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Abstract: (R, S)-(skew) symmetric matrices have numerous applications in civil engineering, informa-
tion theory, numerical analysis, etc. In this paper, we deal with the (R, S)-(skew) symmetric solutions
to the quaternion matrix equation AXB = C. We use a real representation A7 to obtain the necessary
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the above matrix equation.
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1. Introduction

A real quaternion (also called Hamilton quaternion) is usually expressed as
H = {ao —|—111i+a2j—|—a3k | 2= j2 =k = l]k = —1,a9,a1,ap,a3 € R}.

It is a four-dimensional division algebra over the real number field R. During the
past decades, matrices over quaternions have played important roles in signal processing,
aerospace, color image processing, and many other areas [1-6].

Recall that an involutory matrix R is a square matrix satisfying R?> = I, an identity
matrix. Clearly, 1 are trivial involutory matrices. A matrix A € C"*" is said to be an
(R, S)-symmetric (resp. (R, S)-skew symmetric) matrix if there exist nontrivial involution
matrices R and S such that RAS = A (resp. RAS = —A) (see [7,8]).

(R, S)-(skew) symmetric matrices are widely used in linear system theory, numerical
analysis, and physics [9-14]. Trench [8] discussed the (R, S)-(skew) symmetric solutions to
the complex matrix equation XB = C. Dehghan and Hajarian [7] also considered the (R, S)-
(skew) symmetric solutions to some complex matrix equations. They derived the solvability
conditions for the existence of solutions and obtained the general solutions when the
matrix equations are solvable. Zhang and Wang [15] derived the (R, S)-(skew) symmetric
extreme rank solutions to the quaternion system AX = B, XC = D. Some special cases
of (R, S)-(skew) symmetric matrices, such as (anti-)centrosymmetric matrices, P-(skew)
symmetric matrices, generalized reflexive matrix, and reflexive (antireflexive) matrices,
have been discussed [13,14,16—-18]. For instance, Zhou et al. [18] studied the problems of
centrosymmetric matrices over C, where R, S are the ], which are on the secondary diagonal
and zeros elsewhere. Wang et al. [17] considered the P-(skew) symmetric solutions to a
pair of quaternion matrix equations.
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The matrix equation AXB = C is of substantial research significance due to its wide
range of applications and its relevance in solving fundamental problems in various dis-
ciplines. The (R, 5)-(skew) symmetric matrices include many kinds of important special
matrices, like centrosymmetric matrices, P-(skew) symmetric, generalized reflexive matrix,
and reflexive (antireflexive) matrices; these kinds of solutions have far-reaching implica-
tions in areas ranging from mathematics and engineering to computer science and data
analysis [13,14,16-18].

Motivated by the work and research significance mentioned above, we consider the
(R, S)-(skew) symmetric solutions and least-squares (R, S)-(skew) symmetric solutions to

the quaternion matrix equation
AXB=C, 1)

where A € HP*™ B € H"41,C € HF*7 are known matrices and X € H™*" is an
unknown matrix.

The paper is organized as follows: In Section 2, we first introduce some preliminary re-
sults. Then we derive the solvability conditions of the equation AXB = C for (R, S)-(skew)
symmetric solutions. In Section 3, the least-squares (R, S)-(skew) symmetric solutions are
given. Finally, we provide a numerical example in Section 4.

Throughout this paper, we propose some notations. For a matrix A, AT, A*, and r(A)
denote the transpose, conjugate transpose, and rank of A separately. Moreover, A" stands
for the Moore-Penrose inverse of A. I,, will be the n x n identity matrix.

