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Abstract

We present an extensive grid of numerical simulations quantifying the uncertainties in measurements of the tip of
the red giant branch (TRGB). These simulations incorporate a luminosity function composed of 2 mag of red giant
branch (RGB) stars leading up to the tip, with asymptotic giant branch (AGB) stars contributing exclusively to the
luminosity function for at least a magnitude above the RGB tip. We quantify the sensitivity of the TRGB detection
and measurement to three important error sources: (1) the sample size of stars near the tip, (2) the photometric
measurement uncertainties at the tip, and (3) the degree of self-crowding of the RGB population. The self-
crowding creates a population of supra-TRGB stars due to the blending of one or more RGB stars just below the
tip. This last population is ultimately difficult, although still possible, to disentangle from true AGB stars. In the
analysis given here, the precepts and general methodology as used in the Chicago-Carnegie Hubble Program
(CCHP) have been followed. However, in the appendix, we introduce and test a set of new tip detection kernels,
which internally incorporate self-consistent smoothing. These are generalizations of the two-step model used by
the CCHP (smoothing followed by Sobel-filter tip detection), where the new kernels are based on successive
binomial-coefficient approximations to the derivative-of-a-Gaussian edge-detector, as is commonly used in modern
digital image processing.

Unified Astronomy Thesaurus concepts: Red giant stars (1372); Distance indicators (394)

1. Introduction

Over a century ago, Shapley (1918, 1919, 1930) used blue-
sensitive photographic plates to measure (by eye) the mean
apparent magnitudes of the 25 brightest stars in galactic
globular clusters (his Table 1, 1919), in order to go on to
(incorrectly) build a case for his version of an Island Universe
cosmology (see Berendzen et al. 1976). With the availability of
newly developed, red-sensitive photographic plates, Walter
Baade (1944) serendipitously resolved the brightest red giant
stars (which, to his surprise, suddenly appeared at approxi-
mately the same red-band magnitudes) in several dwarf
elliptical companions galaxies to the Andromeda galaxy,
M31. That unanticipated discovery precipitated a revision in
the size and age of the universe by a factor of 2. Four decades
later, and armed with some of the first available panoramic
linear charge-coupled devices (CCDs), Mould et al. (1984)
revisited one of Baade’s original dwarf galaxies, NGC 205.
They produced full color–magnitude diagrams (CMDs)
revealing a broad swath of red giant branch (RGB) stars all
of which cumulatively defined a constant I-magnitude plateau
in the CMD, later to be named the tip of the red giant branch, or
simply known by its initialism, the TRGB. They also had
earlier observed NGC 147 (Mould et al. 1983) finding the same
feature. But perhaps more interestingly, they (Mould &
Kristian 1986) observed TRGB stars in the halo of the Local
Group spiral galaxy, M33. By good fortune, at about the same
time, M33 had been the subject of two different investigations
into Cepheid distance moduli to this galaxy: one by Sandage &
Carlson (1983) coming in high, with a value of
(m−M)o= 25.23 mag; and another by Madore et al. (1985)

nearly a full magnitude closer at (m−M)o= 24.25± 0.15 mag.
The TRGB distance fell in the mid-range, at (m−M)o=
24.8± 0.2 mag, right between the other two extremes. How-
ever, not all of the early cross-comparisons of TRGB and
Cepheid distance scales were in conflict. For example,
Freedman (1988a) used the first CCD camera available on
the CFHT and measure the TRGB in the halo of the Local
Group dwarf irregular galaxy, IC 1613. She found a true
distance modulus of (m−M)o= 24.2 mag, which did agree the
Cepheid-based distance modulus of (m−M)o= 24.3 mag
(Freedman 1988b).
The TRGB method finally came of age with the publication

of two papers: the first was the calibration paper by Da Costa &
Armandroff (1990) who were inspired to undertake an I-band
CCD survey of a sample of 8 southern Milky Way globular
clusters. In doing so, they demonstrated that, while the mean
colors of the giant branches were rank-ordered by the mean
metallicities of the parent globular clusters (as previously
known to Frogel et al. 1983 from pioneering their studies of
RGB stars in globular clusters in the near infrared), the
brightest of those RGB stars had a remarkably stable absolute
magnitude, in the I band, independent of color. The second
paper was that of Lee et al. (1993). It laid out, in one place,
most of the key issues concerning systematics involving
reddening, metallicity, star formation history, and host galaxy
type, etc. It also introduced the widely adopted Sobel filter for
precisely deriving the magnitude at which the discontinuity in
the RGB luminosity function (LF) occurs, as well as its
uncertainty, while exploring a range of smoothing kernels. This
was carried out in the context of anticipating a refurbished
Hubble Space Telescope, and applying the TRGB method
widely to the extragalactic distance scale. The authors
demonstrated its ground-based application to 10 galaxies
spanning a wide range of Hubble types, metallicities, and
absolute magnitudes, and found overall consistency in the
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TRGB, Cepheid, and RR Lyrae distance scales at the level of
0.1 mag. The success of the TRGB method might be measured
by its subsequent adoption: over the intervening three decades,
more than 500 TRGB distances to nearby galaxies have been
published (for instance, NED lists over 900 references to
TRGB distance determinations to 302 distinct galaxies;3 and
EDD lists 588 galaxies that they have derived uniformly
processed TRGB distances4). And recently, the TRGB method
has been extended to the calibration of Type Ia supernovae and
determination of the Hubble constant (Freedman et al. 2019;
Freedman 2021).

For theoretical discussions of the evolution of stars up to and
including degenerate helium core flash, we recommend that
readers consult the monographs by Cassisi & Salaris (2013),
Salaris & Cassisi (2005), and Lamers & Levesque (2017). For
updated discussions of modeling, with special reference to
near- and mid-infrared applications of the TRGB method, see
Serenelli et al. (2017), McQuinn et al. (2019), and Durbin
et al. (2020).

2. Motivation

A quick census of the published determinations of the
apparent magnitude of the TRGB in even the nearest of
galaxies (NED-D 2022 August version) immediately reveals a
wide range of quoted uncertainties.5 The published errors, for
the tip measurement in a given galaxy, can vary by as much as
a factor of 10; as in the case of M31 (0.05–0.57 mag
uncertainties quoted) and M33 (0.03–0.30 mag); but more
typically, they range over a factor of 3–6 as, for example, in the
published values for the nearest galaxies: the LMC
(0.04–0.25 mag), IC 1613 (0.05–0.20 mag), and NGC 6822
(0.06–0.19 mag). On the other hand, some of the reported
statistical uncertainties on the tip determination can go as low
as 0.01 mag (e.g., Lee & Jang 2012 for Messier 101 (M101); or
even smaller than that in the case of Conn et al. 2011 for
Andromedas I and II). In an appendix to Cioni et al. (2000),
those authors rightly note that many of the methods used,
(counterintuitively) do not in any way scale with population
size of stars detected and measured at the tip. They should. For
a given photometric error, population size certainly needs to be
a part of the calculation of the statistical uncertainty on the
mean of the TRGB distance.6 Upon closer examination of any
given paper, it is not always clear what exactly the source of the
quoted uncertainty is or even how it was actually calculated. In
this paper, we attempt to bring some clarity to the situation.

In earlier papers (Madore & Freedman 1995; Madore
et al. 2009), we presented computer simulations of the TRGB
in its use as an extragalactic distance indicator. In the first
paper, there is an often quoted and paraphrased conclusion that
“at least 100 stars in the first magnitude interval below the tip
are needed to secure a distance modulus to better than±0.1
mag.” At that time, the method was still in its infancy, and
small number statistics were a major concern (especially when
the early focus was on applying the method to sparsely

populated individual galactic globular clusters, or very small
fields of view in the halos of very nearby galaxies, say). The
field has matured, the demand for higher precision has
prevailed, and the numbers of stars measured in extragalactic
halo fields have gone into the thousands, while at the same time
other sources of uncertainty in determining the precision of the
TRGB have become clear. We feel that it is time now to
explore parameter space a bit more thoroughly. In the
following, we consider, in turn, a total of three independent,
major sources of uncertainty:

(1) The formal way in which the statistical uncertainty in the
tip magnitude can be quantified, specifically in terms of
its sensitivity to numbers of stars at the tip, and its
independent sensitivity to individual photometric errors
of those same tip-defining stars.

(2) The effects of having an asymptotic giant branch (AGB)
population of stars contributing to the 1 mag interval
directly above the TRGB.

(3) And finally, the explicit modeling of the mutual (line-of-
sight) crowding of all stars along the RGB, and the
inevitable production of a new, but totally spurious,
population of (crowded) stars, systematically brighter
than the TRGB.

We use a modified Sobel edge-detection filter (see
Appendix B) for measurement of the TRGB, which is largely
consistent with our GLOESS-smoothed, Sobel-filtered analysis
used in the CarnegieChicago Hubble Program (Hatt et al. 2017;
Hoyt et al. 2018; Jang et al. 2018; Madore et al. 2018). In
Appendix B, we derive and tabulate a complete series of new
digital filters that are derived from successive discrete
approximations of the first derivative of a Gaussian (DoG),
using the binomial theorem as the gradient detector. We also
adopt the weighted (noise-suppression) versions of these
kernels as first introduced and applied to a simple Sobel filter
in Madore et al. (2009) and much later adopted and utilized by
Gorski et al. (2018).

3. The Underlying Model

The basic model adopted here for the intrinsic LF, above and
below the TRGB, now consists of three distinct input
populations: (a) a RGB population with a power-law increase
in numbers with increasing (fainter) magnitudes, (b) a bright-
end truncation/discontinuity of the RGB LF, defining the tip,
and (c) an AGB population, stretching at least 1 mag above and
brighter than the TRGB. We model the LF from 1 mag above
to 2 mag below the TRGB (but note that only the first
magnitude below the tip is shown in the figures) assuming a flat
LF for the AGB down to the TRGB,7 at which point there is a
discontinuous offset to the RGB population. The RGB then
assumes a steeply rising LF of the form N mlog =[ ( )]

I I a0.3 TRGB´ - +[ ] . In these first simulations, the relative
RGB-to-AGB normalization is six to one, such that there are 17
AGB stars in total in the 1 mag interval seen above the TRGB,
for every 100 RGB stars in the 1 mag interval fainter than (i.e.,
below) the tip. For the purpose of this simulation, the AGB LF3 https://ned.ipac.caltech.edu

4 https://edd.ifa.hawaii.edu/dsecond.php
5 That said, the errors presented in NED are in no way homogenized. NED
presents the data as published, and in many cases, the original authors make no
distinction between statistical and systematic error, or combinations of the two.
6 However, see Menendez et al. (2002) and/or Makarov et al. (2006) for
extensive discussions specifically concerning the maximum-likelihood techni-
que and its error sensitivity to photometry and sample size.

