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ABSTRACT 
Current coronavirus pandemic has endangered mankind life. The reported cases are in-
creasing exponentially. Information of animal protein subcellular localization can provide 
useful clues to develop antiviral drugs. To cope with such a catastrophe, a CNN based ani-
mal protein subcellular localization predictor called “pLoc_Deep-mAnimal” was developed. 
The predictor is particularly useful in dealing with the multi-sites systems in which some 
proteins may simultaneously occur in two or more different organelles that are the current 
focus of pharmaceutical industry. The global absolute true rate achieved by the new predic-
tor is over 92% and its local accuracy is over 95%. Both have substantially exceeded the 
other existing state-of-the-art predictors. To maximize the convenience for most experi-
mental scientists, a user-friendly web-server for the new predictor has been established at 
http://www.jci-bioinfo.cn/pLoc_Deep-mAnimal/, which will become a very useful tool for 
fighting pandemic coronavirus and save the mankind of this planet. 

 

1. INTRODUCTION 
Knowledge of the subcellular localization of proteins is crucially important for fulfilling the following 

two important goals: 1) revealing the intricate pathways that regulate biological processes at the cellular 
level [1, 2]. 2) selecting the right targets [3] for developing new drugs. 

With the avalanche of protein sequences in the post-genomic age, we are challenged to develop com-
putational tools for effectively identifying their subcellular localization purely based on the sequence in-
formation. 

In 2019, a very powerful predictor, called “pLoc_bal-mAnimal [4], was developed for predicting the 
subcellular localization of animal proteins based on their sequences information alone. It has the following 
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remarkable advantages. 1) Most existing protein subcellular location prediction methods were developed 
based on the single-label system in which it was assumed that each constituent protein had one, and only 
one, subcellular location (see, e.g., [5-7] and a long list of references cited in a review papers [8]). With 
more experimental data uncovered, however, the localization of proteins in a cell is actually a multi-label 
system, where some proteins may simultaneously occur in two or more different location sites. This kind 
of multiplex proteins often bears some exceptional functions worthy of our special notice [2]. And the 
pLoc_bal-mAnimal predictor [4] can cover this kind of important information missed by most other me-
thods since it was established based on the multi-label benchmark dataset and theory. 2) Although there 
are a few methods (see, e.g., [9, 10]) that can be used to deal with multi-label subcellular localization for 
proteins, the prediction quality achieved by pLoc_bal-mAnimal [4] is overwhelmingly higher, particularly 
in the absolute true rate. 

The pLoc_bal-mAnimal predictor [4] has the aforementioned merits; it has not been trained at a 
deeper level yet [11-14]. 

The present study was initiated in an attempt to address this problem. As done in pLoc_bal-mAnimal 
[4] as well as many other recent publications in developing new prediction methods (see, e.g., [15, 16]), the 
guidelines of the 5-step rule [17] are followed. They are about the detailed procedures for 1) benchmark 
dataset, 2) sample formulation, 3) operation engine or algorithm, 4) cross-validation, and 5) web-server. 
But here our attentions are focused on the procedures that significantly differ from those in developing the 
predictor pLoc_bal-mAnimal [4]. 

2. MATERIALS AND METHODS 
2.1. Benchmark Dataset 

The benchmark dataset used in this study is exactly the same as that in pLoc_bal-mAnimal [4]; i.e., 

1 2 20u=                                      (1) 

where 1  only contains the protein samples from the “Acrosome” location, 2  only contains those from 
the “Cell cortex” location, and so forth;   denotes the symbol for “union” in the set theory. For readers’ 
convenience, their detailed sequences and accession numbers (or ID codes) are given in Supporting In-
formation S1 that is also available at http://www.jci-bioinfo.cn/pLoc_bal-mAnimal/Supp1.pdf, where none 
of proteins included has ≥25% sequence identity to any other in the same subset (subcellular location). 