2. The Solvability

The real representation method is one of the standard and efficient ways to solve
questions over quaternions. There are several real representations; see, for example, [19-21].
In this paper, we will use the following X*:

For X = X 4+ Xpi + X3j + X4k € H™* " X, € R"*" i =1,2,3,4,

X; =X —X3 —X4
X X1 =Xy X3
X3 Xy X1 =X
Xy —X53 Xo X

XT =

It is easy to verify that this real representation can convert an (R, S)-(skew) symmetric
matrix into a real (R7, S7)-(skew) symmetric matrix. For further discussions of our problem,
we introduce the following orthogonal matrices:

0o —-I, 0 0 o o0 I, O
o 0 -, 0 o -, 0 O
o o0 o0 -—I,

HEEEN

I, 0 0 O

Now, we summarize some properties of the above real representation in the
following lemma:

Lemmal. Let A,B € H™", C e H"*®, a € R. Then

(@) (A+B)"=A"+B", (aA)" =aAT";

(b) (AC)T = A™CY;

() QLATQ, =AY, GLATG, = AT, TFATT, = AT,
@ (A7) = (AT, (AT = (A7

(e) Let A€ H™ ™ Then AT commutes with Qu,, Gy, Ty
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Definition 1. Assume that R € H"™*"™ and S € H"*" are nontrivial involutory matrices. A €
H™*" is an (R, S)-symmetric (resp. (R, S)-skew symmetric) matrix when A satisfies RAS = A
(resp. RAS = —A).

Now, we are in a position to derive some necessary and sufficient conditions for the
matrix Equation (1) to have (R, S)-symmetric (resp. (R, S)-skew symmetric) solutions and
provide the solutions when the matrix equation is consistent. Let R € H"*™ and S € H"*"
be nontrivial involutory matrices. By (d) of Lemma 1,

R*= (RN =(R") T #+],
g7 — (Sfl)r — (Sr)fl 7& +1;

thus, R7, ST are also nontrivial involutory matrices. For R™ and S7, according to [8], we
can find positive numbers r, k and matrices P € C4mxr O e Cimx (m—r) 1] € C4>k vV
CAnx(4n=k) gyuch that

P'P=1, Q*Q=1, R'P=P, R'Q=-Q,

and
uUvu=I1, vv=I SU=U S§V=-V.
Next, we denote
~ us(I+S5% B V*(I—S7)
U= 2 V= 2 2

poPULR) o QU-K)

For AT € R¥>4" and BT € R¥"*# of (1), we perform the following decomposition:

AT [P Ql=[A A ], A €C¥, A, Ctxtinn,

|: 1‘:/\1 :|BT — [ BlT BQT ]T, Bl c CkX4q,B2 c (C(4n_k)><4q.

Now, we have our main results as follows:

Theorem 1. Let A € HP*™, B € H"*1, C € HP*4. Then, there are three equivalent statements:

(a)  The matrix Equation (1) has an (R, S)-symmetric solution X € H"*";

(b)  The matrix equation
ATYBT =C" 3)

has an (R, ST)-symmetric solution Y € R4mx4n;
(c) The following rank equalities hold:

I’[A1 Az CT]ZV[.Al Az], r

5 | =8
2 - BZ 7

CT
. ct A | . 0 A . Ct A | . 0 A
B, 0] | B 0] B, 0 | | B 0 [
Furthermore, if the matrix Equation (1) is solvable, then
Lo 1" Iy
_ 1 iy T T | —iln
X=g¢| an | (vrowr@ + GG+ T )| T )

kI, —kIy
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is an (R, S)-symmetric solution to (1), where

e 0% 0]

< D

with
Ypuy = Ypu + SlF]UEHT1 + Fq V1 + V2Ep,,

YQV = YQV + SoFUERT, + F4,W1 +W1Epg,,
Iy
Slz[Ir 0],522[0 I4m,r},T1= 0l

0

T =
2 [ I4n7k

},]:[,41 Az],HZ{_BéZ];

U, vp, Vo, Wi, W, are arbitrary, and Ypu, YQV are particular solutions to the matrix equation
A1 YpubBi1 + AQYQsz =C".

Proof. Let R € H"™*™ and S € H"*". For the matrix Equation (1), we convert it into the
matrix equation ATYBT = C7 by the real representation method. First, it can be shown
that each (R7, ST)-symmetric solution Y of the real matrix Equation (3) can generate an
(R, S)-symmetric solution X of the original matrix Equation (1).

