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Abstract. New parameters to statistically describe and differentiate between different 
decorrelation behaviors in dynamic speckle fields are described. These decorrelation 
behaviors are surrogate descriptors of the dynamics of the underlying processes in 
object space being observed.  The statistical parameters are based on the temporal 
variations in the location of optical vortices in the speckle fields. The length and number 
of optical vortex trails, motion of the vortices in the plane of observation and the 
distance between the mean locations of the positive and negative vortices are 
investigated. The implementation of the statistical analysis presents new methods to 
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1 Introduction 
Random optical interference gives rise to granular 
patterns with bright and dark regions called speckle. 
Light scattering techniques, including those involving 
laser speckle analysis have been used to study dynamic 
biological systems over the last several decades [1-4].  
Speckle based imaging techniques have seen 
tremendous advancements since the 1990s and are now 
well-established in the field of biomedical optics [5-7].  
Within speckle fields are locations of phase 
discontinuity where the intensity of the field is zero and 
the phase is undefined. Such phase singularities were 
first described by Nye and Berry [8]. A few years later 
they reported an analysis of phase singularity lines 
within fields of multiple beam interference [9]. Detailed 

studies regarding the statistics of the amplitude 
distribution in such interference fields were conducted 
by Baranova et al [10]. Although the existence of these 
phase singularities have been known since the 1970s, 
their in-depth study in speckle fields [11] has garnered 
interest much more recently.   

Speckle fields, ( , )t\ r , like other electromagnetic 
fields, can be written as a general solution of the 
Helmholtz equation as  

� � � � � �,, Α , t ,i tt e I\  r rr  (1) 

where Α(𝐫, t) is the amplitude and 𝜙(𝒓, 𝑡) is the phase 
of the field, both at  location r and time t. The real and 
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imaginary parts of this speckle field can be separated, 
with phase singularities occurring in locations where 
both the real and imaginary parts are zero (Fig. 1). 
 

	
Fig. 1 Zero-contours of real and imaginary field 
components. The red (solid) lines represent where 
Re ψ( ) = 0  and the black (broken) lines represent where

Im ψ( ) = 0.  The points of their intersection are the 
locations of phase singularities. 

In the immediate vicinity of and surrounding these 
singular points, the optical phase rotates in either a 
clockwise or counter-clockwise direction over at least a 
full 2π  radians and the structures are subsequently 
referred to as either negatively charged or positively 
charged optical vortices, respectively [12]. The number 
of 2π  rotations of the phase is known as the topological 
charge of the vortex, expressed mathematically as 

nt =
1
2π

∇φ(x, y)dl
C
!∫ ,   (2) 

where the line integral is along a closed loop, l, around 
the vortex. Optical vortices always occur in pairs of 
opposite topological charge, and as a consequence of 
conservation of charge, there must always be an equal 
number of positively and negatively charged vortices in 
the scattered field 

It should be noted here that the generation of optical 
vortices does not require special circumstances.  It is a 
phenomenon that accompanies any interference of 
randomly scattered plane waves [13].  However, 
experimentally, it has been observed that helically 
phased beams play a vital role in the formation of phase 
singularities [14]. These beams, particularly the 
Laguerre- Gaussian mode (LG01) have been shown to be 
produced from a combination of Hermite-Gaussian 
modes HG01 and HG10 [15]. An alternative method of 
generation was demonstrated in 1990 where a 
diffractive element such as a grating with a dislocation 
was used to obtain a helically phased mode from the 

Gaussian beam of a laser [16].  Subsequently, the 
generation of optical vortex beams has also been 
achieved using spiral phase plates [17] and spatial light 
modulators [18]. 

While the angular divergence of the wave-front was 
already described by Baranova et al [10], it was noted 
by Allen et al. [19] that helically phased beams carried 
orbital angular momentum with them. This was in 
addition to the already commonly known momenta 
associated with the polarization state and photon spin. A 
helical mode whose azimuthal component has the 
profile eiφ  with φ  being the phase, has been shown to 
have an angular momentum of lℏ per photon. This fact 
that the helical beams contained angular momentum, 
has been the basis of multiple applications of optical 
vortices involving trapping and rotating micro-particles 
[20-22]. Further advancements were done when 
particles were made to revolve in an annular ring by 
using a circularly polarized LG01 beam with a large 
azimuthal component [23]. Developments in remote 
sensing and wireless communication have also focused 
on these beams containing orbital angular momentum 
[24]. Additionally, analyzing the spatial coherence in a 
one-dimensional projection of the optical vortex field 
has been used as a method to delve into the information 
content of an optical vortex [25-26]. 

