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Abstract Linear models almost reach their limitations with non-linearity in the data. This paper provides a new 
empirical evidence on the relative macroeconomic forecasting performance of linear and nonlinear models. The well-
established and widely used univariate Auto-Regressive Integrated Moving Average (ARIMA) models are used as linear 
forecasting models whereas Artificial Neural Networks (ANN) are used as nonlinear forecasting models. The neural 
network paradigm that was selected for developing the proposed model is a Multi-layer Feedforward network based 
upon the Backpropagation training algorithm. ANN has been proven to be successful in handling nonlinear problem 
optimization and prediction. The forecasting models used to identify whether action is needed to alter the future, when 
such action should be taken by the decision maker in order to change the future of the bank or its environment to 
improve the bank's chance of achieving its targets. We applied the proposed model on a Financial Balance Sheet’s data 
of a commercial bank in Egypt. The Results show that, the proposed model (which dependent on the ANN) is more 
accurate than the other models, which depend on the ARIMA model with accuracy between 8 % and 10.4 %. 
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1. Introduction 
This paper is mainly an empirical research effort intended to compare the forecasting performance of ANN and 

traditional time series methods, such as ARIMA. Recent work that has used ANN models for forecasting purposes in 
different applications such as Inflation forecasting, forecasting daily foreign exchange rates, etc [4, 5, 8, 9, 11, 15, 16, 
20, 21, 25, 26]. In most of these experiments ANN has indicated a good forecasting accuracy. 

Balance Sheet is a list that shows the financial condition of the firm at a particular date. It consists of two sides one 
side is called Assets and the other side is called Liabilities and Owner’s Equity (the total liabilities)[17, 18,24]. 

This paper is concerning on the most important five items of our case study commercial bank’s balance sheet, which 
are Cash Balances with C.B.E, banks & foreign correspond, Total Loans, Total Assets, Customer Deposits and Total 
Deposits. The data collected for those items was represented by five different time series (TS1, TS2, TS3, TS4, TS5) to 
be analysis in this paper to predict the future values for these items and perform a comparative exercise and access the 
relative performance of the different forecasting methods.  

 Commercial relations with the five previous items can calculate the all values of other items in the Balance Sheet 
[17, 18].   

Neurosolution, commercially available neural networks simulator, was used in the training of the neural networks 
models and MINITAB12 was used as statistical software. 

This paper includes seven sections after introduction. The next two sections after the introduction briefly discuss 
methodology and mathematical formulation of ARIMA models and ANN. Section four includes an overview of the 
software that used for applying both ARIMA and ANN. ARIMA models and the ANN models designs are given in 
sections five and six. In section seven the comparison between the ARIMA and ANN forecasting models is discussed, 
and finally some conclusions and further points for research are in the last section.  

2. ARIMA Models 
ARIMA models were originally proposed by Box and Jenkins (1976), and it is considered today a quite popular tool 

in economic forecasting. The basic idea is that a stationary time series can be modeled as having both autoregressive 
(AR) and moving average (MA) components. AR models are based on the application of regression analysis to lagged 
values of the Yt series. The Autoregressive model of order p, AR (p) is: 

tptpttt YYYY    ....22110        (1) 
In the context of Box-Jenkins Yt = the actual value of the series at time t, Yt-1 = the actual value of the series at time 

t-i, i = the Autoregressive parameter for Yt-i , t =the irregular fluctuation at time t, not correlated with past values of 
the Yt’s [19, 22]. 
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MA models are based on the past levels of the series, Yt may be influenced by the recent”stocks” (i.e., random 
errors) to the series that is, the current value of a series may be the best explained by looking at the most recent q error 
[19, 22]. The Moving Average model of Order q, MA (q) is: 

tqtqtttY    ....22110        (2) 

i= The Moving Average parameters for t-i, t-i = the error term at time t-i, t = the error term at time t, and t, t-1, 

t-2, …are uncorrelated with one another.  
Mixing autoregressive (AR) and moving average (MA) terms in the same model called ARMA model .The 

forecasted values of Yt in ARMA model of order (p) and (q), ARMA (p, q) is given by: 

PtPtttqtqttT YYYY    ....... 2211022110    (3) 

t, t-1, t-2, …are uncorrelated with one another [19, 22]. ARIMA model equations are the same ARMA equations 
except Yt is replaced by the differenced series Wt: Wt=∆d Yt = the Yt series differenced d times. The forecasted values 
of Yt in ARIMA model of order (p), (d) and (q), ARIMA (p d, q) is given by: 

PtPtttqtqttt WWWW    ....... 2211022110   (4) 

t, t-1, t-2, …are uncorrelated with one another [19, 22]. 
Non-stationary integrated series can also be handled in the ARIMA framework, but it has to be reduced to be 

stationary. 
 Fig1 shows schematic representation of Box-Jenkins methodology for time series modeling that includes three 

phases that are Identification, Estimation, Diagnostic and Forecasting [22]. 