7 The referee has argued that a variety of shapes to the AGB luminosity is
apparent in published CMDs including data above the TRGB, and that a flat
AGB LF may not be representative. We agree with that statement, but as shown
in Appendix D, the shape of the AGB LF, be it falling rising or flat, has no
impact on the ability of the Sobel filter to detect the TRGB in an unbiased
manner.
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is assumed to be flat in the 1 mag interval above the tip and
zero elsewhere. References to the literature justifying the values
for the parameters alluded to above are to be found in the first
paragraph of Section 5.1.1.

Here we first examine an idealization in the form of a toy
model that captures the essential ingredients of the detailed
simulations that follow, and try to emphasize how the various
components contribute (or not) to the determination of the
magnitude and location of the TRGB discontinuity. The toy
model is shown in Figure 1, an LF centered on the TRGB. This
a plot of logarithm of numbers of stars per magnitude bin as a
function of magnitude. The LF is composed of an AGB
population, represented by a dispersionless straight line sloping
upward from left to right, stopping one bin short of the location
of the discontinuity defining the TRGB. The number of AGB
stars in that final bin is N. One bin beyond that magnitude, the
LF is defined by RGB stars whose slope is independent of, and
different from, the AGB slope. The RGB LF is normalized at
the tip with a value that is 6 times the value of the AGB
population (i.e., 6N stars) at its starting point one bin brighter
than the bin marking the discontinuity. The bin between the
two terminal points defines the tip, and its value is the average
of the two adjacent LFs (i.e., 3N stars).

The upper panel of Figure 1 shows the input LF binned into
9 histogram-like segments with bin No. 5 centered on the
position of the discontinuity, marking the luminosity (in

magnitudes) of TRGB. The lower panel shows the result of
running a Sobel filter [−1, 0, +1] across the binned LF. The
output of the Sobel filter is the discretely sample first derivative
of the function being sampled. Moving from left to right, the
output of the Sobel filter is constant, as expected, given the
constant slope of the input AGB luminosity, i.e., at the first
position, the output of the Sobel function is [−1× (N− 3ò) +
0× 2ò + 1× (N− 1ò)=] 2ò, where ò is the width of the
binning. At the second position, the output is [−1× (N− 2ò) +
0× (N− ò) + 1×N)=] again (the slope of the pure AGB) 2ò.
These first steps do not sample the discontinuity and therefore
contain no information about its position or presence. At step
No. 3, the right-most element [+1] is the first to sample the
discontinuity and reports a increased value of the filter’s output,
[−1× (N + ò) + 0× N + 1× (6/2)N=] 2N− ò. The next step
over continues to report larger values of its response-function,
where the [+1] element now sees the undiluted height of the
RGB LF 6N, and differences that against the response of the
left-most element [−1] of the Sobel filter contributing a value
of −N, with the central element of the Sobel filter always
reporting a null value regardless of the function’s value. The
output is [−1× N + 0× (6/2)N + 1× 6N=] +5N. The central
element simply keeps track of the bin around which the
derivative is being measured and reported. Moving the filter
one more bin to the right reports a value of [−1× (6/2)N +
0× 6N + 1× (6N+δ)=] +3N + δ. One step more away from
the discontinuity gives [−1× 6N + 0× (6N+δ) +1× (6N
+2δ)=] +2δ, the slope of the RGB. All subsequent steps to the
right continue to report the constant slope of +2δ. The
maximum value of 5N for the response-function is found at
step No. 4 and marks the magnitude at which the TRGB is to
be found.

4. A Few Preliminaries

It is worth making explicit what exactly the criteria are for a
successful experiment to be run, which aims for a detection and
measurement of the position of the discontinuity marking the
TRGB in magnitude space. It is then also important to list the
real-world parameters over which we have some control in
optimally undertaking the observations and subsequently
analyzing the results.
Generally speaking, there are two obvious performance

indices in TRGB edge-detection that we are concerned with
here: accuracy and precision. However, the latter (which can
also be classified as bias) can be further broken down into (a)
false-positive detections of the TRGB, (b) nondetections, and
(c) systematic bias attributed to the edge-detector itself. Each of
these are discussed in turn, below. And in the subsection
following this, we discuss what control we have, at the
observational design level, in mitigating each of these kinds of
errors.

4.1. Accuracy

(i) False positives. In the presence of random noise in the
output of our TRGB edge-detection response-function, there
comes a point at which (a) the fluctuations in the number of
detected stars (from bin to bin) and/or (b) Poisson noise in the
photometry of the individual stars themselves will produce
(spurious) features in the tip-detection and/or response-
function output. These noise-induced features, if large enough,
can be both qualitatively and quantitatively indistinguishable

Figure 1. Magnified view of the idealized toy model of the RGB + AGB
luminosity function, centered on the discontinuity in the RGB luminosity
function at the TRGB. Solid yellow segments, from left to right, show the AGB
LF, the discontinuity, and the RGB LF. The blue histogram is a binned version
of straight lines used as digital input to the differencing (Sobel) kernel: [−1, 0,
+1]. The digital output of the Sobel response-function is shown in red
histogram form in the lower portion of the figure. The maximum of the Sobel
filter marks the position of the discontinuity. See text for a step-by-step
description of the tip detection.
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from the expected signal (i.e., being positive deflections in the
response-function, which have a similar width and relative
height when compared to the expected and/or true signal). In
the controlled simulations, discussed below, we quantify when
and where this situation starts to become a serious problem.

(ii) Nondetections. Again, in the presence of excessive
photometric noise, in particular, for small population sizes (or
in a combination of the two), it is possible for the true signal to
become so weak that it is not detected at any significant
thresholding level, with respect to the ambient response-function
noise. This situation is fatal; but the circumstances under which
it is likely to occur can be anticipated and identified using these
simulations as a guide (see, for example, Figures 4 and 7).

(iii) Potential bias in the tip detection algorithm. Given the
unequal count rates of stars contributing to the LFs above and
below the TRGB, it might be thought that even a symmetric
response-function kernel might return an asymmetric (i.e.,
biased) answer, given that more RGB stars are moving across
the TRGB discontinuity to intrinsically brighter magnitudes
than there are bright AGB stars moving in the opposite
direction (across the TRGB discontinuity) to fainter magni-
tudes. We investigate this potential source of systematic error
(detector bias) throughout the simulations studied below.

4.2. Precision

We are endeavoring to (a) measure the tip magnitude, (b)
measure its statistical uncertainty (its precision), and (c)
provide any estimate of bias (its accuracy) inherent in the
methodology explored here. A number of factors contribute to
the outcome. Some of these factors can be controlled in
advance while setting up the experiment and/or observation,
and some of them can be ameliorated later in the data analysis
stage. For instance, the source-count population, the amount of
crowding, and the signal-to-noise ratio in the photometry can
each be controlled with foreknowledge of the approximate
surface brightness of the region being targeted, knowing the
approximate distance, and adjusting the total exposure time (or
size of the telescope), within allowable and practical limits. The
type of kernel employed in measuring the first derivative of the
LF at and around the tip, and the amount of smoothing of the
data chosen to be applied to the data, in advance of the kernel
response-function application, can both be controlled to
optimize the output of the detector once the data have been
obtained. We consider each of these parameters in turn.

5. RGB + AGB Computer Simulations

In this series of simulations, we explore changing a number
of parameters while holding others fixed. These include the
photometric errors and overall population size (Section 4.1),
different smoothing sizes (Section 4.2), and amount of
crowding and/or blending (Section 6). In Section 5, we
illustrate how the width of the smoothing function does not
carry information on the uncertainty of the tip measurement.

Here, we explore the systematics of changing the photo-
metric errors at the tip (from one simulation to the next) while
holding the population size and smoothing fixed.

With Figure 2, we start at one extreme: a very densely
populated LF (about 120,000 stars in total) having minimal
(0.01 mag) smoothing and very high-precision photometry, as
shown in the first (upper left) panel. We then work (left to right
and top to bottom) through the observed effects of

progressively increasing the photometric errors (at the tip)
from±0.02, to 0.05, 0.10, 0.15, and 0.20 mag, respectively
(corresponding to signal-to-noise ratios of 50, 20, 10, 6, and 5).
In Figures 3–5, we then rerun parallel simulations,

progressively dropping the total population of stars by about
a factor of 10 each time: starting with about 120,000 RGB stars
in the 1 mag interval below the tip (in Figure 2), and
ending with a simulation having only 127 RGB stars in that
same 1 mag interval (in Figure 5).
In each of the next sections (each also containing four figures

and six main subpanels), we explore the effects of changing the
smoothing (going up from 0.01 to 0.05, and finally 0.10 mag)
in Figures 6 through 9, at fixed population sizes per figure and
increasing photometric errors through each of the subpanels, as
in the previous section.
We then close out in Section (4.1) holding the smoothing at a

fixed value (at 0.10 mag) and assessing the effects of changing
the population size in Figures 10 through 13, while changing
the photometric errors in the subpanels within those figures.
This extensive grid of plots is provided both for their use as

predictors in planning future observations, and for their use as a
guide in understanding the LFs and edge-detector output once
they are acquired. To put this into perspective for the 12
galaxies observed by Freedman et al. (2019) in their
determination of a TRGB-based value of the Hubble constant,
they detected an average of 4000 RGB stars in the 1 mag
interval below the TRGB (with anywhere from 1000 to 20,000
RGB stars in individual cases, depending on the distance
modulus of the host galaxy and how far into the halo any given
exposure was taken). As for the typical photometric errors at
the tip, the exposures were scaled to the approximately known
distances, and they all have uncertainties at the tip of
about±0.10 in F814W (I band). This would roughly
correspond to the middle right panels of Figures 6–8.
To help navigate the various simulations, we provide a guide

to their ordered content in Table 1.