Thus, we note that the field of singular optics is a 
rapidly expanding one, both as a science for 
understanding the properties of beams creating these 
fields, as well as in engineering to apply this 
understanding. It has been previously shown [27] that 
the optical vortices in an interference field translate in 
both time and space due to an interplay of three factors, 
the amplitude gradient, phase gradient and intensity 
gradient. However, these motions have not yet been 
correlated to the dynamics of the physical systems 
which caused the interference. The work presented in 
this paper is targeted towards gaining a better 
understanding of the behavior of these optical vortices 
and their potential use in understanding dynamical 
biological systems. 

2 Methods 
Sequences of 50 speckle patterns with user-defined 
correlation behaviors were simulated using the concept 
of a copula [28] in the MATLAB environment. 
Decorrelation rates are defined in terms of the number 
of frames it takes for the overall speckle pattern 
autocorrelation coefficient, Γ I , to reduce to a value of 
1/e. Three different rates of decorrelation behavior 
between the frames were studied, with their 
autocorrelation coefficients falling to 1/ e  in 11, 6 and 3 
frames, during the 50 frame simulation. Herein, they 
shall be referred to as the slow, medium and fast rates of 
decorrelation, respectively. For each of the rates, three 
different decorrelation behaviors (or modes) were 
studied. One mode was of constant sequential 
autocorrelation coefficient ( Γ I = 0.9984 for slow 
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Fig. 2 Locating optical vortices in a speckle field. (a) A speckle image. (b) Its pseudo-phase representation. (c) Location 
of positive (blue circles) and negative (red points) vortices. The colorbar in (a) indicates relative intensity while those in 
(b) and (c) indicate phase. The axes represent spatial coordinates. 

decorrelation rate; Γ I = 0.99 for medium decorrelation 

rate and Γ I = 0.96 for fast decorrelation rate) between 
frames. The second behavior was one that displayed a 
Gaussian decorrelation line shape. This decorrelation 
behavior has generally been understood to be associated 
with ordered dynamics [29]. The third behavior 
examined, Lorentzian decorrelation, is linked to 
Brownian dynamics. In general, biological systems 
likely exhibit a combination of ordered and Brownian 
(or disordered) dynamics.    

Once the 50 speckle patterns were generated for 
each decorrelation behavior studied, we created a 
pseudo-phase representation for each of the patterns 
using a two-dimensional Hilbert filter (Fig. 2(b)) [11]. 
The location of optical vortices in the speckle were 
identified and tracked on a frame-by-frame basis 
through these sequences (Fig. 2(c)).  

This was done using a series of convolution 
operations on the phase distribution over the speckle 
fields as shown in Eq. (3) and Eq. (4) [11]. This series 
of convolution operations gives non-zero values only at 
the locations of phase singularities. These values are the 
topological charge nt  at those locations.  

nt = φ(x, y)⊗D1 +φ(x, y)⊗D2 +
+φ(x, y)⊗D3 +φ(x, y)⊗D4 ,

 (3) 

where φ(x, y)  represents the pseudo-phase of the 
speckle field, ⊗  is the convolution operator and  

D1 =
0 1
0 −1

⎛

⎝⎜
⎞

⎠⎟
; D2 =

1 −1
0 0

⎛

⎝⎜
⎞

⎠⎟
;

D3 =
−1 0
1 0

⎛

⎝⎜
⎞

⎠⎟
; D4 =

0 0
−1 1

⎛

⎝⎜
⎞

⎠⎟
.

  (4) 

It is to be noted that Eq. (3) represents a discrete 
evaluation of the topological charge that is expressed in 
Eq. (2). The location of a positive (negative) topological 

charge is called a positive (negative) vortex. Physically, 
the two different charges represent the two opposing 
senses of rotation, clockwise and anti-clockwise, of the 
phase of the speckle field in the complex plane. 
Tracking any particular vortex, as it traverses through 
the frames, results in what has been termed a vortex trail 
[11]. 

