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Abstract In this paper, we suggest a mechanism for implementing a distributed application using 

RMI based on JAVA threads. The application is parallel matrices multiplication depending on 
distributed the products block of rows and columns on different machines. One server and seven clients 
are run to find the product of matrix multiplication. The server distributes the determine blocks of rows 
and columns on the registered clients. The clients return their product blocks to a server, which 
calculate the final product of matrix multiplication.  Applications of this type will allow loaded servers 
to transfer part of the load to clients to exploit the computing power available at client side. 
Experimental result shows that the speed up ratio is equals 9 or the computation time of matrix 
multiplication with size of 2048 X 2048 is reduced by 89 % by using 7-client. 
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1. Introduction and related works 
 

Matrix multiplication (MM) is an important linear algebra operation. A number of scientific and 
engineering applications include this operation as a building block. Due to its fundamental importance, 
much effort has been devoted to studying and implementing MM. MM has been included in several 
libraries. Many MM algorithms have been developed for parallel systems [1-4]. 

Traditional methods for distributed application are decomposed the entire task, which introduces 
various overheads. The most important are the communication and load balancing overheads. For 
example, partitioning MM into sub-matrix blocks and decomposing the MM operation are often 
technology dependent. Applying special implementations for sub-matrix blocks may improve 
performance since the workload of sub-matrix operations may vary. The information about the 
workload of a task for matrix operation may not be available at compile time or even at the time of 
initiating subroutines. It may be available only after these routines have been executed. Since this 
increases the complexity of load balancing, it is often ignored. 

Most parallel algorithms are optimized based on the characteristics of the targeting platform. The PC 
cluster computing platform has recently emerged as a viable alternative for high-performance and low-
cost computing [2]. Generally, the PCs in a cluster have a lot of resources that can be used 
simultaneously. They have relatively weak communication capabilities. They lack high performance 
implementation support for data communications compared to supercomputers. They only support 
some communication channels implemented by software that capitalizes on Ethernet connections. MM 
operations are embedded in many host programs.  

The main reason for using parallel processing is to reduce the computation time required for what 
would otherwise be very long-running programs. Because poorly parallelized code tends to offer little 
performance benefit, there is great incentive to ensure that parallel programs are highly optimized. 
Unfortunately, a lack of sufficiently accurate and easy-to-use performance prediction methods for 
parallel programs has necessitated resort to a very time-consuming, which modifies design cycle to 
achieve this [5].   

The biggest price we had to pay for the use of a PC cluster was the conversion of an existing serial 
code to a parallel code based on the message-passing philosophy. The main difficulty with the message 
passing philosophy is that one needs to ensure that a control node (or master node) is distributing the 
workload evenly between all the other nodes (the compute nodes). Because all the nodes have to 
synchronize at each time step, each PC should finish its calculations in about the same amount of time. 
If the load is uneven (or if the load balancing is poor), the PCs are going to synchronize on the slowest 
node, leading to a worst-case scenario. Another obstacle is the possibility of communication patterns 
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that can deadlock [5]. A typical example is if PC A is waiting to receive information from PC B, while 
B is also waiting to receive information from A. 

JAVA provides Remote Method Invocation (RMI) to allow one JAVA Virtual Machine (VM) to 
invoke methods running on another VM. RMI applications are often comprised of two separate 
programs, which are server and client. A typical server application creates some remote objects, makes 
references to them accessible, and waits for clients to invoke methods on these remote objects. A 
typical client application gets a remote reference to one or more remote objects in the server and then 
invokes methods on them. RMI provides the mechanism by which the server and the client 
communicate and pass information back and forth. Such an application is sometimes referred to as a 
distributed object application [6-8]. 

The related work [1– 4] deals with moving application from one machine to another in a set of 
machines. In the pervious distributed modes it is not very easy for a programmer to write an application 
a part of which can be executed on remote side and result of computation can be combined in original 
program to compute the final result. i.e. there is no method level distributed available.  We have 
applied object mobility to LAN architecture.  This allows development of applications that can be 
easily load balanced. 

In this paper we study implementation for matrix multiplication on distributed systems using RMI 
based on JAVA threads, which distribute the load between the server and the clients. This system 
provides the user a level of control over the distribution of the program.  The rest of this paper is 
organized as follow. Section 2 presents the mathematical model of distributed tasks. Section 3 
introduces the techniques of matrix multiplication. Section 4 proposes matrix implementation 
performance models.  Section 5 presents our implementation architecture. Section 6 shows the 
experiment results. Finally the conclusion is provided in Section 7. 