5.1. Low Degree of Smoothing

5.1.1. A Range of Photometric Errors: 120,000 RGB Stars, Fixed
Smoothing ±0.01 mag

We start this detailed discussion with a high-definition
simulation of the LF beginning 1 mag above, and ending 1
mag below the TRGB, where the discontinuity is set to M=
0.00mag across of the simulations in this paper. This would
correspond toMI=−4.05 mag, which closely matches the value
currently adopted by the Chicago-Carnegie Hubble Program
(CCHP; Freedman 2021). The first magnitude interval, above
the tip, is populated uniformly as a function of magnitude by
AGB stars. For examples of published flat AGB LFs above the
tip, see Beaton et al. (2019), their Figure 4, Hoyt et al. (2018),
their Figure 6, and Nikolaev & Weinberg (2000), the inset
histogram to their Figure 4, and their description of it being
“The off-bar LF shows only a mild increase in the source counts
at the location of TRGB, but has the same, roughly constant
profile at Ks brighter than 12 mag, due to the AGB population,
visible in the other two luminosity functions.” At the TRGB
discontinuity, the RGB population turns on at an initial rate (of
stars per magnitude bin) 6 times greater than the AGB density
above the tip (see Scolnic et al. 2023, where they calculate a
variant of this contrast ratio R, using bins 0.5 mag wide, above
and below the tip, for a large number of GHOSTS galaxies,
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finding that it ranges from R= 4 to 7 as seen by the annotations
in their Figure 5). Thereafter, the binned number density of RGB
stars increases with a logarithmic slope of +0.3 (Menendez
et al. 2002; Makarov et al. 2006).

The upper left panel in Figure 2 shows our highest-fidelity,
and most optimistic realization, consisting of 120,000 RGB
stars and some 20,000 AGB stars. The bin size is 0.01 mag,
giving a typical RGB population of 1200 stars per bin, leading
to an expected 2σ scatter of±70 stars per bin (or±6% 1σ, as
can be seen in the plot). The solid line passing through the data

is a GLOESS fit with a Gaussian smoothing window of
0.01 mag, making it a close approximation, at this fine binning
and/or smoothing, to a spline fit through the individual data
points. The vertical line at M= 0.0 mag marks the exact
position of the TRGB that is equidistantly flanked, in the lower
panel, by two dashed lines (barely visible in this panel) that
are±0.01 mag apart, showing the highest attainable resolution
of the data and the response-function.
Below the LF, in the lower part of the panel, is the first-

derivative response-function as applied to the discretely

Figure 2. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to ±0.20 mag) at fixed smoothing (±0.01 mag) and extremely large
populations of RGB stars (about 120,000). The lower portions of each of the six subpanels show the first-derivative edge-detector output in both its uncorrected (thin
black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.
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sampled and (minimally) smoothed luminosity data above it.
We use the Madore-Freedman5 (hereafter MF5) edge-detector
described in Appendix A, which samples the LF at 11
optimally weighted points symmetrically placed around the
output bin. Two versions of the output function are shown: the
thin solid line is the raw response-function (RRF) of the MF5
filter, while the thick black line is the (inversely) noise-
weighted response-function (NWRF), as described in
Appendix A. The two response-functions have been scaled to

agree at their respective (close-to-peak) values at the center of
the plot where the true and/or input value resides. As is evident
from a casual inspection of the various plots, noise-suppression
results in much reduced fluctuations everywhere across the
magnitude range probed by the tip detectors, without any
obvious degradation (or improvement) of the sought-after
signal at the TRGB discontinuity. We do point out, however,
that the width of the untreated TRGB detection is both
asymmetric and wider than the noise-suppressed response,

Figure 3. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to ±0.20 mag) at fixed smoothing (±0.01 mag) and moderately large
populations of RGB stars (11,000). The lower portions of each of the six subpanels show the first-derivative edge-detector output in both its uncorrected (thin black
lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.
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where the latter has the expected width of±0.01 mag, which in
turn is the sampling limit of the data. The solid line marks the
exact position of the TRGB, and the two flanking solid lines are
again separated by±0.01 mag for visual reference.

The GLOESS fit to the LF faithfully tracks the discontinuity
input at 0.0 mag, in the upper panel, and the response-function,
in the lower panel, peaks precisely at the midpoint of the
M= 0.0 mag discontinuity, in all cases. At the resolution of the
data and the detector output (0.01 mag in both cases), there is

no measurable bias in the first-derivative response-function
being used to detect the TRGB.
We do, however, want to emphasize that there is no pressing

need for smoothing the data when in this high-population,
high-precision-photometry portion of parameter space; the
noise-weighting is sufficient in suppressing spurious signals,
while simultaneously sharpening the edge-detector response.
In the second panel of this same figure (top right), we begin

to explore the effects of adding photometric errors to the

Figure 4. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to ±0.20 mag) at fixed smoothing (±0.01 mag) and small populations of
RGB stars (1200). The lower portions of each of the six subpanels show the first-derivative edge-detector output in both its uncorrected (thin black lines) and its noise-
weighted (thicker black line) forms. See text for a detailed discussion of the trends.

7

The Astronomical Journal, 166:2 (31pp), 2023 July Madore et al.



individually observed stars contributing to the simulated LF.
All of the other parameters (in this instance, population size,
smoothing, and the detection kernel) used in the 12 subpanels
of Figure 2 are kept unchanged.

In this second simulation, randomly generated photometric
errors, having a Gaussian σ of ±0.02 mag and a mean of zero,
have been applied randomly to each of the sampled stars, which
were then rebinned at 0.01 mag intervals, replotted, and
reanalyzed.

The only effect obvious to the eye is the rounding of the
originally sharp shoulders of the LF immediately above and
below the magnitude of the TRGB discontinuity. The dashed
vertical lines in the upper panel mark the 1σ smoothing radius
inflicted on the discontinuity by the degradation of the
photometry. In the subpanel below the LF, we again show
the MF5 response-function, in both the raw (thin solid line) and
the noise-suppressed (solid black line) forms. Again the RRF is
considerably noisier overall, and it is noticeably wider (with,

Figure 5. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to ±0.20 mag) at fixed smoothing (±0.01 mag) and impoverished
populations of RGB stars (124). The lower portions of each of the six subpanels show the first-derivative edge-detector output in both its uncorrected (thin black lines)
and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.
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noise-induced, broad wings) at the discontinuity. The noise-
corrected response-function still has the bandwidth-limited
natural width of ±0.01 mag.

The same general trends continue as we increase the
photometric errors (from ±0.05 to ±0.20 mag) in the
remaining four (lower) panels; that is, the raw response is
always broader than the noise-suppressed response width,
which is stable and effectively unresolved at the ±0.01 mag
level right up to and including the largest tested photometric

error of ±0.20 mag. What is progressively different is the
decreasing signal-to-noise ratio of both response-functions as
compared to the baseline noise, at the fixed baseline width of
the discontinuity-sampling kernel (MF5 in this case). As the
observed slope of the LF at the TRGB discontinuity softens
with increased photometric errors, the power in the first
derivative across a fixed magnitude interval drops, while the
Poisson population-sampling noise in the baseline LFs, on
either side of the tip, remains largely unchanged. We

Figure 6. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to 0.20 mag) at fixed, but slightly larger smoothing (0.05 mag) than
previously discussed and again for very large populations of 120,000 RGB stars. The lower portions of each of the six subpanels show the first-derivative edge-
detector output in both its uncorrected (thin black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.
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emphasize here that the lower, response-function plots have
been sequentially rescaled for clarity, roughly normalized by
the peak of TRGB response.

Summary 1. For very large populations of stars defining the
LF around the TRGB, the RRF, and the NWRF, each is found
to be an unbiased indicator of the position of the discontinuity
in the LF marking the position of the TRGB. The RRF is found
to slowly but systematically increase in width with increasing
photometric errors. A slight skewing of the RRF distribution

function toward fainter magnitudes may also be a generic
feature of added noise affecting the wings. The NWRF is
unresolved in all of the instances, regardless of the input
photometric errors. As the power in the response-functions fall
(with increasing photometric errors), the noise on either side
and surrounding the discontinuity begin to encroach upon and
become competitive in amplitude with the declining response at
the true position. This degradation is noticeable at a
photometric error of±0.10 mag, and becomes problematic

Figure 7. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to 0.20 mag) at fixed, but slightly larger smoothing (0.05 mag) than
previously discussed and for moderately large populations of RGB stars (11,331). The lower portions of each of the six subpanels show the first-derivative edge-
detector output in both its uncorrected (thin black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.
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Figure 8. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to 0.20 mag) at fixed, but slightly larger smoothing (0.05 mag) than
previously discussed and for small populations of RGB stars (1240). The lower portions of each of the six subpanels show the first-derivative edge-detector output in
both its uncorrected (thin black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.

Table 1
Guide to Simulations: Figures 2–13 and Panels (a) through (f)

RGB Stars Smoothing Error at TRGB
Number 0.01 0.05 0.10 0.00 0.02 0.05 0.10 0.15 0.20

120,000 Figure 2 Figure 6 Figure 10 a b c d e f
11,331 Figure 3 Figure 7 Figure 11 a b c d e f
1240 Figure 4 Figure 8 Figure 12 a b c d e f
124 Figure 5 Figure 9 Figure 13 a b c d e f
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thereafter, for higher values of the photometric errors. In all
cases, however, the noise-suppression is effective in damping
down this background noise by about a factor of 2 compared to
the raw response value (see the last three panels for the worst-
case examples). At the two largest values of the photometric
errors (±0.15 and ±0.20 mag in the bottom two panels), the
noise-induced spikes in the response-function become suffi-
ciently large with respect to the declining response at the
known and/or true position, and false-positive detections start
to become a problem especially downstream of the true tip.
Noise-suppression helps to damp these fluctuations down, but
does not eliminate all of the false positives in the regime of
large photometric errors (>0.15 mag).

5.1.2. A Range of Photometric Errors: 11,000 RGB Stars, Fixed
Smoothing 0.01 mag

At this iteration, we drop the total population of stars
contributing to the LF by about a factor of 10 (down to 11,000
RGB and 2000 AGB stars), keeping the smoothing at a very
low level (±0.01 mag) as above, while again assessing the
effects of increased photometric errors.