 
 

Figure 1 Schematic representation of Box-Jenkins methodology for time series modeling 

 
 

Phase1. Identification 
1) Data preparation 
 Transform data to stabilize variance. 
 Difference data to obtain stationary series 
2) Model Selection 
 Examine data using ACF and PACF to identify 

potential models 

Phase3. Applying Forecasting  

 Use model to forecast  

Phase2. Estimation and Diagnostics  
3) Estimation  
 Examine the parameters in potential models 
 Select the best model using suitable criterion 

4) Diagnostics 
 Check ACF/PACF of residuals 
 Select best model using suitable criterion 

Yes 
No 

Go to 2 

Are the 
residuals white 

noises?
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Table 1 characteristic patterns in the ACF and PACF of ARIMA models 

Model Autocorrelation Function Partial Autocorrelation Function 

AR (p) Die Out Cuts off after lag p 

MA (p) Cuts off after lag q Die Out 

ARIMA Die out after lag q-p Die out after lag p-q 

 Identification: the series is differenced, if necessary, to make it stationary. The data may be stationary in the 
viewpoint of trend through one or two differences but the time series may be non-stationary. To stabilize the 
variance, a nonlinear transformation such as a logarithmic or square root transformation is often performed. 
Then the sample ACF and PACF are calculated; the behavior of both the ACF and PACF determines the 
number of AR (p) and /or MA (q). Table1 shows the characteristic patterns in the ACF and PACF of 
ARIMA models [19, 22]. 

 Estimation and Diagnostics 

 In Estimation, least squares estimates of the process parameters are generated. In diagnostic, checking the 
residuals from the estimated model should look like a random series; failing that, further analysis of the 
residuals leads to a re-specification of the model [19, 22]. 

Forecasting: - the fitted model, having first been “integrated “if necessary, is used to forecast the Yt’s. (In practice, 
each of these stages requires the use of a scientific computer program) [19, 22]. 
 

3. Artificial Neural Networks 
Neural Network is a branch of artificial intelligence. ANN act like a human brain, trying to recognize regularities and 

patterns in the data. They can learn from experience and generalize based on their previous knowledge. Neural networks 
are composed of highly interconnected processing elements (nodes) that work simultaneously to solve specific 
problems. In time series analysis ANN models were used as nonlinear function approximations. ANN takes in a set of 
inputs and produces one/a set of outputs according to some mapping rules predetermined in their structure [1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 13]. 

This paper considers the most popular form of ANN, which called the feed-forward network. The selected feed-
forward neural network model can fit the financial analysis problem because of their adaptively owing to their structure 
[20, 23, 24]. The existence of hidden layer and nonlinear activation function models the nonlinearity of the data. This 
important property of feed-forward neural network models enables modeling multi-attribute, nonlinear mapping for the 
financial analysis problem [3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 20, 24, 25].  

Fig.2 depicts such a network that consists of layers of nodes; the input layer and output layer represent the input and 
output variables of the model. Between the input and output layers there are one or more hidden layers that 
progressively transform the original input stimuli to final output and enables ANN to learn nonlinear relationships [6, 
10, 13].  

 

Figure 2 The feed forward neural network with a single hidden layer 
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Figure 3 The plot of all time series 

ANN has to be trained in order to be used to perform certain tasks like predicting a response corresponding to a new 
input pattern. The training procedure involves iteratively modifying the randomly initialized weights of the ANN to 
minimize some kind of error function usually the mean square error (MSE) [6, 10, 13]. 

Various standard optimization techniques such as the conjugate gradient and quasi-Newton methods exist for 
minimizing the error function, however, in application studies, the Back-propagation Algorithm developed by the neural 
network community is the most popular training algorithm used [6, 10,13, 20,24,26].  

  

4. Implementation Tools 
The Network simulator such as NeuroSoltion requires no programming skills and often come with special hardware 

to minimize the training time. The commercially available neural network simulator NeuroSoltion (NeuroDimension 
incorporated) was used for development of the proposed neural network application. Use of a shell program of this type 
is attractive for forecasting financial data environment. MINITAB is the statistical software that offers the methods that 
we need to implement ARIMA model. 