Physically, coherent light scattering from dynamic 
biological systems over a period of time leads to 
temporal decorrelation of the speckle pattern in the 
observation plane. In our simulations, the individual 
frames can be considered as snapshots of the speckle 
field as it decorrelates over time. Thus, traversing 
through frames is equivalent to the temporal movement 
of a vortex. In this context, frame numbers can be 
considered as discrete points in time. 

Identifying the x and y coordinates of each optical 
vortex as it passes through the frames, gives rise to a 
trail from its point of generation to its point of 
annihilation. Occasionally, a trail also ends due the 
vortex leaving the field of observation. A trail is called 
either a positive or a negative trail, according to the sign 
of the topological charge contained in the vortex that 
created it. When a negative and a positive vortex 
intersect at a single spatial and temporal location, they 
annihilate each other and both trails that they were 
forming end [11]. 

A challenge in the simulations discussed herein was 
to draw the boundary between a continuous trail and a 
new trail starting close to where a trail ended in the 
previous frame. As the locations of the vortices were 
defined in the terms of discrete pixels, it was essential to 
decide how close two vortices in adjacent frames must 
be to be considered the part of the same trail. Based on 
empirical observations of multiple simulation results, it 
was determined that a change of four or more pixels in 
any direction would be considered to be the beginning 
of a new trail. 

To create the vortex trail displays like the ones 
shown in Fig. 3, the vortices in each frame were located 
as described above, using the series of convolution 
operators. The location of each vortex, found in this 
fashion, was then stored on a frame-by-frame basis. 
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While this enabled us to obtain the visual representation 
of the vortex trails, the following algorithm was 
followed to investigate the statistics of the trails. 

 

	
(a)	

	
(b)	

Fig. 3 Typical displays of vortex trails, as the vortices 
(red points: negative, blue circles: positive) are tracked 
through the 50 frames (a). Slow decorrelation with 
autocorrelation coefficient falling to 1/ e  in 11 frames 
(b). A faster decorrelation with autocorrelation 
coefficient falling to 1/ e  in 6 frames. 

The coordinates of the vortices found in each frame 
were stored in an individual list. This was followed by 
locating the first vortex in the first frame (or 
equivalently, the first list) and searching for a vortex in 
the second frame such that it was within four pixels in 
any direction of the coordinates of the previous vortex 
found. If such a vortex did not exist, then the trail ended 
and a new trail began with the next vortex in the first 
frame. If a vortex was found within the pre-defined four 
pixel radius, we moved to the third frame and searched 
for a vortex within the same radius with the coordinates 
of the second frame as the center location. In this 
manner, each trail continued until no vortex was found 
within the set radius of 4 pixels, or all the frames were 
exhausted. After all the trails starting from the first 
frame were tracked, the algorithm searched for trails 

starting from second frame using vortices that were not 
already considered to constitute any of the previously 
formed trails. This process continued through the final 
frame. A pictorial description of this algorithm is shown 
as a flowchart in Fig. 4. 

 

	
Fig. 4 Flow chart representing the algorithm followed to 
track individual optical vortex trails. 

Once the individual trails were tracked, various 
parameters of the motion of the vortices were 
investigated.  One parameter investigated was the 
average length of the positive and negative trails, as 
well as the overall average length of all trails regardless 
of charge. This was defined in terms of the number of 
frames the average trail survived. Another parameter 
studied was the average displacement of the vortices, as 
they traversed through the frames (equivalently, through 
time). For this, the positive and negative centers of the 
frames were determined. A positive (negative) center 
(Xc ,Yc )  of a frame is defined as the mean location of 
all the positive (negative) vortices in the frame: 

Xc =
xi

i=1

n

∑
n
;Yc =

yi
i=1

n

∑
n
,   (5) 

where (xi , yi )  is the coordinates of the ith  vortex in the 
frame and n is the total number of positive (negative) 
vortices in the frame. The overall center of the frame 
(Xco ,Yco )  is the weighed mean location of the positive 
and negative centers: 

Xco =
npXcp + nnXcn
np + nn

;Yco =
npYcp + nnYcn
np + nn

,  (6) 

where (Xcp ,Ycp )  is the location of the positive center 

and (Xcn ,Ycn )  is the location of the negative center; np
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Table 1 Average trail lengths and number of trails of each type (C: Constant; G: Gaussian; L: Lorentzian). The trail 
lengths are given as the number of frames the trail lasted. Total number of frames in the simulation = 50. 