It is important to note at this point that the effects of
decreased population size and increased photometric errors are
causally independent of each other in the plotted LFs. At fixed
precision in the photometry, downsizing the population size
can only decrease the number of stars in any given bin and
thereby increase the relative error ( N N ) in that bin. The
increased scatter in all of the panels of Figure 3 as compared to
Figure 2 is a direct result of the decreased number statistics and
can be seen repeated and progressively amplified later on in
Figures 4 and 5 as the population size decreases further.

What may not be immediately obvious is why the
photometric redistribution of the data across bins at a given
population size has virtually no affect on the noise amplitude in
the LFs, seen on either side of the discontinuity. The reason for
this is that, while this form of smoothing redistributes data
laterally, it does not significantly change the local mean value
of N in any given bin (i.e., photometric redistribution conserves
total counts within its smoothing radius). That means, of
course, that N N is also conserved. Photometric blurring of
individual data bin does not reduce N population noise in the
RGB continuum; however, because of the strong asymmetry,
inherent in the jump in the LF at the TRGB, more RGB stars
migrate to higher luminosities (and boost the apparent AGB
population) than the other way around. Accordingly, photo-
metric errors erode the tip and systematically decrease the slope
of the transition marking the rise from the AGB to RGB
populations, decreasing the contrast between the AGB and the
tip, but still not moving the position of the discontinuity.

The small degree of (±0.01 mag) smoothing in these
simulations tracks not only the population fluctuations from
bin to bin but also the precisely defined, sharp rise marking the
TRGB. As the photometric errors increase and the transition
widens and flattens the population, the power in the response-
function crossing the everwidening transition region starts to
drop. From a photometric error of ±0.05 mag onward (middle
left panel), it is approaching the noise level of the RGB
population noise. In this simulation, there are 3–4 noise spikes
downstream of the true tip that are of similar power, rendering
the identification of the true tip ambiguous. At a photometric
error of ±0.15 mag (lower left panel), the number density of
false peaks is overwhelming, and even noise in the AGB

population starts to contribute to an upstream ambiguity. At
this level of smoothing, population size, and photometric error,
the tip cannot be extracted from the noise.
Summary 2. For an RGB population of approximately

10,000 stars, an unambiguous detection of the tip can be
assured with a photometric error of ±0.05 mag or less. At a
photometric error of ±0.10 mag, the first-detected discontinuity
is the true one with false positives rapidly developing at fainter
magnitudes, downstream. However, at a photometric error of
±0.15 mag and beyond, false positives overwhelm the signal in
power and in number, both below and above the true tip.

5.1.3. A Range of Photometric Errors: 1000 RGB Stars, Fixed
Smoothing ±0.01 mag

This simulation drops the RGB population to about 1000
stars, another factor of 10 below the previous investigation.
Almost immediately, at a photometric error level of
±0.02 mag, the power in the response-function at the tip has
dropped to a level comparable to population noise in the RGB
LF. Several false positives are seen (in the middle left panel of
Figure 3) downstream of the true TRGB. Noise spikes in the
RGB magnitude range are so frequent (at this smoothing) that
they can randomly appear around the tip without really being
detections of the tip. Note the cluster of noise spikes well below
the known position of the TRGB in the lower left panel and
then again a spike somewhat brighter (and certainly stronger)
than the tip in the adjacent, lower right panel.
Summary 3. For a population of only 1000 RGB stars, a

photometric error in excess of ±0.02 mag results in false
positives overwhelming the tip detection, in the absence of any
significant smoothing (but see Section4.2 below).

5.1.4. A Range of Photometric Errors: 124 RGB Stars, Fixed
Smoothing ±0.01 mag

As may well have been anticipated by the trends already
seen above in the increased number of false positives as the
sample size decreased and as the photometric errors increased
(at fixed smoothing), this last simulation (shown in Figure 5)
contains only 120 RGB stars, and is dominated by noise. While
the six-to-one contrast ratio between the RGB and the AGB
population still applies, the depleted populations on either side
of the jump at the TRGB are so dominated by Poisson noise
that (without smoothing) both the LF itself and the tip-detection
response-function are almost indistinguishable from noise. But
with hindsight, gleaned from the upcoming panels and figures,
there is still (surprisingly perhaps) meaningful information on
the position of the TRGB in all of these realizations.
Summary 4. RGB populations of this size are insufficient to

provide reliable measurements of the tip magnitude, but some
information can still be gained.

5.2. Increased Smoothing

5.2.1. A Range of Photometric Errors: 120,000 RGB Stars, Fixed
Smoothing ±0.05 mag

We now repeat the cycle of exploring population size effects
and photometric errors, but now at an increased level of
smoothing of the data set to ±0.05 mag.
Once again, returning to the upper left panel of Figure 6, we

begin with an RGB population of 120,000 stars below the tip
and a photometric error of 0.00 mag. At this level of precision
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in the data, the discontinuity occurs between two bins, and the
smoothing is inappropriately too large, needlessly degrading
the jump. Nevertheless, the power in the first-derivative
response-function (bottom section of the upper right panel) is
very high and well defined, as one might expect. And its width
is only ±0.01 mag. Increasing the error at the tip to ±0.02 mag
(upper right panel) widens the discontinuity somewhat, but the
smoothing of±0.05 mag is still too large. The output of
response-function itself responds to the increased photometric
errors by declining in power, and widening. In the middle left
panel, the smoothing and the photometric errors are identical,
and the fit at the tip is almost optimal. The response-function is
well centered, continues to widen with the increased errors, and
can be seen to be starting to develop structured wings that are
due to increased, but smoothed, population noise downstream
of the TRGB. In the final (lower right) panel, the photometric
errors are at their maximum for this simulation (±0.20 mag),
and the response-function is widened both by the smoothing of
the discontinuity in the LF plane and by the encroaching
population noise, smoothed out in the response-function plane.
It is noteworthy that throughout this simulation the mode of the
response-function at the true TRGB luminosity is stable at the
0.01 mag level despite the widening of the response output and
the asymmetric growth of its wings.

Summary 5. A larger smoothing of 0.05 mag is too large for
data with very small photometric errors. However, this smoothing
becomes more appropriate when the photometric errors are
comparable to the smoothing value. With a large population of
RGB stars, the tip location is extremely stable in all cases.

5.2.2. A Range of Photometric Errors: 11,000 RGB Stars, Fixed
Smoothing ±0.05 mag

Despite the underfitting of the data around the TRGB (due to
the larger smoothing), the filter response is sharp, unambig-
uous, and unbiased for photometric errors less than ±0.05 mag
(which coincidentally corresponds to the adopted smoothing
here) for an RGB population size about 11,000 stars. At high
photometric errors (i.e., in excess of ±0.10 mag), false
positives predominate upstream (middle right panel of Figure 7)
but eventually crowd around and compromise the integrity of
the true tip detection, encroaching both from fainter and
brighter magnitudes. For instance, the strongest peak in the
lower left panels is due to a smoothed version of a clustering of
random noise peaks two-tenths of a magnitude below the true
TRGB. The existence of a peak at the correct position in the
lower right panel cannot be given much credibility given the
ambient noise.

Summary 6. The photometric errors greater than±0.10 mag
cause the false positives and potential bias in the (blended) tip
magnitude for populations of 11,000 RGB stars. Increased
smoothing does not mitigate this effect.

5.2.3. A Range of Photometric Errors: 1200 RGB Stars, Fixed
Smoothing ±0.05 mag

Dropping the sample size by another factor of 10, down to
around 1200 RGB stars below the TRGB, does not
substantially change the description of the situation as given
in the previous section. The detection of the tip, as seen in in
Figure 8, is relatively strong and unambiguous up to a
photometric error of ±0.05 mag after which competing false
positives begin occurring above and below the true tip.

5.2.4. A Range of Photometric Errors: 120 RGB Stars, Fixed
Smoothing ±0.05 mag

At our smallest population size of 120 RGB stars below the
tip, the advantages of smoothing are now becoming quite
apparent in the first two panels of Figure 9, illustrating the
onset of decreased photometric precision. The first detected tip
is the true peak, up to an error of ±0.02 mag, after which
spurious noise peaks overwhelm the detection both in advance
of and beyond the true position of the TRGB. Confidently
detecting the true position of the TRGB in RGB populations of
around 100 stars in the upper magnitude range can only be
done with high-precision data and is still risky, given that noise
spikes of comparable power are found systematically posi-
tioned up to ±0.1 mag above and below the true tip, in virtually
all of the realizations shown here.
Summary 7. Increased smoothing can help compensate for

small population sizes if the photometric quality is very good.
However, using small populations is still not advisable.

5.3. Largest Smoothing Considered

5.3.1. A Range of Photometric Errors: 120,000 RGB Stars, Fixed
Smoothing ±0.10 mag

As we now move to overly aggressive smoothing, this large
population (120,000 RGB star) simulation is clearly being
oversmoothed at the tip, up to the point that the smoothing and
the photometric error at the tip are of equal magnitude,
±0.10mag in this case. As can be seen in Figure 10, the width
of the response-function at high signal-to-noise is controlled by
the adopted smoothing up to the cross-over point of smoothing
and photometric errors (middle right panel) after which the width
grows with the increased photometric errors (last two panels). At
high values of the photometric errors, the earlier-mentioned
wings and low-level asymmetries are still present but obviously
smoothed. Again, no bias is detected in the response-function.
Smoothing offers little or no advantage in the detection or
measurement of the tip discontinuity in this particular scenario.
Summary 8. High levels of smoothing are not advantageous

for large populations of RGB stars.

5.3.2. A Range of Photometric Errors: 11,000 RGB Stars, Fixed
Smoothing ±0.10 mag

As in the example discussed above, dropping the RGB
sample to 11,000 stars in Figure 11 does not quantitatively
change the description of the response-function to increased
photometric errors. However, there is now the first indication
that the mode of the response-function output is being drawn
off center (at the ±0.05 mag level) by the increased noise in the
smoothed wings (last four panels). Oversmoothing should be
carefully monitored. Running through a range of smoothing
parameters can alert the user to systematic errors being
introduced because of oversmoothing noise into the true peak,
as illustrated here in the last three panels.
When numerous (comparably significant) peaks are found

with a low degree of smoothing, no amount of additional
smoothing will reveal the true peak, but rather the resulting
detection will be a weighted average of the surrounding peaks,
which may (with enough smoothing) appear to be a single
(broad) peak; it will probably be biased: consider smoothing the
last three panels in Figure 7, as then seen in Figure 11. Our
recommendation is that future investigators always try a number
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of smoothing kernels bracketing their preferred solution so as to
reveal the presence (or absence) of substructure that a high
degree of smoothing would otherwise gloss over.

