 
data obtained 90 days after planting. A Partial 
Least Squares regression model based on the 
full wavelength spectra demonstrated improved 
yield prediction (r

2
 = 0.81). This study 

demonstrated the merits of UAV-based RGB and 
hyperspectral imaging for estimating the 
aboveground biomass and yield of potato crops, 
which can be used to assist in site-specific crop 
management. 



 
 
 
 

Lohare et al.; Int. J. Plant Soil Sci., vol. 35, no. 17, pp. 280-289, 2023; Article no.IJPSS.101911 
 

 

 
284 

 

Suarez et al. [84] studied “Proximal and remote 
sensors, which have proved their effectiveness 
for the estimation of several biophysical and 
biochemical variables, including yield, in many 
different crops. Evaluation of their accuracy in 
vegetable crops is limited. This study explored 
the accuracy of proximal hyperspectral and 
satellite multispectral sensors (Sentinel-2 and 
WorldView-3) for the prediction of carrot root 
yield across three growing regions featuring 
different cropping configurations, seasons and 
soil conditions. Above ground biomass (AGB), 
canopy reflectance measurements and 
corresponding yield measures were collected 
from 414 sample sites in 24 fields in Western 
Australia (WA), Queensland (Qld) Tasmania 
(Tas), and Australia. The optimal sensor 
(hyperspectral or multispectral) was identified by 
the highest overall coefficient of determination 
between yield and different vegetation indices 
(VIs) whilst linear and non-linear models were 
tested to determine the best VIs and the impact 
of the spatial resolution. The optimal regression 
fit per region was used to extrapolate the point 
source measurements to all pixels in each 
sampled crop to produce a forecasted                            
yield map and estimate average carrot root yield 
(t/ha) at the crop level. The latter were  
compared to commercial carrot root yield (t/ha) 
obtained from the growers to determine the 
accuracy of prediction. Hence, this method of 
yield forecasting offers great benefit for 
managing harvest logistics and forward selling 
decisions”. 
 
“There is enormous scope and prospective of 
crop yield prediction at finer scale for farm-level 
crop management at gram panchayat (GP) level 
in India” [85]. “Now with the advent of satellite 
sensors like the MSI from Sentilnel-2 with fine 
spatial resolution, the possibility of generating 
frequent information on crop condition at field 
scale is increasing. This study demonstrated the 
combined use of high-resolution data from 
Sentinel-2 (10 m and 20 m); moderate-resolution 
data from MODIS (500 m) and coarser-resolution 
radiation data from INSAT-3D (4 km) for 
estimating yield of three major crops of India at 
GP and taluka level using a semi-physical model 
based on crop-specific radiation use efficiency. 
The novelty of this study lies in the data fusion 
approach using parameters from multiple spatial 
resolution of Geostationary and Lower Earth 
Orbiting satellites within the basic semi-physical 
model framework. The study concluded that high 
resolution remote sensing data would be of 
immense use for finer scale yield estimation, 

which can be aggregated at GP and taluka level 
with satisfactory accuracy (p = 95%)” [85]. 
 

4. CONCLUSION 
 
Yield sensing and the availability of yield map 
present several advantages and opportunities for 
horticultural crop growers, thus justifying the 
continued development of monitoring 
approaches to generate reliable yield maps. The 
advent of digital agriculture and precision 
agriculture, which relies on crop management, 
environment, and production data to optimize the 
use of resources is highly dependent on yield 
maps and reliable yield monitoring technologies 
will enable horticultural crop production to fully 
embrace this new paradigm. Yield sensing or 
monitoring approaches either proximal or space 
borne sensor has their own limitations and 
advantages. The choice of right yield estimation 
method or approach is linked to different context 
for each crop and should consider multiple factor 
such as adaptability, reliability, precision and 
accuracy. The digital agriculture revolution for 
horticultural crops remain contingent upon the 
development of reliable and ubiquitous yield 
monitoring system. This technology can be 
adapted for yield estimation/ prediction in 
different parts of the world. 
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