 

2. Distributed tasks assignment mathematical modeling  
In [9], generally a mathematical model to the distributed task assignment problem involves the 

following two steps:  
(1) Formulate a cost function to represent the main purpose of the task assignment 

process, 
(2)  Formulate a set of constraints/inequalities in terms of both the application 

requirements and the availability of the system resources.  
This section presents the main components of the cost function in general, and it describes the most 

important constraints that may be considered with the assignment problem. Finally, it presents an 
example for modeling the assignment problem mathematically. 

 

2.1. Components of the cost function  
As mentioned previously, the assignment problem is usually handled based on the optimization of a 

cost/objective function. Depending on the context, many components of the cost function may be 
defined. To do so, let X be an M x N binary matrix corresponding to an assignment of M tasks onto N 
processors (PCs) such that 

 
Where, Xip is binary variables such that i is ranged over the set of tasks and p ranged over the set of 

processors. The main components of the cost function may be described as in the following. 
 

2.1.1. Accumulative execution cost/time: 
The cost of processing tasks assigned to a processor (EXECp) is the total execution time incurred by 

tasks running on the processor p. This cost depends on the size of the tasks residing at the processor p 
and on the speed of the processor p. Define TCp as the set of tasks that are assigned to the processor p 
under a task assignment X, such that TCp={i | Xip=1, 1≤i≤M, 1≤p≤N}, and let Cip denotes the cost of 
processing a task i on a processor p, then the actual execution cost EXECp may be formulated as: 
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Where, di is the size of the task i expressed in size of execution code, i.e., number of instructions to 

be processed, or in execution time on some normalized processor, and ep is the average processing time 
of one instruction on the processor p. 

For an assignment X, the Accumulative Execution Time (AET) defines the total 
execution/processing time incurred for running all tasks at all processors in the distributed system. 
Hence, the AET may be formulated as: 

 
2.1.2. Accumulative Communication Time 

The actual communication cost/time at a processor COMMp is the total time of communicating data 
between tasks resident at the processor p with other tasks resident at other processors in the system. 
This cost depends on the quantity of information to be exchanged between tasks, the interconnection 
topology between computers of the distributed system, the propagation delay through the transmission 
media and the speed/bandwidth of the communication media. Let TCq be the set of tasks that are 
assigned to a processor q, where TCq = {j | Xjq=1, 1≤j≤M, 1≤q≤N}, and define Cijpq as the cost of 
sending a data between a task i residing at the processor p and a task j residing at other processor q 
through a communication path/link pq, then the actual communication cost/load COMMp may be 
formulated as: 

 
Where, Spq is the time necessary for a processor p to set up the communication with other processor 

q, dij is the average quantity of information/data to be transferred between the processors p and q, and 
cpq is the average time of transferring a data unit from the processor p to the processor q through the 
path/route pq after the set up is completed. 

For an assignment X, the Accumulative Communication Time (ACT) is the total time incurred for 
communicating/exchanging data between tasks residing at separate computers of the distributed 
system. Hence, the ACT may be formulated as: 

 
The ACT is often considered to be one of the most important factors which need to be minimized by 

the task assignment. 
It is worth noting that if two communicating tasks are assigned to different processors, the 

communication cost contributes to the load at the two processors, i.e., bilateral communication is 
assumed. Indeed, if two communicating tasks are assigned to the same processor, the communication 
cost is assumed to be zero as they use the local system memory for data exchange. 

 

2.2. Allocation/Assignment Constraints 
To meet the application requirements and not violate the availability of the system resources, the 

assignment should be done taking into account various kinds of constraints. These constraints depend 
on the characteristics of the involved application tasks, such as processing load requirements, memory 
requirements, amount of inter-task communication capacity requirements and precedence relation 
between tasks, and on the availability of the system resources including the available computation 
speed of processors, the available memory capacity and the available communication capacity of the 
communication network resources. 

These constraints may be classified into two broad categories, namely, locality and devices 
constraints. The locality constraints concern the location of tasks on different processors. For instance, 
a task might require to be allocated onto a specific processor or two exclusive tasks must not be 
allocated on the same processor. On the other hand, the devices constraints define the relation between 
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the tasks requirements from a physical device, used by the tasks during execution such as memory, 
CPU, and transmission media. Devices constraints might be the case that only a limited number of 
tasks can access a certain device at the same time to ensure that the amount of the resources used, by 
concurrent tasks, never exceeds a given limit at any instant. Hence, the devices constraints may be 
classified as: memory constraints, processing load constraints, and communication media capacity 
constraints. To describe these constraints, define the following parameters: 