Real-world investigations into selecting an optimal smooth-
ing have been undertaken by Beaton et al. (2019); see their
Figures 5 and 8 for examples of the implementation of an
iterative smoothing analysis. There, one can see solutions that
are oversmoothed systematically drifting from their less-
smoothed solutions, being drawn away by adjacent, individu-
ally low significance, but sometimes numerous peaks.

Oversmoothing in this context tends to occur when the
smoothing parameter is in excess of the photometric errors at
the TRGB. In addition, we note that a wide range of edge-
detection methods using different smoothing kernels (and even
including those using maximum-likelihood fitting techniques)
was found to agree to very high (0.01 mag) precision when
applied to the TRGB data for IC 1613 (Hatt et al. 2017). The
two papers both offer a quantitative means of selecting an
optimal smoothing parameter, which is the one that minimizes
the quadrature sum of the random and systematic errors,

Figure 9. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to 0.20 mag) at fixed, but slightly larger smoothing (0.05 mag) than
previously discussed and for impoverished populations of RGB stars 124). The lower portions of each of the six subpanels show the first-derivative edge-detector
output in both its uncorrected (thin black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.
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generally selecting smoothing parameters that are indeed close
to the measured photometric errors reported for stars at the tip.8

Summary 9. Oversmoothing can introduce a systematic bias
in the presence of noise, and should be cautiously examined.

5.3.3. A Range of Photometric Errors: 1200 RGB Stars, Fixed
Smoothing ±0.10 mag

At 1200 stars in the RGB, tip detection is unbiased and
unambiguous at high signal-to-noise in the photometry at the
tip (upper left panel of Figure 12). At lower photometric
precision, adjacent noise spikes broaden and can bias the true
tip detection by up to 0.1 mag (bottom two panels). In this
realization, several of the deflections are toward brighter
magnitudes, but there is no reason to believe that these are

Figure 10. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to ±0.20 mag) at fixed, but moderate smoothing (±0.10 mag) and for
very large populations of RGB stars (120,000). The lower portions of each of the six subpanels show the first-derivative edge-detector output in both its uncorrected
(thin black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.

8 It should be made clear that the IC 1613 data set and its reduction are
exquisite in nature given the very high precision of the photometry and the
sharpness of its tip. If similar investigations were to be shown for galaxies with
lower-quality data (say due to their increased distance or mixed populations),
they would be unlikely to demonstrate such a high level of agreement.
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anything more than random fluctuations around the mean (see
below).

5.3.4. A Range of Photometric Errors: 120 RGB Stars, Fixed
Smoothing ±0.10 mag

This final realization shows the filter response to a small
sample size (120 RGB stars) with large (±0.10 mag)
smoothing applied to monotonically increasing photometric
errors. At high signal-to-noise (the top two panels of

Figure 13), the true peak is properly detected, but it is not
the highest peak over the 2 mag interval. In this particular
simulation, the strongest (all false positive) peaks are found,
four out of six times, at fainter magnitudes than the true tip,
and by up to 0.35 mag separation. With an average of one
star per RGB bin, wild statistical fluctuations, both in the LF
itself and in the discontinuity detector, are both to be
expected and are seen. This is far from being an acceptable
situation for detecting or measuring the TRGB with any
degree of confidence.

Figure 11. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to ±0.20 mag) at fixed, but intermediate smoothing (±0.10 mag) of a
moderately large population of RGB stars (11,000). The lower portions of each of the six subpanels show the first-derivative edge-detector output in both its
uncorrected (thin black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.

16

The Astronomical Journal, 166:2 (31pp), 2023 July Madore et al.



Summary 10. One should not even attempt a tip detection at
low signal-to-noise in situations where the population size is
only in the hundreds. Spurious signals will be found above and
below the true tip.

6. Exploring Smoothing versus Tip Uncertainty

In Hatt et al. (2017), and in Jang et al. (2018), it has been
shown that the output width of the Sobel response-function (and
many of its variants) is dominated by the width of the smoothing

function, and it alone carries little or no quantitative information
on the uncertainty in the tip measurement itself. This
nonresponse of the width of the Sobel Function output to
variations in smoothing and population size is shown in the
three panels in Figure 14. At the bottom of each of the figures,
we show the Sobel-filter response to the smoothed LFs plotted
above them. The two thin vertical lines centered on the
response-function are not determined by the the Sobel-filter
response itself, but rather they mark the input width

Figure 12. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to ±0.20 mag) at fixed, but intermediate smoothing (±0.10 mag) of a
moderately large population of RGB stars (12,000). The lower portions of each of the six subpanels show the first-derivative edge-detector output in both its
uncorrected (thin black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.
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(±0.025mag) of the GLOESS smoothing function, which has
nothing to do with any of the observed properties of the data.
These lines match the observed width of the Sobel-filter
response-function because the smoothing dominates. To see
this, in the central panel, the GLOESS smoothing width has
been doubled to ±0.050 mag, and the response-function is seen
to have exactly doubled as well; same data, same population
size, but twice the width of the response. The final (right) panel
shows the effect of reducing the LF population by a factor of 10,

keeping the GLOESS smoothing the same as that in the middle
panel. The width of the response-function is unchanged, as
shown by the predicted width based on the GLOESS smoothing.
For a vastly different number of data points, there is no
qualitative change in the width of the response-function. We end
with where we started: the width of the Sobel-filter response-
function has little or no discernible information content on the
uncertainty of the measured tip magnitude, and it should not be
used indiscriminately in any such applications.

Figure 13. Six subpanels illustrating the effect of increasing the photometric noise, (from 0.00 to ±0.20 mag) at fixed, but intermediate smoothing (±0.10 mag) and an
impoverished population of RGB stars (120). The lower portions of each of the six subpanels show the first-derivative edge-detector output in both its uncorrected
(thin black lines) and its noise-weighted (thicker black line) forms. See text for a detailed discussion of the trends.
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However, two other observables, population size and
photometric errors, do have an expected and predictable impact
on the uncertainty of the TRGB measured magnitude. This is
illustrated in the three panels in Figure 15 where the run of
(statistical) edge-detection errors with population size and with
photometric errors is shown. In each of the panels, the vertical
axis gives our desired output: the standard deviation of the
measured TRGB magnitudes. The plotted points are derived
from 200 independent realizations of the LF, each smoothed
and individually scanned by our edge-detection filter. The three
line-linked symbols each track the increased precision in the
TRGB measurement as a function of increasing sample size for
a given mean error in the TRGB photometry. The horizontal
axis tracks the population size of the LF being scanned, defined
here by the number of RGB stars in the 1 mag interval
immediately below the TRGB. The filled circles have
photometric errors of±0.10 mag. The circled plus signs
have±0.05 mag errors. And the circled dots represent error-
free photometry. The amount of GLOESS smoothing increases
by factors of 2 (across the three panels), ranging from±0.05
to±0.20 mag top to bottom.

Modulo the Poisson noise inherent in these finite simula-
tions, the trends are clear: All of the determinations of the
uncertainty in the TRGB measured magnitude decrease
monotonically with increased sample size. And all trend lines
decrease more slowly as the photometric errors increase.
Moving from figure to figure, the effects of the GLOESS
smoothing are seen to be present but subdominant. In any case,
for any given observation, the three parameters controlling the
calculated uncertainty on the TRGB magnitude (the population
size, the photometric errors, and the adopted smoothing) are
known and can be input into a numerical simulation tailor-

made for that study giving the uncertainty for that particular tip
measurement. Failing that, these plots can be interpolated for a
first-order estimate of the uncertainty to be associated with the
choice of smoothing, measured population size, and known
photometric errors (labeling each of the three realizations in
each of the three smoothing plots).
There is one final caveat. The simulations in this section

were undertaken for situations wherein crowding is not a major
source of error at the tip. However, if observations are made in
regions of high surface brightness (and commensurately higher
levels of crowding), then the simulations presented in the next
section should take precedence.

7. Crowding Simulations

Our final set of simulations targets the important question
concerning the effect of source crowding on the RGB LF,
especially at and around the discontinuity defining the tip.
In order to isolate and unambiguously determine the effects

of crowding on the LF above the TRGB, we have set the AGB
population to zero, which would ordinarily be found in the 1
mag interval above the tip. We did this intentionally so as to
show what the crowded population looks like unhindered by
superimposing it on a true AGB population; i.e., to see the
signature of crowding alone. In each of Figures 16–20, we
show (in the left-hand panel) the input LF as a blue-shadowed
white line rising in number abruptly at MI=−4.00 mag and
thereafter exponentially increasing to form the RGB LF. The
actual numbers of stars defining the simulated LF are shown by
the black-shadowed red line, sampled at 0.01 mag intervals. In
the right panel, we show the output of the edge-detector in
yellow. Running between the panels is a thin black (horizontal)
line marking the input TRGB discontinuity. In the right panel,

Figure 14. The direct dependence of the width of the Sobel Function response to variations in smoothing (comparing the left and middle panels) and insensitivity to
population size (comparing the middle and right panels). The left panel shows the Sobel-filter tip-detection response to the TRGB luminosity function, which is shown
rising diagonally across the top of the plot. The two thin vertical lines mark the input width (±0.025 mag) of the GLOESS smoothing function. They match the
observed width of the Sobel-filter response-function. In the central panel, the GLOESS smoothing width has been doubled to ±0.050 mag, and the response-function
is seen to have doubled as well. The final (right) panel shows the effect of reducing the luminosity function population by a factor of 10, keeping the GLOESS
smoothing the same as the middle panel. The width of the response-function is unchanged, as shown by the predicted width based on the GLOESS smoothing.
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the position of the discontinuity as measured by the edge-
detector is shown as a dashed black line. Finally, in the left-
hand panels, in the otherwise empty space above the TRGB, we
have inset the simulated CCD image used in the calculation
(see the captions for the key to the various symbols marking
stars in the image).