Suppose (3) has an (R, ST)-symmetric solution Y, i.e., RTYS" = Y. Y may not have
the structure of a real representation; thus, we need to construct ) with the structure of a
real representation from Y. According to Lemma 1, we have the following three equations:

(QamQu)Y(QiTBTQ;) = Q7 CTQ,
(6,7 4%Gu)Y(Gi"B7Gy) = G,CG,,
(1,7 AT )Y (T "B T,) = T,7C7T,.
Since Qp, Qu, Gp, Gn, Ty, Ty are nonsingular,
AT(QuYQy)BT =7,
A (GnYG,)B" =CT,
AY(T, YT, )B" =C7,
and by Lemma 1(e), we have
RTQnYQ;S™ = QuRTYSTQy = QuYQy,
R'G,YGIS®™ = G,R'YS'G! = G, YGI,
R'T,,YTIS™ = T,,R*YS'T! = T,,YT].

Therefore, Q;,YQ!, G, YGI, and T, YT are also the (RT, ST)-symmetric solutions of
(3), and so is

1
y=3 (Y +QuYQ! + G, YGT + TmYTnT). (6)
Suppose that Y can be written in the form of a block matrix:

Yiu Y2 Yiz Yis
Yor Yoo Yoz You
Y31 Yz Yzz Yz
Yy Yo Yiz Yy
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and substitute it in (6). Then by computation, we have

7y —Zy —Z5 —Z,
Y= Zo Zy —Zy Zj
N Zs Zy 7y —Zp |

Zy —Z3 Zp 74

where
Zi=3(Yi+ Yo+ Yss+Yu), Zo=3(Yor — Yo+ Yaz — Yau),

Zs=1(Ys1 — Yo — Y13+ Ya1), Za= F(Yar + Y3 — Yoz — Y14).

Now, we construct a new quaternion (R, S)-symmetric matrix X using Z1, Zy, Z3, and Z4:

L, 17 I,
. . 1 lIm _lIn
X :Z1+Zzl+Z3]+Z4k:Z il Y —jl
m n
kL, —kI,
L, 17 I
il —il
= ¢ ﬂm (Y +QuYQu"+GuYG + TuYT,T) |
m Jn
kL, —kI,

It is easy to verify that X* = ). By (b) of Lemma 1, we obtain
(AXB)" = ATX"B" = A"YB" = C".
Thus, X satisfies (1). Moreover, ) is (R7, S7)-symmetric, and we have
(RXS)" =R*X'ST*=R'YS" =Yy =X".

It implies that RXS = X, and so X is an (R, S)-symmetric solution to (1). Therefore,
the consistency of (3) implies the consistency of (1). Moreover, any solution Y of (3) can
generate an (R, S)-symmetric solution X of (1).

Next, we show that if (1) is consistent, then (3) is also consistent. Assume (1) has an
(R, S)-symmetric solution Xj, i.e., RXyS = Xp. By (b) of Lemma 1, we have

ATXFBT = CT

and
R*X§S" = X{.

Then we can see that Yy = Xj is the (RY, ST)-symmetric solution of (3). Therefore,
the original matrix Equation (1) is consistent if and only if its corresponding real matrix
Equation (3) is consistent. According to Theorem 2.3 in [7], the real matrix Equation (3) has
an (R?, S7)-symmetric solution if and only if the rank equalities in (c) of Theorem 1 hold.
Additionally, when (3) is solvable, Y in the form of (5) is the general solution of the real
matrix Equation (3), so we can generate our solution X by Equation (4). O

Similar to the proof of Theorem 1, we can obtain the following result for a skew
symmetric case.

Theorem 2. Let A € HP*™, B € H"1, C € HP*4. Then there are three equivalent statements:

(a)  The matrix Equation (1) has an (R, S)-skew symmetric solution X € H™*";
(b)  The matrix equation
ATYBT =C"
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has an (RY, ST)-skew symmetric solution Y € R4,
(c) The following rank equalities hold:

1’[./42 ./41 CT}:T’[.AZ .Al ],1’

5 | = B
2 - 82 7

CT
, Cct ./42 — 0 .Az ’ Cct ./41 — 0 A1
B, 0| | B 0| [B 0] "|[B 0]
Furthermore, if the matrix Equation (1) is solvable, then