 
2.2.1. Location constraints: 

The location constraints guarantee that each task is assigned to one and only one processor on which 
it is entirely executed without preemption, i.e., no software/task redundancy is considered. To do so, 
the following equality must hold at each task: 

 
2.2.2. Memory Constraints 

For an assignment X, the total memory required by all tasks assigned to a processor p must be less 
than or equal to the available memory capacity of the processor p. Let mi denotes the amount of 
memory required for processing a task i and Mp defines the available memory capacity at the processor 
p, then the following inequality must hold at each processor p in the system: 

 
2.2.3. Processing Load Constraints 

For an assignment X, the total processing load required by all tasks assigned to a processor p must 
be less than or equal to the available computational load of the processor p. Let pi denotes the 
processing load requirements of a task i and Pp denotes the available processing load of the processor 
p, then the following inequality must hold at each processor p in the system: 

 
2.2.4. Communication Capacity Constraints 

For an assignment X, the total communication capacity required by all edges mapped to a 
communication path/link pq must be less than or equal to the available communication capacity of the 
path pq. Let bij denotes the amount of communication capacity required to communicate data between 
tasks i and j residing at different processors p and q respectively, and Apq denotes the available 
communication capacity of the path/link pq. Then, the following inequality must hold at each 
communication path/link pq. 
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Note that, the available communication capacity Apq of the path/link pq is the minimum available 

communication capacity over all the communication resources of the route from p to q. Let As be the 
available communication capacity of a communication resource s, then the available communication 
capacity of the path/link pq may be defined as Apq = min {As | s in resources (path pq)}. 

In general, the above constraints are very important to be considered with the assignment problem. 
If such constraints are not considered, a task may be allocated to a machine that cannot process the 
task. Indeed, the communication capacity constraints influence the performance of the distributed 
system and should be considered with the task assignment.  

2.3. Mathematical Modeling  
Based on the different components of the cost function and the different types of constraints, several 

versions of the task assignment problem may be formulated. For example, for a given application of M 
tasks and a distributed system of N computers, if the objective is to find an assignment that minimizes 
the total sum of execution and communication costs such that each task $i$ must be assigned to exactly 
one processor, then the problem may be formulated as follows:  

 

 
3. Matrix Multiplication Techniques 

Consider the matrix multiplication product C = A×B where A, B, C are matrices of size n X n as 
shown in Fig. 1 where n = 4.  Next subsections present the various methods that used to find the matrix 
multiplication.  

3.1. Sequential Method 
The matrix operation derives a resultant matrix by multiplying two input matrices a & b, where 

matrix a is a matrix of N rows by P columns and matrix b is of P rows by M columns. The resultant 
matrix c is of N rows by M columns. The serial realization of this operation is quite straightforward as 
listed in the following: 

  for(k=0; k<M; k++) 
     for(i=0; i<N; i++){ 
         c[i][k]=0.0; 
         for(j=0; j<P; j++) 
              c[i][k]+=a[i][j]*b[j][k]; 
       } 
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Fig. 1 Matrix multiplication 

The above algorithm requires 
3n  multiplications and 

3n  additions, leading to a sequential time 

complexity of O (
3n ).  

 

3.2. Circular pipeline method 
The slaves are peer processes that interact by means of circular pipeline as shown in Fig. 2. Assume 

that a, b, and c are n × n matrices. Each slave has one row and the first slave have b matrix. Thus each 
slave execute a series of rounds, where in each round it sends its column of b to the next slave and 
receives a different column of b from the previous slave.  

 

Fig.2 A Circular Pipeline 

In Fig. 2, the next slave is the one with the next higher index, and the previous slave is the one with 
the next lower index (for the slave n, the next slave is 1, for the slave 1, the previous worker is n).  The 
columns of matrix b are passed circularly among the slaves so that each slave sees every column.  It is 

 Slave 1 

Slave 2 Slave 2 Slave 4 

 Slave 2  Slave 3  Slave 4 
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assumed that master process sends rows of A and columns of B to the slaves and then receives rows of 
C from the slaves. 

 

3.3 Server Client Model 
The matrix multiplication algorithm is implemented in MPI using the straight forward algorithm 

based on the Server Client paradigm [8].  Server Client computing paradigm, which also called 
replicated slave computing is consists of broken many computational problems into smaller pieces that 
can be computed by one or more processes in parallel. The computations are fairly simple, which 
usually compute-intensive, region of code. The size of loop is quite long. 

Fig. 3 shows a Server Client computing paradigm, a Server process takes the work performed in the 
computationally intensive loop and divides it up into a number of tasks that it deposits into a task bag. 
One or more processes, known as Client grab these tasks, compute them and place the results back into 
a result bag. The Server process collects the results as they are computed and combines them into 
something meaningful such as a vector product. 