The aforementioned simulated CCD image was instru-
mental in undertaking the crowding simulation. The image
consists of a square array of 1000 by 1000 elements. As stars
populated the (smooth blue line) input LF seen in the left
panel, they were randomly assigned a cell in the image, their
magnitudes were converted to fluxes, and they were added to
that cell. If the cell was already occupied, the flux was
augmented, and the cell was considered to be crowded. The
process was continued until all stars were assigned to cells.
The summed fluxes were then converted back to magnitudes,
and these magnitudes were rebinned (at 0.01 mag resolution)
thereby creating the crowded LF shown by the jagged red
line in the LF plot.

Summary 11. It is apparent from these simulations that self-
crowding blurs the tip discontinuity. In addition, high levels of
crowding can cause a bias in the measured tip magnitude. In
general, it is preferred to make these measurements in low-
density halo fields to avoid crowding issues.

8. Eliminating AGB Stars

Although AGB stars above the tip are naturally found in most
halo fields, they have a fairly flat LF that only serves to decrease
the contrast of the tip discontinuity by placing the RGB LF on a
slightly elevated background; but that loss of contrast does not
impose a bias, only a decrease in precision. If one considers the
TRGB discontinuity as a step function, then it is easy to visualize
that, for reasonable high levels of the contrast ratio R> 3, say, the
measurement of the onset (when approached from brighter
luminosities) is not influenced by level of the baseline and/or
background upon which it is being measured. The AGB
contribution, close to the tip, can be thought of as a relatively
constant pedestal upon which the TRGB discontinuity is detected.
The presence of true AGB stars can be eliminated by time-

domain observations of the TRGB fields. The Gaia Mission has
shown that virtually all true AGB stars in this luminosity range
are variable (see Figure 3 in Eyer et al. 2019 for the types of
variables in the Gaia CMD; and especially our Figure 8, which
gives the fraction of variables sitting at unity, red points seen
directly above the downward slanting TRGB; while no RGB
stars, at or below the tip, have been found to show variability
greater than 0.04 mag full amplitude; black points in the

Figure 15. Variations of the run of edge-detection errors with population size and with photometric errors, as a function of the GLOESS smoothing changing from
here through Figure 17. The vertical axis gives the standard deviation of the measured TRGB magnitudes derived from 200 independent realizations of the luminosity
function for each plotted point. The three line-linked symbols each track the decrease in the TRGB uncertainty as a function of increased sample size for a given mean
error in the TRGB photometry. The horizontal axis is gives the population size normalized by the number of RGB stars in the 1 mag interval immediately below the
TRGB. Filled circles have photometric errors of ±0.10 mag. Circled plus signs have ±0.05 mag errors. And circled dots represent error-free photometry. The amount
of GLOESS smoothing increases by factors of 2 from this to the next two figures. Here, we show the results for a ±0.05, ±0.10, and ±0.20 mag smoothing. Ripples in
these trends are not significant but due to small number statistics in the individual simulations.
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aforementioned Figure 8); they would then at most contribute a
±0.01 mag blurring of the tip.9

Identifying and removing the variable AGB population will
aid in deblurring and decontaminating the tip from the bright

side, and increase the contrast of the discontinuity defining the
TRGB as approached from either side.

9. Unaddressed Issues: Star Formation History of the Halo
on the Position and Color Dependence of the TRGB

In a paper by Brown et al. (2003), the case has been made for
a significant population of intermediate-aged (6–8 Gyr), high-
metallicity ([Fe/H]> 0.5) RGB stars being present in the halo
of Messier 31 (M31). These stars can exceed the luminosity of
the old, metal-poor (standard) TRGB population, but they also
ascend at a color that is far to the red of the most metal-rich, old
TRGB stars (see their Figure 1(f)) The application of both a
blue and (especially in this case) a red cutoff to the RGB stars,
being used to detect the tip, effectively deals with these stars. In
any case, in a forthcoming paper (Freedman et al. 2023), it is
shown that a comparison of TRGB distances with Cepheid
distances to the same galaxies gives a combined scatter of only
±0.066 mag, which must bracket the total impact of all
remaining random errors, including the scatter that might be

Figure 16. A simulation of the RGB luminosity function consisting of 117,000 stars populating the magnitude range from MI = −2.0, to a sharp cutoff at
MI = −4.0 mag defining the TRGB. The individual stars are assumed to be error-free in their individual magnitudes. Noise in the luminosity function is entirely due to
Poisson noise in the counts in the individual bins. Output from the Sobel-Pascal-7 edge-detector is shown in the right panel. The black horizontal line, spanning the
two panels, is the TRGB magnitude set to MI = −4.00 mag. The dashed black horizontal line in the right panel only is the mean value of the response-function. The
inset “Simulated CCD Image” in the left panel shows the positions of all stars used in the simulation. Large yellow dots, circled in red and black, are all RGB stars
from MI = −4.00 to −3.90 mag. Crowded stars brighter than the TRGB are shown as larger black filled circles. This plot is given to provide a visual impression of the
self-crowding of stars near the TRGB that results in the small population of stars above the tip in this particular luminosity function.

9 The referee has correctly pointed out that Soszynski et al. (2004) have a
paper entitled “Small Amplitude Variable Red Giants in the Magellanic
Clouds.” In that paper the largest amplitude variables are above the TRGB and
consist of AGB stars alone (long-period variables, Miras, and semiregular
variables); below the tip, the amplitudes systematically decrease with period
(see examples in their Figure 4), and the authors believe that these fainter
variables are a mix of AGB and RGB stars. They name these stars Optical
Gravitational Lensing Experiment Small Amplitude Red Giants (OSARGs). In
their Figure 2, the TRGB can be found at WI ∼ 11.5 mag, and at
1.5 < (V − I) < 2.4 in their Figure 3. In their Figure 2, cutting the lower left
panel in color restricts the RGB subtip population to stars that have log
P1 < − 1.8. Applying that cut to the period–amplitude plot in the panel directly
above the period–color plot reveals that the OSARGs below the tip have peak-
to-peak amplitudes starting at 0.04 and dropping to 0.01 mag. Converting
amplitudes to equivalent σ then suggests that these very-small-amplitude
variables contribute no more scatter than ±0.010–0.003 mag. The claim in the
subsequent literature (Anderson et al. 2023) that “every star at the TRGB is
variable” is true, at the millimag level, but it is not of concern in the context of
the TRGB extragalactic distance scale.
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introduced by star formation history difference between these
halos.

Additionally, a concern about the presence of young
populations of red giant stars in the halos of galaxies has been
raised in the literature, most recently and extensively by
McQuinn et al. (2019). Their message is mostly cautionary. We
agree with that stance, but offer up a number of lines of
evidence arguing for optimism that the effect of younger
populations (star formation history of the halo), if present, is a
minor contributor to the measured scatter in the TRGB,
especially in the I band.

Some of the concern about young populations interfering
with the detection and measurement of the TRGB is driven by
ill-fated applications of the TRGB method too close to the disk.
The following quote from the GHOSTS Team (Monachesi
et al. 2013) summarizes the situation very well: “The CMDs
are mostly populated by old RGB stars (older than 1 Gyr).
There are however younger populations such as blue, extended
main-sequence (MS) stars (<500 Myr) or massive stars
burning helium in their core (25–600 Myr old red and blue
loop sequence stars). These appear primarily in the fields closer

than R= 15 kpc to each galaxy, and especially along the major
axis, which are dominated by disk stars.”
Theory also suggests that a younger population would have

little impact even if it were mixed in. From model predictions of
McQuinn et al. (2019), it is expected that the F814W absolute
luminosity of the TRGB should have a small dependence on
stellar age of roughly 0.02 mag across an age range of 5 Gyr and
0.04 mag across 0.5 dex. Indeed, inspection of the lower panel in
Figure 2 of McQuinn et al. shows that the effect of age spread is
indeed small, but it is also degenerate in its correlation with
metallicity. Furthermore, this point has also been recently
addressed in the single-authored paper by Hoyt (2023) where he
states, “a long-standing question of the TRGB concerns the extent
to which age can shift the observed colors and magnitudes of
TRGB stars, potentially breaking the assumption of universality in
any single proposed calibration (Salaris & Cassisi 2005).”
Encouragingly, in this section, it was shown that the Jang &
Lee (2017) quadratic-tip color dependence—based on observa-
tions in the stellar halos of L* galaxies—describes very well the
TRGB magnitude–color relation in the modulation collimators
(this study), Local Group dwarfs, and M33 (Rizzi et al. 2007).

Figure 17. Same as Figure 16 except this simulation involve slightly over 200,000 RGB stars in the frame. Crowding is now quite apparent in the inset CCD image,
and has resulted in an appreciable population of crowded stars falling in number from the tip to 0.75 mag brighter where the self-crowding of two stars at the tip would
appear as one unresolved source. For clarity, however, only one star in 10 is plotted. See text for additional details. The offset between the blue (input) line and the
(red) output line in this and in the following three figures is a direct consequence of the crowding systematically producing more stars at a given magnitude by merging
two or more fainter stars.
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This consistency indicates that for RGB stars found in these
environments either the age distributions are identical or the age-
dependent variations in the I-Band TRGB magnitude are minimal.
In either case, the I-Band TRGB appears well-behaved and
without a measurable bias across these host environments.10 The
bottom line is as follows: if you detect blue MS stars or red
supergiant populations in your fields, then you are clearly too
close to the disk, and any attempt to determine a TRGB
distance to any such a line of sight through the galaxy is subject
to systematic effects. Stay as far as possible out into the pure
halo, preferably along an extension of the galaxyʼs minor axis.