Im T I?l
_ L | il T T T il
X=16| it (Y + O0nYOuT 4 GuYGuT + Ty YT, ) i
kI —kI,

is an (R, S)-skew symmetric solution to (1), where

=tr el ]|

<

with
Ypy = va + SzF]URHTz + F-Al Wi + WQEBZ,

YQU = YQU + 51FIURHT1 + PA2V1 + VzEBl,

I
51:[14,,1,7 0]1 52:[0 Ir}/ le[(;(]/

0 B
Tzz{hnk} J=[ A A, H:{—l’l’z]’.

U, vq, Vo, Wy, W, are arbitrary, and Yoy, ?Qu are particular solutions to the matrix equation
AzYngl + A1Ypy B, = CT.

3. Least-Squares (R, S)-(Skew) Symmetric Solutions

In this section, we derive the least-squares (R, S)-(skew) symmetric solutions to the
quaternion matrix Equation (1). Let M = Mj + Myi + M3j + Msk € HP*™, where M; €
RP*™ We define

M
T _ M,
M; = My
My
We can check that for any N € H"™*1,
(MN)f = M"N.". (7)

To simplify the least-squares (R, S)-(skew) symmetric solution problems, we are going
to use the Frobenius norm of M.". By direct calculation, we first derive the relation between
[Mc[|F and || M]]:

1
IMllp = SIM[[e = [|Mc e (8)

Let A € HP*™, B € H", C € HP*1. We will find an (R, S)-(skew) symmetric
X = £RXS € H™*" such that

||AXB—CH1:= min HAX()B—CHF.
XoeHm>" Xo=+RXyS
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The lemma about the least-squares solutions is given as follows:

Lemma 2. [22] The solutions of the least-squares problem of the complex matrix equation AX = B

are
X =A'B+(I-A%A)Z,

in which Z is arbitrary.

Now we recall two important decompositions for an (R, S)-symmetric (reps. (R, S)-
skew symmetric) matrix over quaternions.

Lemma 3. [11] Let R € H"™*™, S € H"*" be nontrivial involutory matrices with the decomposition

I 0 I 0
R=E LN E,S—F—l[rz }P.
[ 0 Imrl] 0 —Iyr

Then
(a) X e H"™*"is(R,S)-symmetric if and only if X can be expressed as

Xy 0
—_ -1 1
X=E [0 XZ]F

where X1 € H*"2, X, € [ (m=r1)x(n=r2),
(b) Y € H"™*"is (R, S)-skew symmetric if and only if Y can be expressed as

100!
Y=E |:Y2 0 F

where Y; € HNx(n1=12) |y, ¢ H(m=r1)xr2,
Next, we provide the main result of this section.

Theorem 3. Let A € HP*™, B € H"*1, C € HP*4. Then each least-squares (R, S)-symmetric
solution to the matrix equation AXB = C should be in the form of

X; 0
_ -1 1
X=E {0 XJF,

where E and F are given in Lemma 3,

Vec(X1)=[hL 0, i 01 jL 01 kL 01 ]y,

Vee(Xp) = [0, b 0y il 0y jI, 0y kI |y,

y=Pb+ (I-P'P)z, P =[BT ® Ay, B,T ® As]", b= (Vec(C))F,
01 is the zero matrix with the size of riro X (m —r1)(n —1ry),

0, is the zero matrix with the size of (m — r1)(n — rp) X 1172,

Iy is the identity matrix with the size of riry X 1117,

I, is the identity matrix with the size of k x k,

wherek = (m—r1)(n—ry) X (m—r)(n—ry),

7 € CAnrat+a(m—r)(n-r) jg arbitrary.



Mathematics 2024, 12, 323

8 of 12

Proof. Using the decomposition of an (R, S)-symmetric matrix X in (a) in Lemma 3, we
partition the matrices:

AE' =[A; A)], FB= [ B },
B,

where A; € HP*"1, Ay, € HP*(m=11) B, € H2*4, B, € H(""2)%1, Then AXB = C has a

Xy 0 s .
0 XZ]FBC,thatls,

least-squares (R, S)-symmetric solution X if and only if AE~! [
A1X1B1 4+ ArXpBy =C
has a least-squares solution {X;, X, }. Using the vec operation, we have
(B1T @ A1) Vec(X1) + (BT ® Az)Vec(X;z) = Vec(C),
which can be rewritten as

Vec(Xl)

T T

} = Vec(C). 9)
Taking the real representations on both sides of (9),

[B1T ® A1, BT ® As)" ( [ &288 } )T = Vec(C)".