2.2. Proteins Sample Formulation 

Now let us consider the 2nd step of the 5-step rule [17]; i.e., how to formulate the biological sequence 
samples with an effective mathematical expression that can truly reflect their essential correlation with the 
target concerned. Given a protein sequence P, its most straightforward expression is 

1 2 3 4 5 6 7R R R R R R R R L=P                                  (2) 

where L denotes the protein’s length or the number of its constituent amino acid residues, 1R  is the 1st 
residue, 2R  the 2nd residue, 3R  the 3rd residue, and so forth. Since all the existing machine-learning al-
gorithms} can only handle vectors as elaborated in [3], one has to convert a protein sample from its se-
quential expression (Equation (2)) to a vector. But a vector defined in a discrete model might completely 
miss all the sequence-order or pattern information. To deal with this problem, the Pseudo Amino Acid 
Composition [18] or PseAAC [19] was proposed. Ever since then, the concept of “Pseudo Amino Acid 
Composition” has been widely used in nearly all the areas of computational proteomics with the aim to 
grasp various different sequence patterns that are essential to the targets investigated (see, e.g., [20-30] as 
well as a long list of references cited in [31]). Because it has been widely and increasingly used, recently 
three powerful open access soft-wares, called “PseAAC-Builder” [32], “propy” [33], and “PseAAC-General” 
[34], were established: the former two are for generating various modes of special PseAAC [35]; while the 
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3rd one for those of general PseAAC [17], including not only all the special modes of feature vectors for 
proteins but also the higher level feature vectors such as “Functional Domain” mode, “Gene Ontology” 
mode, and “Sequential Evolution” or “PSSM” mode. Encouraged by the successes of using PseAAC to deal 
with protein/peptide sequences, its idea and approach were extended to PseKNC (Pseudo K-tuple Nucleo-
tide Composition) to generate various feature vectors for DNA/RNA sequences [36] that have proved very 
successful as well (see, e.g., [37, 38]). 

According to the concept of general PseAAC [17], any protein sequence can be formulated as a 
PseAAC vector given by 

[ ]1 2                   u Ω= Ψ Ψ Ψ Ψ TP                               (3) 

where T is a transpose operator, while the integer Ω  is a parameter and its value as well as the compo-
nents uΨ  ( )1,2, ,u = Ω  will depend on how to extract the desired information from the amino acid 
sequence of P, as elaborated in [4]. Thus, by following exactly the same procedures as described in the Sec-
tion 2.2 of [4], each of the protein samples in the benchmark dataset can be uniquely defined as a 20-D 
numerical vector as given in Supporting Information S2, which can also be directly downloaded at  
http://www.jci-bioinfo.cn/pLoc_bal-mAnimal/Supp2.pdf. 

2.3. Installing Deep-Learning for Three Deeper Levels 

In this study, we use the CNN (Convolutional Neural Network) model to predict the subcellular loca-
lization of animal proteins, as illustrated in Figure 1. 

The CNN model consists of input layer, convolutional layer, average-pooling layer and fully con-
nected layer. The input layer represents each animal protein with 6 features. The second layer is convolu-
tional layer which extract dependency relationship between features subsequence of animal proteins. The 
filter stride is set to one. The activation function is set as “relu”. The average-pooling layer down-samples 
the features and compute the average values of the features. The fully connected layer consists of 2 hidden 
layers. Finally, the output of connected layer was concatenated into output layer with sigmoid activation 
function. The label of animal protein was decided by the threshold θ. If the output is greater than 0.5, the 
outcome was true; otherwise, false. 

The other parameters of CNN model are as follows. 1) The algorithm of Adam was used to train the 
model and the loss function is set to binary cross-entropy. 2) The activation function of full connected 
layer and convolutional layer is ReLU [39], and the activation function of output layer is sigmoid. 3) Con-
volutional Layer used the filter size 2 * 1 to extract features of animal proteins. 4) The batch size is 26. 5)  
 

 

Figure 1. An illustration to show the Architecture of the pLoc-Deep_mAnimal model. 
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The model is trained for 120 epochs. 6) The metrics is set as “accuracy”. 
The new predictor developed via the above procedures is called “pLoc_Deep-mAnimal”, where 

“pLoc_Deep” stands for “predict subcellular localization by deep learning”, and “mAnimal” for “mul-
ti-label animal proteins”. 

3. RESULTS AND DISCUSSION 
According to the 5-step rules [17], one of the important procedures in developing a new predictor is 

how to properly evaluate its anticipated accuracy. To deal with that, two issues need to be considered. 1) 
What metrics should be used to quantitatively reflect the predictor’s quality? 2) What test method should 
be applied to score the metrics? 