 Slow Decorrelation Medium Decorrelation Fast Decorrelation 

 C G L C G L C G L 

Positive   Trail Length 9.85 8.71 10.09 3.93 4.04 4.42 2.02 2.14 2.48 

Negative   Trail Length 9.78 8.64 10.39 3.73 4.21 4.51 1.94 2.05 2.45 

Positive Trail Nos. 71 80 64 169 163 154 323 304 282 

Negative Trail Nos. 68 83 61 176 164 148 331 314 274 

	
and nn  represent the number of positive and negative 
vortices in the frame, respectively. We defined the 
mobility, M , for each type of vortex as the mean 
distance moved by their center, per frame (Eq. (7)): 

Mcp,cn,co =
1
N −1

× ( i X cp,cn,co −
i−1Xcp,cn,co )

2 + ( iYcp,cn,co −
i−1Ycp,cn,co )

2 ,
i=2

N

∑  
(7) 

where Mcq represents the mobility of the qth type of 
vortex and i X cq ,

iYcq( )  is the location of the center of 

qth type of vortex in the ith frame. As indicated, q can 
represent positive (p), negative (n) or overall (o). N is 
the total number of frames in the simulation. 

Additionally, the distance between the positive and 
negative centers of each the frame was studied. We have 
termed this distance as the charge separation, G(i). 
Poincaré plots [30] were used to analyze the charge 
separation. Poincaré plots are used to display 
consecutive measurements against each other, i.e., the ith 
element of a series X, X(i) is plotted against the (i-1)th 
element, X(i-1). This is continued for all set of 
consecutive data points on X.  

Once all the data points are plotted as above, 
standardized metrics SD1 and SD2 for the data set are 
measured [31] with the following definitions	

SD1=Var( 1
2
X (i −1) − 1

2
X (i))

1
2 ;

SD2 = 2 Var X( )− SD12{ }
1
2  ,

  (8) 

where Var(X) stands for the variance of the data series 
X. 

An ellipse fitting process is then employed over the 
Poincaré plots. This ellipse has semi-major axis length 
of SD2 and semi-minor axis length of SD1 with the 
major axis inclined at 45o to the horizontal axis of the 
Poincaré plot (Fig. 7). The metric SD1 represents the 
short-term variations of the quantity measured (such as 
standard deviation in successive differences), while SD2 
is what remains when contribution of SD1 is removed 

from the variance (Eq. 7) and thus indicates the long-
term variations. The shape of the obtained ellipse 
indicates the comparative effects of each type of 
variation. The more dominant long-term variations are, 
the higher is the magnitude of the semi-major axis 
(given by SD2), resulting in a more elongated ellipse. 

3 Results and Discussion 
The average trail lengths and number of trails for each 
type of vortex is noted in Table 1.  

The effects of decorrelation line shapes and rates 
were investigated (see above).  By weighting the trail 
length of each type (positive and negative) by the 
corresponding number of trails, the overall average trail 
length of each type and rate of decorrelation was 
obtained. These results are displayed in Fig. 5.  

 
Fig. 5 Average trail length for each decorrelation type, 
under three different rates of decorrelation.  
(Slow: (1/e) = 11 frames; Medium: (1/e) = 6 frames; 
Fast: (1/e) =3 frames; Total frames in simulation = 50. 
The statistics are from 20 measurements, each 
measurement comprising of all 50 frames initiated from 
a randomly generated speckle pattern; Error bars 
represent 1 standard deviation 

The Lorentzian decorrelation behavior typically 
resulted in longer and fewer trails compared to Gaussian 
decorrelation, given the same rate of decorrelation  
(p < 0.01) for both the slow and fast rates of 
decorrelation shown in Fig. 5. The Student’s t-test for 
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Table 2 The average displacement of each type of vortex center as they travel through the frames (C: Constant; G: 
Gaussian; L: Lorentzian). All distances are given in terms of coordinate points. Each frame was a square of 64 × 64 
coordinate points. 