 

5. Designing ARIMA Models 
First, each time series should be plotting to discover whether it is stationary or not. Fig3 shows that there is a trend 

and no seasonality in the given time series. When we plot every time series after two differences the un-stabilization in 
variances was appeared. To stabilize variances in every time series transformation functions are used [19, 22]. 

We tried two types of transformation functions, logarithmic and square root, followed by taken two differences for 
each time series to be stationary. In Fig4 Every time series "looks" stationary, since the time plot of the series appears 
"similar" at different points along the time axis [12, 14, 19, 22]. 

Autocorrelation and partial autocorrelation functions are used to identify an acceptable model for each time series; 
Fig5 shows the autocorrelation and partial autocorrelation functions for every time series. From the values of ACF & 
PACF we can deduce the acceptable models for each time series. Table2 states their models. 
 

  

TS1 with “log 10” transfer function TS2 with “log 10” transfer function 



IJCI. Vol. 2 – No. 1, January 2009 

 34

  

TS3 with “log 10” transfer function and two TS4 with “square root” transformation function 

 
TS5 with “square root” transformation function and two differences 

Fig4. Time series plots after be stationary 
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Fig5.Autocorrelation and Partial Autocorrelation functions for every time series (TS1, TS2, TS3, TS4, 

T5). 
 

Time 

Series 

ACF &PACF Model 

1 The autocorrelations die out in a damped sine-wave manner and that 

there are exactly two significant partial autocorrelation. 

AR (2) 

2 One non-zero autocorrelation at lag1 and that the partial 

autocorrelation decay exponential. 

MA (1) 
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3 One non-zero autocorrelation at lag1 and that the partial 

autocorrelation decay exponential. 

MA (1) 

4 

 

At the autocorrelation decay exponential after the interval [q-p] and in 

the partial autocorrelation decay exponential after the interval [p-q]. 

ARIMA (1, 2, 1) 

5 A tremendous variety of patterns in the ACF and PACF. ARIMA (1, 2, 1) 

Table2. Analysis of ACF &PACF and the acceptable model for each time series 

 

The MINITAB software is used to examine the parameters in potential models and select best models. Tables 3,4 
summaries the results to select the best model. 

Time 

Series 

Model Parameters Corresponding Equation of the best model 

1 AR (2) 1-0.43992= -0.297 

��

0 = Not significant. 

∆2Log Yt = log [-0.4399Yt-1-0.297 ��Yt-2] 

+t 

2 MA (1) 1 

0= Not significant. 

∆2Log Yt = log [-t-1] + t 

3 MA (1) 1, 0= 0.693 ∆2Log Yt = 0.693 + log [- t-1] + t 

 
4 ARIMA 

(1,2,1) 

1 -1

Constant is not significant. 
Wt=∆

2 √Yt 

Wt = [-t-1-Wt-1]+ t 

5 ARIMA 

(1,2,1) 

1-1

Constant is not significant 
Wt=∆2 √Yt 

Wt = [- t-1 -Wt-1]+ t 

Table3.The best models for TS1, TS2, TS3, TS4 and TS5 

Where t was generated from a standard normal distribution. 

Diagnostic checking was applied and indicated that all the pervious models are good forecasting models. The ACF 
&PACF spicks were outside the limits, which suggesting the residual series were white noise. A portmanteaus test was 
applied to the residuals as an additional test, in this case the value Q* was not significant, that mean the residuals was 
considered white noise [19, 22]. 

 

6. Designing the Neural Networks 
A feed-forward neural network model was employed to mimic the complex mapping function between the inputs and 

output. The Back-propagation learning algorithm is used to perform the training requirements. The determination of the 
network structure is a very difficult task as involves many variables including learning rate parameter, number of 
hidden layers, and the number of hidden units per hidden layer [1, 3, 6, 10, 13, 20, 23, 25]. 
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The learning rate parameter plays a critical role in the convergence of the network to the true solution. For a given 
network and an infinitesimal learning rate, the weights that yield the minimum error can be found. However, they may 
not be found in a reasonable span of time. Use of a large learning rate proceeds much faster but may also produces 
oscillations between relatively poor solutions. However, high-dimensional spaces (with many weights) have relatively 
few local minima [6, 10, 13].  

The number of the inputs variables (number of lags) in this work was between 2 and 4 inputs, the number of hidden 
layers was selected as one hidden layer and the number of neurodes per hidden layer depends on the number of nodes in 
the input layer. With too few connections, the network cannot learn much. The net result of poor parameter settings will 
be slow convergence and poor performance of the model [1, 2, 3, 4, 5]. Table5 describes the different neural network 
structures for the different time series. 