 

 
Fig. 3 Server Client computing paradigm 

Message Passing Interface is a widely used standard for writing message-passing programs to 
establish a practical, portable, efficient, and flexible standard for message passing. The Server creates a 
set of random matrices. Each matrix multiplication job consists of pair of matrices to be multiplied. For 
each job the Server sends one entire matrix to each slave and distributes the rows of the matrix among 
the clients. In this way matrix multiplication jobs are computed in a parallel fashion as follow; 

(1) The server process for each job, which sends the first matrix from the pair of matrices 
multiplication joined with a certain number of rows of the other matrix depending 
on the number of clients. 

(2) Each client process receives one entire matrix and a certain number of rows of the 
other matrix based on the number of clients. Thus it computes the rows of the 
resulting matrix and sends it back to the server. 

(3) The Server process collects the rows of resulting matrix from the clients.  

 
4. Matrix implementation performance models 

We develop an analytical performance model to describe the computational behavior of 3- matrix 
multiplication implementations. We consider the matrix multiplication product C = A×B where the size 
of matrices A, B, and C are n*n. The system is consists of one server machine and N clients, and the 
performance modeling of the three implementations is presented in next subsections. 

4.1. Allocation block distribution of the matrix B columns 
 For the analysis, we assume that the entire matrix B stored in the local disk of the server. The basic 

idea of this implementation is as follows: The server broadcasts the matrix A to all clients. It partitions 
the matrix B into blocks of columns b and each block is distributed dynamically to a client. Each client 
executes a parallel matrix – vector multiplication algorithm between the matrix A and the 
corresponding block of b columns. Finally, each client sends back a block of size b columns of the 
matrix C.  

Client4 Client1 Client2 Client3 3 2 

Server 
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The execution time of the dynamic implementation that is called matrix multiplication for 
distributed B columns block (MM-DBCB) can be broken up into five terms: 

T1: It includes the communication time for broadcasting of the matrix A to all clients involved in 
processing of the matrix multiplication by using RMI. The size of each row of the matrix A is 
n*sizeof(int) bytes. Therefore, the total time T1 is given by: 

T1= b* n *sizeof(int) / S 
Where S is the communication speed 

T2: It is the total time to read the columns of the matrix B into several blocks of size b*n*sizeof(int) 
bytes from the local disk of the server. The b is the number of columns. Therefore, the server reads 
n2*sizeof(int) bytes totally of the matrix. Then, the time T2 is given by: 

T2= n2 *sizeof(int) / R 
Where R is the I/O read time of the server  

T3: It is the total communication time to send all blocks of the matrix B to all clients. The size of 
each block is b*n*sizeof(int) bytes. Therefore, the server sends n*sizeof(int) bytes totally. Then, the 
time T3 is given by: 

T3 =  n *sizeof(int) / S 
T4: It is the average computation time across the systems. Each client performs a matrix – vector 

multiplication between the matrix A and the block of the matrix B with size n*(n/b)*sizeof(int) bytes. 
Then, the time Τ4 is given by: 

T4 =  n *(n/b)*sizeof(int) 
T5: It includes the communication time to receive n / b results from all clients. Each client sends 

back b*n*sizeof(int) bytes. Therefore, the server will receive n 2*sizeof(int) bytes totally. Therefore, 
the time T5 is given by: 

T5 = n 2*sizeof(int) / S 
Therefore, the total execution time of our dynamic implementation, TN, using N clients, is given by: 

TN = T1+T2+T3+T4+T5 
4.2. Allocation blocks distribution of the matrix A rows and B columns 

For the analysis, we assume that the entire matrices A and B stored in the local disk of the server. 
The basic idea of this implementation is as follows: The server broadcasts the blocks of matrix A by 
rows to all clients and. Also, it sends the corresponding blocks of columns from matrix B to the same 
clients. The server reads a block of size b rows and columns of the matrix A and B from the local disk 
of the server. Also, each client executes a parallel matrix – vector multiplication algorithm between the 
rows block of matrix A and the corresponding columns block of matrix B. Finally, each client sends 
back a block of size b columns of the matrix C. The execution time of the dynamic implementation that 
is called Matrix multiplication by distributed rows block of matrix A and columns block of matrix B 
(MM-DAR&BCB), can be broken up into five terms: 

T1: It includes the communication time for broadcasting of the matrix A by rows and matrix B by 
columns to all clients involved. The amount of this time is equal to T3 of the previous dynamic 
implementation. 