 Slow Decorrelation Medium Decorrelation Fast Decorrelation 

 C G L C G L C G L 

Positive Displacement 2.63 2.58 2.14 4.30 4.67 3.37 5.07 5.14 4.40 

Negative Displacement 2.96 2.97 2.29 4.26 4.50 3.71 5.17 5.56 4.57 

Overall Displacement 2.66 2.62 2.10 4.02 4.38 3.38 4.89 4.91 3.95 
 

difference of means was used for all statistical 
significance testing in this study. Additionally, it was 
also observed that as the rate of decorrelation increases, 
the average trail length of each mode became shorter. 
For each type of decorrelation, the number of vortices in 
each frame roughly remained independent of all other 
simulation conditions. The number of vortices identified 
was on the order of half of the number of coherence 
areas in each speckle field [32]. Thus, longer trails 
directly resulted in fewer number of trails. In addition to 
elongated trail lengths, slower decorrelation was also 
found to be associated with lesser number of individual 
trails. The third mode, constant rate of decorrelation  
( Γ I = 0.9984 for slow, Γ I = 0.99 for medium and  

Γ I =  0.96 for fast decorrelation, respectively), formed 
the shortest, and by extension, the most number of trails 
at the medium and fast decorrelation modes. At the 
slowest decorrelation rate, the constant decorrelation 
mode formed trails longer than the Gaussian mode, but 
shorter than the Lorentzian mode. 

 
Fig. 6 Average vortex displacement (or mobility) for 
each mode, under three different rates of decorrelation 
(same as Fig. 5). The statistics are from  
20 measurements, each measurement comprising of all 
50 frames initiated from a randomly generated speckle 
pattern; Error bars represent one standard deviation 

The next parameter that was investigated was the 
mobility, M , of the vortices. Mobility was defined in 
terms of the average displacement incurred by the center 
of each type of vortex field, while moving between 
consecutive frames. From Table (2), we can observe 
that the vortices experienced higher mobility under 
Gaussian decorrelation, as compared to Lorentzian 
decorrelation (p < 0.01). Additionally, increasing the 
rate of decorrelation resulted in higher motion of the 
vortices (p < 0.01). Combining the results from both the 
tables above, it can be seen that the longer trails were 
associated smaller displacements. 

To study the variations in charge separation, 
Poincaré plots [7] were employed. As noted above, 
these plots are used to investigate the long-term and 
short-term variations in a variable.  In this case, the 
variable in question was the charge separation over the 
50 frames. A typical Poincaré plot from this set of 
measurements is shown in Fig. 7. 

 
Fig. 7 A typical Poincaré plot obtained for charge 
separation G i( )  . The magnitude of descriptor SD1 
indicates short-term variability in the value of the 
separation, while SD2 indicates the long-term 
variability. In this plot, SD1 = 1.01 and SD2 = 1.85. The 
lengths are in terms of coordinate points. This 
simulation was done for a 64 × 64 pixel speckle field. 

It was observed that slow decorrelation resulted in 
elongated ellipses on the Poincaré plot, which is a result 
of higher SD2/SD1 ratio. As mentioned earlier, this is 
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(a)	 	 	 	 (b)	 	 	 	 	 (c)	

Fig. 8 Ellipses from the Poincaré plots of charge separation G(i) for (a) Gaussian (b) Constant and (c) Lorentzian 
decorrelation behavior. (O : Slow decorrelation;  X : Medium decorrelation; - :Fast decorrelation). It can be noted that 
the ellipses are prominently elongated for the slowest rate of decorrelation, indicating a high SD2/SD1 ratio. This 
elongation of the ellipse indicates a greater effect of long-term variations on the conditions under which the 
measurement has been made. 

the ratio of the long-term variability to the short-term 
variability. Thus, we notice that as the decorrelation rate 
increases, the short-term variations tend to become more 
prominent as compared to the long-term variations. This 
ratio tends towards a value of 1.0 at higher decorrelation 
rates. The SD2/SD1 ratios can be visualized by placing 
the obtained ellipses in overlap with each other, as 
shown in Fig. 8. 

 It can be seen that the use of Poincaré plots of 
charge separation gives a stronger indication of the rate 
of decorrelation, rather than the lineshape of the 
decorrelation. Thus, this can be used as an indicator of 
the rate of dynamics in a system as is discussed below 

4 Conclusion 
In this paper, a new approach to studying dynamic 
systems by tracking phase singularities (or optical 
vortices) has been presented. Speckle patterns for 
biological systems inherently contain phase 
singularities, or optical vortices, points around which 
the phase of the field rotates. In this work we have 
related the observed dynamics of the optical vortices in 
a simulated speckle field, to the type and rate of 
decorrelation in the field. This decorrelation is a 
representative of the dynamic behavior of scatterers 
that, under coherent illumination, produced the speckle 
field under observation [29].  