10. Summary, Conclusions, and General Advice

TRGB distances have become one of the most precise and
accurate means of measuring the distances to galaxies in the
nearby universe (see, for instance, Dalcanton et al. 2009;
Karachentev et al. Freedman et al. 2019; Anand et al. 2022; and

the cumulative holdings of TRGB distances at NASA Extra-
galactic Database11 and Extragalactic Distance Database12).
We stress that, for accuracy and precision, the method should
be applied in the outer halos of galaxies, where the effects of
extinction and self-crowding of TRGB stars are minimal. With
these simulations, we have shown the trade-offs between a
number of factors, including photometric precision, numbers of
stars defining the RGB LF, and the effects of crowding. These
simulations can be used as a guide to optimize the choice of
halo fields for accurate TRGB measurements.
The above simulations presuppose that observations of the

TRGB for the purpose of extragalactic distance determinations
are being made in the halos of galaxies. Thus, they are well
away from disk contamination consisting of dust, gas, and stars
of mixed ages, colors, and spatial densities. This contamination
can only degrade the TRGB detection and act (in the case of
dust extinction) in biasing the apparent magnitude of the tip to
fainter magnitudes.
In a review of TRGB modeling, McQuinn et al. (2019) state,

“Given the building histories of halos, it is reasonable to expect
variations in ages and metallicities.” They then go on to say,
“Assuming stellar halos are consistently metal-poor with little

Figure 18. Same as Figure 16 except this simulation involves slightly over 700,000 RGB stars in the frame. Crowding is now quite apparent in the inset CCD image,
and has resulted in an appreciable population of crowded stars falling in number from the tip to 0.75 mag brighter where the self-crowding of two stars at the tip would
appear as one unresolved source. See text for additional details.

10 In terms of the lack of bias due to the AGB stars observed in these
simulations, we note that Hatt et al. (2017) had already remarked on this
(noneffect) in their own independent simulations, stating, “K we find that the
AGB component simulated here has no substantial effect on the measured
TRGB magnitude. The ratio of TRGB to AGB stars near the tip is about 4:1,
which might, conceivably, cause a TRGB measurement to be systematically
brighter. Nonetheless, we find that the signal-to-noise of the TRGB still
outweighs the noise component due to AGB stars[,] and there are minimal
systematic effects.”

11 https://ned.ipac.caltech.edu
12 https://edd.ifa.hawaii.edu/
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variation does not appear to be valid”; and they add, “To date,
few constraints have been placed on the stellar ages.” However,
in their conclusions, they more optimistically state, “In the I-
band equivalent Hubble Space Telescope F814W filter and
JWST F090W filter, the TRGB is remarkably constant across
all ages and metallicities probed.” We feel that it would be
remarkable that any halo would not have a first generation of
low-metallicity red giant stars. These stars will be the brightest
TRGB stars in the I band and will trigger the edge-detector
before any other higher-metallicity (potentially fainter) popula-
tion would enter the mix. That is to say, if there is a population
of fainter, high-metallicity stars in any given halo, along with
the generations of lower-metallicity stars that gave rise to them,
in the marginalization process undertaken before measuring the
tip, the high-metallicity stars will be systematically below the
first triggering of the edge-detector and will simply augment
the RGB LF without a signature of their own (see Figure 12 in
Hoyt 2023). Similar arguments can be made for the color-
rectified TRGB at longer wavelengths if the curvature down-
ward to fainter magnitudes persists at higher metallicities
(which is strongly correlated with color). Finally, it needs to be
emphasized that, as Figures 2 and 3 in McQuinn et al. (2019)
vividly demonstrate, the color and luminosity dependence of
the TRGB on age is extremely small (in the I band), and it is

largely degenerate with the color dependence of the TRGB
luminosity on metallicity. The situation may be less straight-
forward at longer wavelengths. JWST observations will be
extremely important here.
But what do the observations of the TRGB have to say on

this matter? Figure 5 of Freedman et al. (2019) gives a
comparison of TRGB distances with Cepheid distances to a
variety of galaxies of different star formation histories (ages),
different mean metallicities, different distances, and different
amounts of reddening. For the entire ensemble (near and far),
the combined scatter is only ±0.11 mag, which, if equally
shared between the two methods, would imply that they are
each good to 4% in distance. However, if you just look at the
closest sample, their σ drops to ±0.05 mag, which means that
the two methods are each good to 2% in distance. The
takeaway message is that inside of that 2% all of the unresolved
or unknown systematics are themselves contained at that same
level, be it metallicity, age, or biased fitting methods. On that
note, we are optimistic.
Having population sizes that are sufficient to fill the RGB

luminosity up to and including the tip is crucial to the
extraction of an unbiased TRGB magnitude. For example, for
RGB populations of less than 1000 RGB stars in the first
magnitude interval below the true TRGB, false detections of

Figure 19. Same as Figure 16 except this simulation involves slightly over 1,370,000 RGB stars in the frame. Crowding is now quite apparent in the inset CCD image,
and has resulted in an appreciable population of crowded stars falling in number from the tip to 0.75 mag brighter where the self-crowding of two stars at the tip would
appear as one unresolved source. For clarity, only one star in 10 is plotted. See text for additional details.
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the tip can be expected at the±0.1 mag level when the
photometric precision of the data is worse than ±0.05 mag (see
the lower six subpanels in Figures 8, 9, 12, and 13).

Degradation of the tip due to increased photometric errors
can be compensated for by having increased population sizes
(compare Figures 2 and 6 with 3 and 7).

We have demonstrated that it is best to use the least amount
of smoothing possible, commensurate with the photometric
errors and population sizes. When numerous (comparably
significant) peaks are found with a low degree of smoothing, no
amount of additional smoothing will reveal the true peak, but
rather the resulting detection will be a weighted average of the
surrounding peaks, which may (with enough smoothing)
appear to a be a single (broad) peak; it will probably be
biased: consider smoothing the last three panels in Figure 6, as
then seen in Figure 10. Our recommendation is that future
investigators always try a number of smoothing kernels
bracketing their preferred solution so as to reveal the presence
(or absence) of substructure that a high degree of smoothing
would otherwise gloss over. See Figures 5 and 8 of Beaton
et al. (2019) for a recent implementation of this iterative
smoothing analysis.

Similarly, self-crowding of RGB stars near the tip results in a
population of false AGB stars, which also decrease the contrast

of the TRGB discontinuity, and eventually bias the tip
detection (to bright magnitudes). However, as the simulations
in Figures 16 through 20 clearly demonstrate, this effect can be
predicted by the source density of RGB stars in any given field.
The attempts to increase population statistics of the RGB by
moving into higher surface brightness regions of the inner halo
should be tempered because of this self-crowding effect, in
addition to line-of-sight extinction issues within the disk (that
are not included in this simulation).
In the end, the characteristic (exponentially increasing) LF of

the faux AGB stars will betray their presence, and signal
impending bias. This could, in principle, be modeled away, but
might best be avoided by not observing in high-surface-
brightness regions to begin with. However, we do caution
against smoothing data that are in the self-crowding regime.
Smoothing Figures 19 or 20 would only lead to (unnecessarily)
biasing the edge response to brighter magnitudes. Irreparable
damage to the tip detection is seen in the highest degree of self-
crowding simulated in Figure 20. It too could be modeled; but,
the best solution would be to reobserve the galaxy in a region
of significantly lower surface density of stars.
We have simulated the CCHP adopted smoothing and

filtering of the AGB and/or RGB LF that is being used to
measure the magnitude of the TRGB. We find that the width of

Figure 20. Same as Figure 16 except this simulation involves slightly over 2,000,000 RGB stars in the frame. Crowding is now quite apparent in the inset CCD image,
and has resulted in an appreciable population of crowded stars falling in number from the tip to 0.75 mag brighter where the self-crowding of two stars at the tip would
appear as one unresolved source. See text for additional details.

25

The Astronomical Journal, 166:2 (31pp), 2023 July Madore et al.



the Sobel-filter response-function is totally dominated by the
preceding GLOESS smoothing of the LF. We have, however,
calibrated the run of the uncertainty in the measured value of
the TRGB as a function of (a) population size and (b)
uncertainties in the stellar photometry at the tip.

For readers wishing to get a sense of the uncertainties on their
distances in advance of making the observations, we suggest
consulting the three panels in Figure 15. They will also be useful
in validating the observed error on the tip after the population
size and error at the tip have been empirically defined.

Finally, it should be noted that all of the recommendations
being derived from these simulations (implicitly for the I band,
where the run of TRGB magnitude is flat with color) apply
equally well to those other wavelengths once the CMDs have
been rectified. By rotating the data using predetermined slopes
of the TRGB, the respective tips will also show no trend of
magnitude with color. The rectified magnitudes can then be
marginalized, and an edge-detection can be applied to the
resulting color-corrected LFs. In support of this, recent articles,
(purely observational and mixed with modeling), both Wu et al.
(2014), their Figure 5, and Durbin et al. (2020), their Figure 3,
show that in the near-infrared F110W (J band) there is a clearly
linear trend of TRGB luminosities with the color at least over
the bluest colors ranging from 0.70 < (F110W − F160W) <
0.95 mag.

There are many additional sources of statistical and
systematic errors that these simulations have not explicitly
included. These uncertainties could stem from issues in
assumed point-spread function (PSF) libraries, charge-transfer
efficiency corrections, etc. While improving with time, some
fraction of these issues still persists. And on top of this, there
are additional systematics when dealing with PSF photometry,
such as errors in aperture corrections, or mismatching PSFs
(due to telescope focus shifts, breathing, etc.). The list goes on,
and in light of that, our error budget should be viewed as a
lower limit on what is occurring in the real world. Such is the
price paid undertaking any simulation.

11. Epilogue

Imagine we have two people approaching each other in the
fog. They each know that there is a cliff ahead of them, but it is
too dark to see it. One is walking from the sea, approaching the
cliff from below. The other is high above the water on a gently
sloping hill approaching the cliff from above. The first may be
noticing that she is walking uphill away from the water,
navigating undulating sand dunes, etc. None of this topology of
the local terrain can alert him to the discontinuity that he is
walking towardK until he slams into it. The second adventurer
notices the cracks and crevasses that he has to walk over or
around, but again nothing at his feet alerts him of his pending
doom K until he walks off the cliff. The AGB is the sandy
seaside below. The RGB is the grassy meadow above. Neither
of those features can predict what lays ahead.

Appendix A
Digital Filters and Smoothing in Edge-detection

In most prescriptions for edge-detection in digital image
processing, it is advised that the raw image be smoothed first to
reduce the random noise in the image and then followed by an
additional scan of the data using a first-derivative edge-detector
that responds to locally detected gradients across the image.