3.1. A Set of Five Metrics for Multi-Label Systems 

Different from the metrics used to measure the prediction quality of single-label systems, the metrics 
for the multi-label systems are much more complicated [40]. To make them more intuitive and easier to 
understand for most experimental scientists, here we use the following intuitive Chou’s five metrics [41] or 
the “global metrics” that have recently been widely used for studying various multi-label systems (see, e.g., 
[42, 43]). For the current study, the set of global metrics can be formulated as: 
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where qN  is the total number of query proteins or tested proteins, M is the total number of different la-
bels for the investigated system (for the current study it is cell 20L = ),  means the operator acting on 
the set therein to count the number of its elements,   means the symbol for the “union” in the set 
theory,   denotes the symbol for the “intersection”, k  denotes the subset that contains all the labels 
observed by experiments for the k-th tested sample, *

k  represents the subset that contains all the labels 
predicted for the k-th sample, and 

( )
*

* 1, if all the labels in are identical to those in
Δ ,

0, otherwise
k k

k k
= 


                  (5) 

In Equation (4), the first four metrics with an upper arrow ↑ are called positive metrics, meaning 
that the larger the rate is the better the prediction quality will be; the 5th metrics with a down arrow ↓ is 
called negative metrics, implying just the opposite meaning. 

From Equation (4) we can see the following: 1) the “Aiming” defined by the 1st sub-equation is for 
checking the rate or percentage of the correctly predicted labels over the practically predicted labels; 2) the 
“Coverage” defined in the 2nd sub-equation is for checking the rate of the correctly predicted labels over 
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the actual labels in the system concerned; 3) the “Accuracy” in the 3rd sub-equation is for checking the av-
erage ratio of correctly predicted labels over the total labels including correctly and incorrectly predicted 
labels as well as those real labels but are missed in the prediction; 4) the “Absolute true” in the 4th 
sub-equation is for checking the ratio of the perfectly or completely correct prediction events over the total 
prediction events; 5) the “Absolute false” in the 5th sub-equation is for checking the ratio of the completely 
wrong prediction over the total prediction events. 

3.2. Comparison with the State-of-the-Art Predictor 

Listed in Table 1 are the rates achieved by the current pLoc_Deep-mAnimal predictor via the cross 
validations on the same experiment-confirmed dataset as used in [4]. For facilitating comparison, listed 
there are also the corresponding results obtained by the pLoc_bal-mAnimal [4], the existing most power-
ful predictor for identifying the subcellular localization of animal proteins with both single and multiple 
location sites. As shown in Table 1, the newly proposed predictor pLoc_Deep-mAnimal is remarkably su-
perior to the existing state-of-the-art predictor pLoc_bal-mAnimalin all the five metrics. Particularly, it 
can be seen from the table that the absolute true rate achieved by the new predictor is over 92%, which is 
far beyond the reach of any other existing methods [44-49]. This is because it is extremely difficult to en-
hance the absolute true rate of a prediction method for a multi-label system as clearly elucidated in [4]. 
Actually, to avoid embarrassment, many investigators even chose not to mention the metrics of absolute 
true rate in dealing with multi-label systems (see, e.g., [50-56]). 

Moreover, to in-depth examine the prediction quality of the new predictor for the proteins in each of 
the subcellular locations concerned (cf. Table 2), we used the “local metrics” [40] or a set of four intuitive 
metrics that were derived in [57] based on the Chou’s symbols introduced for studying protein signal pep-
tides [58] and that have ever since been widely concurred or justified (see, e.g., [59-62]). For the current 
study, the set of local metrics can be formulated as: 
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where Sn, Sp, Acc, and MCC represent the sensitivity, specificity, accuracy, and Mathew’s correlation coef-
ficient, respectively, and i denotes the i-th subcellular location (or subset) in the benchmark dataset. 