Analyzing the location of vortices at discrete time 
points in a speckle field simulated using a pre-defined 
rate of decorrelation, we note the expected result that as 
the rate increased, the lengths of the vortex trails 
decreased. In this study, the rate of speckle 
decorrelation was assumed to correspond to the rate of 
activity in the scattering object. Thus, in a scattering 
medium with fast motion among particles, the 
individual phase singularities tend to survive for shorter 
periods of time. Faster activity was also shown to result 
in a higher degree of vortex displacement per frame in 
the location of the singularities. Additionally, we 
compared different modes of activity; a Lorentzian 

decorrelation relationship between frames, 
corresponding to Brownian or unordered form of 
activity among the scatterers and a Gaussian 
decorrelation relationship, corresponding to an ordered 
mode of activity among the scatterers. The ordered 
motion resulted in more mobile phase singularities as 
they traversed through time. This also corresponds to 
shorter durations for which the trails existed.  We 
remind the readers that the mobility, M, is defined as the 
average displacement per frame of the mean location 
(center) of the vortices. A possible reason for low vortex 
mobility for Brownian motion could be the 
homogeneous line profile of the scatterer distribution in 
a Lorentzian flow model [33]. This homogeneity results 
in no preferential direction for the vortices to move. 
This results in the average summed motion to be less 
than the Gaussian flow model, which has an 
inhomogeneous line profile of the scatterers [33]. We 
also examined a technique of analyzing sequential 
vortex data using Poincaré plots, by separating the long 
and short-term variations and calculating their relative 
prominence with regards to each other. When applied to 
the average charge separation per frame, this technique 
did not indicate any significant difference between the 
different modes of decorrelation. However, reducing the 
rate of decorrelation did result in the Poincaré ellipses 
elongating, indicating a higher prominence of the long-
term variations.  A possible reason could be that faster 
decorrelation did not allow sufficient time for the long-
term trends in the data to dominate over the short-term 
trends. We note here that at no point at all do the short-
term variations SD1  dominate over the long-term 
variations SD2 . In the case in which SD1> SD2 the 
ellipse would be more “broad” than “long’, i.e., the 
major and minor axes would have reversed. Thus, the 
use of Poincaré plots was more useful in comparing the 
different rates of activity, rather than the different 
modes of activity. 

Note that actual phase information is not available in 
the intensity speckle patterns, and thus we took the 
approach of calculating pseudo-phase estimate maps 
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using convolution operators [11]. While this approach 
will not necessarily re-create the true phase of an 
imaged speckle pattern, the behavior of the vortices is 
not affected.  Also, the simulation only takes into 
account a limited spatial window of the speckle field. 
Thus, there are instances of minor topological charge 
imbalance (about 1 extra vortex in 4000 total vortices) 
in some of the simulations. This usually occurred in 
situations where a vortex was close to the edge of the 
observation window, and the opposite topological 
charge corresponding to this lone vortex was just 
outside the window. This oppositely charged vortex 
typically appeared within the window in the very next 
frame, thus balancing out the charges. This can be 
thought of as a case where a pair production happens 
right at the edge of the window, but only half the pair is 
within the window at that instant. It is also to be noted 
we are currently not in a position to speculate on the 
physical significance of some of the parameters noted 
here (such as the charge separation, G(i)). As such, they 
are introduced only as a measureable feature with some 

sensitivity to the simulation dynamics (in the case of 
G(i), sensitivity to the rate of activity). 

We conclude by noting that the analysis in this paper 
can potentially be used to add to our current 
understanding of light scattering and propagation, the 
physics of coherent wave fields, and the field of singular 
optics. This can, in turn be used to improve existing 
microscopy and imaging techniques, particularly those 
aimed at quantifying biophysical dynamics. Simulating 
additional biological features such as tumors and other 
complex systems containing dynamics scattering 
elements, and identifying them using the dynamics of 
optical vortices as done in this paper, is among the 
possible directions in which this research can progress.  
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