Smoothing can take various forms. They can range from
simple, moving rectangular averages (equally weighted) over a
finite number of adjacent pixels, to a more sophisticated
smoothing using triangular, biweight and/or higher-order
Epanechnikov weightings, all of which symmetrically decline
over a finite range of pixel support and are identically zero
everywhere outside that range (see, for example, Silver-
man 1986; also Jahne 1991). By the central limit theorem,
multiple applications of any of these smoothing kernels
converge on a Gaussian. A discretely sampled (digital)
Gaussian is itself, of course, a smoothing kernel (but one of
infinite support, in principle).
One of the earliest applied and certainly one of the most

elementary quantized edge-detection kernels is the so-called
Sobel filter. This filter involves the simple differencing of pixel
intensity values on either side of a target position. The Sobel
filter, in one-dimension, takes the normalized form of [−1, 0,
+1]. Indeed, this is the first kernel in Figure 21 (named MF3
and shown in Panel (A)). At the other extreme, the first DoG is
also a highly effective gradient detector. Invoking the binomial
theorem once again, we recall that for very small samples
Pascal’s triangle gives the binomial terms’ integer numbers of
finite-support sampling (progressively approximating, and
eventually converging upon a Gaussian). That is well known.
What is not commonly stated, but must be equally true, is that
the differences between adjacent binomial terms are then
discretely sampled approximations to the first DoG.
Evaluating the location of the tip can then be done in

either of two equivalent ways: (i) find the value of x where
the output of the Sobel filter is a maximum, or (ii) find the
value of x where the output of the slope of Sobel filter is flat.
The Sobel filter is the first derivative of the input function;
the latter is the second derivative of the input function—it is
commonly known as the Laplacian. There is no difference
between the two estimations of the position of the
discontinuity.13

Pascal’s triangle of integers can also be thought of as
resulting from the repeated smoothing of the initial solitary
value of unit intensity by the elementary smoothing kernel [+1,
+1]. ThusK0, 0, 1, 0, 0,K upon smoothing, becomes K 0, 0,
1, 1, 0, 0, K and then K 0, 0, 1, 2, 1, 0, 0, K and then K 0, 0,
1, 3, 3, 1, 1, 0, 0, K etc. That sequence is Pascal’s triangle.
Differentiating any row in Pascal’s triangle (that is, differen-
cing adjacent numbers in the triangle) is similarly visualized by
having the row convolved by the zero-sum differencing kernel
[+1, −1]. Applying the first row of Pascal’s triangle gives K
0, 0, −1, +1, 0, 0, K, which is a very compact first derivative
of adjacent pixels measured at their interface. An application of
the differencing kernel to the second line of Pascal’s triangle
gives K 0, 0, +1, 0, −1, 0, 0, K, which ushers in the
appearance of Sobel filter, as mentioned above. An application
to the third line givesK 0, 0, −1, −1, +1, +1,K; and then the
fourth line gives K 0, 0, −1, −2, 0, +2, +1, 0, 0, K etc.
Having said this in words, the table in Figure 22 shows the first
13 rows of Pascal’s triangle, while the table in Figure 23 shows
the first 13 rows of the first (digital) derivative of Pascal’s

13 Cioni et al. (2000) were the first to suggest the use of the Laplacian as a
means of locating the TRGB. Their approach differed somewhat from what we
have discussed above, and they warn users about a potential bias between the
Laplacian and the Sobel-filter solutions. We have been in communication with
Dr. Cioni, and we now all agree that, when using the Laplacian, its zero
crossing should be used to identify the discontinuity, and that this measure is
not biased with respect to the Sobel filter.
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triangle. In Figure 21, we show the first four even-numbers sets
of binomial coefficients (MF3 through MF9) with a smooth
Gaussian overlaid in the upper panels and symmetrically
sampling the DoG, including its central point at the zero-
crossing point of the kernel, shown in the lower subpanels.

This immediately suggests that, in the process of going to
higher and higher approximations, the discretely sampled

Gaussian (and its derivative) each has larger support; we are
spanning more and more pixels and thereby implicitly weight-
smoothing the data, in addition to any previous smoothing. In
Figure 24, we show the application of this single-step
methodology to a step function. Here, it is noteworthy that
the width of the response is largely independent of the order of
the filter chosen.

Figure 21. Binomial coefficient and their first derivatives. Each of the panels shows the values of the binomial coefficients, numerically in square brackets and
graphically as vertical lines in the upper half of each plot. The smooth curve is a Gaussian. In the lower half of the panel is the first derivative of the binomial kernel,
again given numerically inside of square brackets, and graphically as vertical black lines bounded by the smooth black line, which is the first derivative of the
Gaussian.
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Appendix B
A Closing Comment about the Sensitivity of the Adopted

Differencing Kernels to Structure Surrounding the
Discontinuity

It needs to be said in this closing remark that the
discontinuity of the LF (especially as seen directly in the I
band, and in the rectified LFs constructed at other wavelengths)
is a very locally defined quantity. By that we mean that only
information contained in a handful of milli-magnitude bins,
ahead of and/or following the discontinuity itself, contributes
to the tipʼs detection. Moreover, the presence or absence of
stars farther away from the action (i.e., from the TRGB
discontinuity) can have little or no influence on the output of
the edge-detection filter, since all values outside of the kernel
and/or filter’s support are set to zero. For instance, given the
finite range of support adopted by the Sobel filter (the simplest
example being [−1, 0, +1]), only those AGB stars that have
magnitudes that are within plus or minus one bin of the TRGB
(AGB stars above, and RGB stars below) will have any effect

Figure 22. The binomial coefficients of Pascal’s triangle. Each line represents a
digital kernel, each of which is a progressively higher-fidelity approximation to
a Gaussian. Applied to digital data, these kernels act as weighted smoothing
functions.

Figure 23. First derivatives of the binomial coefficients in Pascal’s triangle, as
given in Figure 23 above. The first derivative of a Gaussian (DoG) is a well-
known edge-detector in image processing. Each of the entries in this figure are
then also edge-detectors, progressively more precise approximation to the
DoG. Examples of their application to the detection of a step function are
shown in Figure 23 (below).

Figure 24. Examples of the Pascal edge-detector response to a step function.
These are the results of applying the third, fifth, and seventh (centrally peaked)
filters given in Figure 22 (above), shown as red, blue, and black lines,
respectively. They are scaled to equal areas, demonstrating the relatively stable
width of the response-functions, independent of the smoothing width of the
chosen edge-detector.
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on the output of the filter at the tip. The slopes of the respective
AGB or RGB LFs (be they positive, flat, or negative) will only
produce a constant output (of the first-derivative filter) up until
a significant transition in the slope is detected (above and
beyond the noise). Poisson noise at the tip will serve to smooth
the tip, but it will not bias the tip detection, nor will the filter
care (or know) what is happening to stars more than a tenth of a
magnitude (say) above or below the tip. The presence of AGB
stars immediately before the tip can only act to change the
contrast in the jump by adding a pillar of counts to the
difference being measured between the AGB base (seen at one
side of the differencing kernel) and (the sudden) onset of the
RGB (seen by the other side of the advancing kernel). Nothing
else much matters. Everything about the TRGB is local.

A more compact and mathematically formal way of looking
at it is the fact that the derivative of a function (dF/dx) at x(i) is
found in the limit as the differencing interval (dx) goes to zero
at x(i) . It does not matter what F is doing at x(i + 5), or x(i +
10), or x(i − 5), or x(i − 10), etc.

Appendix C
Random Displacements of the Tip Revealed in Multiple

Realizations of a Single Numerical Experiment

At the urgings of the referee, we have investigated whether
the mismatch between the observed and true tip magnitudes is
systematic or random in nature. This experiment has already
been run and published in the study of M101 by Beaton et al.
(2019; their Figure 5 and extended caption; and their Figure 8).
The latter shows the effect of oversmoothing where highly
smoothed detections drift away from their lesser smoothed
versions. In addition, a wide range of edge-detection methods
using different smoothing kernels and even including those
using maximum-likelihood fitting techniques agreed when
applied to the same data set for IC 1613 (Hatt et al. 2017;

Figure 12). The two papers both offer a quantitative means of
selecting an optimal smoothing parameter, which is the one that
minimizes the quadrature sum of the random and systematic
errors.
To shed further light on that question, we offer Figure 25,

which consists of nine subpanels containing repeated runs of
the simulation displayed in subpanel (e) of Figure 11. All of the
input parameters were fixed, and only the random sampling of
the LF was allowed to change. Details are given in the
extended figure caption, but our conclusions are that at this
smoothing the displacements are random, but given the larger
density of false (minor) peaks below the tip as compared to
similar fluctuations being registered above the tip, we warn that
larger amounts of smoothing will result in systematic shifts of
the measured tip to fainter magnitudes.

Appendix D
Demonstration of the Lack of Bias in the Sobel Tip

Detection to Smoothing of a Variety of AGB Luminosity
Functions and RGB Stars above and below the TRGB

In Figures 26 through 28, we show the robust nature of the
simple Sobel-filter response to the the application of smooth-
ing, and to three possible forms of the AGB LF approaching
the TRGB from above. Figure 26 shows a declining AGB LF.
Figure 27 shows an increasing AGB LF, and Figure 28 shows a
flat AGB LF as has been adopted in the simulations given in
the main paper.
As expected, given the symmetric nature of the kernels being

applied in the smoothing and in the tip detection, there is no
resulting bias in the position reported by the Sobel-filter
response-function. The effects of noise and the Sobel response
to smoothing is also nicely discussed in Nayar (2022),
especially his Figures 25–27.
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Figure 25. Nine subpanels illustrating a random sampling of TRGB measurements for the same number of RGB stars (1340) the same smoothing (0.10 mag) at the tip
(±0.15 mag) as in subpanel (e) in Figure 11. These independently selected examples demonstrate the random drift of the peak response of the Sobel filter around the
input value shown by the solid vertical black line at 0.0 mag. One peak ((b), (h), and (i)). Read left to right and top to bottom, the peak in subpanel (i) is noticeably
displaced to a brighter magnitude; the example in subpanel (e) is displaced to fainter magnitudes. Other deflections are all within the 1σ expected deviations shown by
the vertical dashed lines; five ((a), (b), (d), (g), and (h)) fall to the left, and two ((c) and (f)) fall to the right, although the latter is flanked by two peaks that are
apparently more significant than the one found closest to the known answer. We note that more (low-level) structure in the output response is at magnitudes fainter
than the true tip. Some of this structure is close enough (subpanels (d) and (i)) that, if excessive smoothing were applied, that action would preferentially draw the
measured tip magnitudes systematically toward fainter magnitudes.
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