 
The Model Number Network parameters 

M1 M

2 

M

3 

M4 M

5 

1.No. Of input units 2 3 4 3 3 

3.No.Of hidden units 3 7 9 7 7 

2.No. Of middle layers 1 

4.No.Of output units 1 

5.Learning rate parameter 0.7 

6.Transfer Functions Hyperbolic tangent (tanh) function 

Table5. Description of the ANN Structure. 

 

The logistic function is the most popular activation function among researchers for the hidden layer. However, we 
use the hyperbolic tangent (tanh) function, as it has been used very successfully in forecasting experiments. It is also 
generally held that (tanh) gives rise to faster convergence of training algorithms than logistic functions. For the output 
layer, we follow the recommendation of who suggest the use of the linear function for time series prediction with 
continuous output [1, 2, 6, 10].  

In this paper we use one of the most common forms of preprocessing which consists of rescaling the data in the 
range [-1, 1] so that they have similar values [6, 10, 13]. 

 

 Training of the Neural Network Models          
o The following general guidelines were considered during the training: 
o A fully connected neural network. 
o Pattern (training examples) was presented sequentially during each training session. 
o Updating network weights was performed after each training pattern was presented to the network. 
o The stopping criteria were set such that the total number of iterations does not exceed 50,000 epochs, or 

a 0.0001 root-mean-square (RMS). 
o Each train – and – test experiment is repeated three times with different random starting state to make 

sure that the solution obtained is not a local minimum [6, 10, 13].  

 The Results of the ANN Forecasting Models 
The final results of these experiments revealed that the network with between 3-9 hidden units had a better ability to 

decrease the system error rate (error rate due to training is between 3.5 and 4.0%) and provided a good prediction 
(average error rate due to test is between 8.3 to10.6 %). Figures from Fig (6-10) show the plots of the final results of the 
ANN forecasting models. 
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7. The Comparison between the Accuracy of the ARIMA and Neural Networks Forecasting 
Models 

There are several measures of accuracy but each of them has its advantages and limitations. For this reason none of 
them has been accepted universally as the optimum measure of accuracy [10, 13, 19, 22]. In this study we shall use two 
popular types of performance measures, which are the absolute percentage error (APE) and the Root mean square error 
(RMSE):- 

 These measures can be calculated by the following formulas: 

APE = |)(|/|)(|
1

0

1

0










n

i

n

i

oioiti        (5) 

RMSE = √ [
n

1
 






1

0

2)(
n

i

oiti ]       (6) 

Fig6.Model1 for TS1 Fig7.Model2 for TS2 

  

Fig8.Model3 for TS3 Fig9.Model4 for TS4 

 

Fig10.Model5 for TS5 
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In Eq5, 6 ti is the target output and oi is the actual output, and n is the number of test samples. The accuracy of the 
model calculated by: - the accuracy = 1 – (APE or RMSE) %. 

The numerical results of (APE) and (RMSE) measures for both ANN and ARIMA models show in table6a and 
table6b. 

Models APE values of ANN APE values of ARIMA 

Model1 8.30% 16.90% 

Model2  8.90% 17.88% 

Model3 9.30% 18.90% 

Model4 10.30% 20.70% 

Model5 10.60% 20.97% 

Table6a. The values of APE for both ANN and ARIMA models 

APE values that were described in Table6a deduce that absolute percentage error of the ARIMA models in is 
between 16.90 % & 20.97 % and the absolute percentage error of the ANN models is between 8.30 % & 10.60%. 

 RMSE measure that was described in Table6b also confirmed that neural networks outperform ARIMA models. 

 
Models RMSE values of ANN RMSE values of ARIMA 

Model1 7.60% 17.30% 

Model2 8.20% 18.00% 

Model3 8.60% 19.10% 

Mode4 10.90% 20.80% 

Model5 11.30% 21.00% 

Table6b. The values of RMSE for both ANN and ARIMA models 

 

8. Conclusions and Further Points for Research 
There is growing evidence that macroeconomic series contain non-linearities but linear models such as the ARIMA 

models are widely used for forecasting such series, despite the inability of linear models to cope with non-linearities. In 
this paper we provide a new empirical evidence on the relative macroeconomic forecasting performance of linear 
ARIMA models and the nonlinear ANN.  

Results show that neural networks outperform ARIMA models in our forecasting problem. As an extension of this 
work, we hope to further refine the best neural network models in this paper by considering additional layers and 
different training periods to exploit readily available monetary and financial data in order to gauge future 
macroeconomic activity.  

Comparison with more complicated forecasting models to prove the quality of our model is one of our main future 
research points. Another point is the possibility to build another approach with combing different forecasting models 
such as ARIMA and neural network models. 
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