( )N i+  is the total number of the samples investigated in the i-th subset, whereas ( )N i+
−  is the number of 

the samples in ( )N i+  that are incorrectly predicted to be of other locations; ( )N i−  is the total number 
of samples in any locations but not the i-th location, whereas ( )N i−

+  is the number of the samples in 
( )N i−  that are incorrectly predicted to be of the i-th location. 
Listed in Table 2 are the results achieved by pLoc_Deep-mAnimal for the animal proteins in each of 

20 subcellular locations. As we can see from the table, nearly all the success rates achieved by the new pre-
dictor for the animal proteins in each of the 20 subcellular locations are within the range of 90% - 100%,  
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Table 1. Comparison with the state-of-the-art method in predicting animal protein subcellular loca-
lizationa. 

Predictor Aiming (↑)a 
Coverage 

(↑)a 
Accuracy 

(↑)a 
Absolute true 

(↑)a 
Absolute false 

(↓)a 

pLoc_bal-mAnimalb 88.31% 85.06% 84.34% 78.78% 0.07% 

pLoc_Deep-mAnimalc 96.21% 97.77% 95.46% 92.26% 0.00% 
aSee Equation (4) for the definition of the metrics. bSee [4], where the reported metrics rates were obtained 
by the jackknife test on the benchmark dataset of Supporting Information S1 that contains experiment- 
confirmed proteins only. cThe proposed predictor; to assure that the test was performed on exactly the 
same experimental data as reported in [4] for pLoc_bal-mAnimal. 

 
Table 2. Performance of pLoc_Deep-mAnimal for each of the 20 subcellular locations. 

i Locationa Sn(i)b Sp(i)b Acc(i)b MCC(i)b 

1 Acrosome 1.0000 1.0000 1.0000 1.0000 

2 Cell cortex 0.9821 0.9957 0.9920 0.9798 

3 Cell membrane 0.9799 1.0000 0.9997 0.9897 

4 Centriole 0.9745 0.9997 0.9985 0.9833 

5 Centrosome 0.9155 0.9996 0.9984 0.9428 

6 Cytoplasm 0.9534 0.9779 0.9693 0.9317 

7 Cytoskeleton 0.9517 0.9986 0.9918 0.9666 

8 Endoplasmic reticulum 0.9662 0.9984 0.9929 0.9747 

9 Endosome 0.9744 0.9988 0.9974 0.9771 

10 Extracellular space 0.9170 0.9994 0.9967 0.9464 

11 Golgi apparatus 0.9716 0.9991 0.9957 0.9800 

12 Lysosome 0.9818 0.9997 0.9913 0.9876 

13 Melanosome 0.9585 0.9973 0.9995 0.9663 

14 Microsome 1.0000 0.9999 0.9999 0.9825 

15 Mitochondrion 0.9802 1.0000 0.9995 0.9897 

16 Nucleus 0.9408 0.9889 0.9782 0.9371 

17 Peroxisome 1.0000 1.0000 1.0000 1.0000 

18 Plasma membrane 0.9822 0.9957 0.9920 0.9798 

19 Spindle 0.9544 0.9994 0.9974 0.9705 

20 Synapse 0.9685 1.0000 0.9988 0.9834 
aSee Table 1 and the relevant context for further explanation. bSee Equation (6) for the metrics definition. 
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which is once again far beyond the reach of any of its counterparts. 
Meanwhile, as a byproduct, the present paper has also stimulated some kinds of provocative or chal-

lenging but very intriguing papers (see, e.g., [63-68]). 

3.3. Web Server and User Guide 

As pointed out in [69], user-friendly and publicly accessible web-servers represent the future direc-
tion for developing practically more useful predictors. Actually, user-friendly web-servers will significantly 
enhance the impacts of theoretical work because they can attract the broad experimental scientists [31]. In 
view of this, the web-server of the current pLoc_Deep-mAnimal predictor has also been established at 
http://www.jci-bioinfo.cn/pLoc_Deep-mAnimal/, by which users can easily get their desired data without 
the need to go thru the mathematical details. 

4. CONCLUSION 
It is anticipated that the pLoc_Deep-mAnimal predictor holds very high potential to become a useful 

high throughput tool in identifying the subcellular localization of animal proteins, particularly for finding 
multi-target drugs that is currently a very hot trend in drug development. Most important is that the pre-
dictor will become a very useful tool for fighting against the pandemic coronavirus to save the mankind on 
this planet. 
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