T2: It is the same time of T2 of the previous implementation. 
T4: It includes the average computation time across the client. The amount of this time is similar to 

the time T4 of the previous implementation. 
T5: It includes the communication time to receive the results of the matrix - vector multiplication 

from all clients. The amount of this time is same with the time T4 of the previous implementation. 
Therefore, the total execution time of our dynamic implementation is reduced from the previous 

model by the value of T1. TN, using N clients, is given by: 

TN = T1+T2+T4+T5 
4.3. Allocation block distribution of the matrix A rows 

This algorithm will give the same amount of TN of the first model as in section of 4.1 and is called 
matrix multiplication for distributed A rows block (MM-DARB). 

5. Implementation architecture  
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In our work we develop server client model to calculate MM by using RMI Java threads for the 
above models in section 4 especially with detailed discussion on the 4.2 model.  In our proposed model, 
the server determines the distributed numbers of rows from the first matrix and the corresponding 
columns of the second matrix depending on the balance of workload on registered clients.  In the 
heterogeneous matrix, which mean the number of rows is not the same number of columns, the 
multiplication will done because the load distribution depend on the number of rows in the first matrix 
with its corresponding columns of the second matrix.  One server and 7-clients are used to implement 
MM as shown in Fig. 4. RMI implementation algorithm is shown as follow; 

Step 1 Client discovery; 
Client will register itself with the server to take a task from it 

Step 2 Generate Matrices; 
Server generates two matrices randomly or getting them as inputs 

Step 3 Data distribution 
Server will distribute number of rows from first matrix and its corresponding columns of the 
second matrix on clients that it has been registered using Java threads.  

Step 4 Sever waits for result; 
Server will waits results from clients and append it in result matrix 

Step 5 Results collecting; 
Server will collect the results that sent by each client and compute the time that taken by each 
client and compute all time taken in this process 

Step 6 Shutdown; 
Finally, server will send shutdown to all clients. 
 
 

 
Fig. 4 RMI Server-Client architecture 

 

Fig. 5 shows the flow diagram of the above algorithm. In our work we addressed the following 
issues: 

(4) Performance: As the number of clients increases the time for computation will 
decreases.  

(5) Load Distribution: the work will be distributed among the free clients. Rows and 
columns of MM are distributed uniformly on all registered clients. In RMI the load 
of MM was distributed by allowing each process (Threads) to compute a certain 
number of rows in the resulting matrix. 

(6) Scalability: Performance of our model increases as the number of registered clients 
increases. 

 

Server     

Client 1 

Client 2 

Client 7 
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Fig. 5 flow diagram of MM algorithm 

6. Experiment results 
We develop an analytical performance model to describe the computational behavior of matrix 

multiplication implementations. We consider the matrix multiplication product C = A×B where the size 
of matrices A, B, and C are n X n. We implement MM by using JDK 1.6 on LAN of 8-PC 2.66 GHz 
with 512 MB Ram.  Also, the matrix size does not exceed the memory bound of any machine in the 
system. 

Measuring the performance of a parallel program is a way to assess how well and efficient our 
development, which have been divided the big application into small modules cooperating with each 
other in parallel.  

The most visible and easily recorded metric of performance is the execution time.  By measuring the 
time consumed in execution of parallel program, we can directly measure its effectiveness.  To find out 
how much better for our proposed does on the parallel machine, which it compared with running an 
application on only one processor.  The ratio of execution time is taken into the account, which is 
called the speedup.  

Speedup = (Serial Execution Time)/(Parallel Execution Time) 
Speedup = T(1)/T(N) 

Where T(N) represents the execution time taken by the program running on N processors, and T(1) 
represents the time taken by the best serial implementation of the application measured on one 
processor.  Figure 6 shows speedup is equal to 9 for MM with size 2048 X 2048 or reduced the 

Start
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Client receive rows 
& columns
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Send result to server 
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clients End 
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computation time by 89 %.  Also, Figure 7 shows speedup is reduced and equal to 6 for MM with size 
2048 X 2048 or reduced the computation time by 84 %. 

Distributed of A rows & B coulmns Block Alg. (MM-
DAR&BCB)
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Fig. 6 Experiment results of (MM-DAR&BCB) model of section 4.2 

7. Conclusion and Future Work 
In this paper we implemented and analyzed the parallel matrix multiplication on distributed systems. 

Our mechanism will make it easier to automatic migrate the computation load to client. It has been 
shown that the execution time decreases by 89% for MM with size 2048 X 2048.  Future work will 
apply this implementation on any practical application like weather prediction, databases systems, data 
compression and others with increasing the numbers of clients. 
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Fig. 7 Experiment results of (MM-DBCB) model of section 4.1 
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