By Equations (7) and (8),
1317 o 182" 0 Aal" (| yectxl) | ) = (vee())"l

25" 41,550 " ([ yeelx!) | ) - (VeclO)El

Now, we derive the least-squares solution to the linear system
Py =b,
where .
R L (R e ) b= (Vec(C)),",

and Lemma 2 tells us that y = P'h + (I — P*P)z is the least-squares solution. If we de-
note Vec(Xy) = Vec(X11) + Vec(Xz1)i + Vec(X31)j + Vec(Xy1 )k and Vec(Xp) = Vec(X12) +
Vec(X2)i + Vec(X3z)j + Vec(Xyp )k, then

Vec(Xq) | [ Vee(X11) Vec(Xp1) Vec(X31) Vec(Xy1)
[ Vez(xi) } - [ VZ&xii) ] [ vZ&xi;) }* [ VZ§<X§§> ]” [ v22<xi§> }k'
. Vee(Xq) 1\°
By the definition of ([ Vec( X;) })C,we have
[ Vec(X11) ]
VeC(Xlz)
( ) . VeCEXZlg
Vec(X Vec(X
o= (v )= | vee)
Vec(X32)
Vec(X41)
L Vec(X42) |
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Clearly,
VeC(X])Z[Il 01 111 01 ]11 01 kll 01 ]]/,

VeC(Xz) = [ 02 12 02 i[z 02 jlz 02 kIz ]y,
01 is the zero matrix with the size of 117y X (m —r1)(n — r2), and 05 is the zero matrix with

the size of (m —r1)(n —rp) x r17o. Then X = E~1 Fél }? ] F is our required solutions. [J
2

By using the decomposition in (b) of Lemma 3, we can obtain the general expression

of the least-squares (R, S)-skew symmetric solution as follows.

Theorem 4. Let A € HP*™, B € H"*, C € HP*9. Then each least-squares (R, S)-skew
symmetric solution to the matrix equation AXB = C should be in the form of

1107
X =E |:Y2 OF'

where E and F are given in Lemma 3, and { A1, Ay} and {By, By} are block matrices determined by
AE~! and FB, respectively.

Vec(Y1)=[ 13 03 il3 03 jl3 03 kI3 03 |y,

Vee(Yo) = [ 04 I Oy ily Oy jl, 04 kIyly,

y=P'b4+ (I—P'P)z, P=[B," ® Ay, BT ® Ay]",b = (Vec(C)),",

03 is the zero matrix with the size of r1(n — ry) X (m —rq)ry,

04 is the zero matrix with the size of (m — rq)ry X r1(n —1p),

I3 is the identity matrix with the size of ri(n —ry) X r1(n —1ry),

1y is the identity matrix with the size of (m — rq)ry X (m —r1)ry,

z € CAlmmtmr=2n12) js grpitrary.

4. Numerical Example

In this section, a numerical example is provided to illustrate our results. Here, we only
consider the (R, S)-symmetric solution case.

Example 1. For the given quaternion matrix equation,
AXB =C,

where
e 14+2i4+3j 3i+j+2k 1+i+3k
o 2+43j+k  j+2k 2i4j+3k)
g [2i—jtk 2+j+k
- [3+i—5] 4+2i—3k|
c_ [ 4+1024i—0.16j+3.4k 6.92 — 0.2i + 9.64j + 7.44k
| —9.52+20.96i + 26.36] + 3.8k  0.32 — 3.68i 4+ 20.6j + 17.4k |’

Find the (R, S)-symmetric solutions if the matrix equation is solvable, where

1 0 0
R= 10 028 0.96i

s [0.28 —0.9611
0 —096i —0.28

096k —0.28

are two involution matrices.
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Step 1. By Theorem 1, consider the (R, ST)-symmetric solution to the corresponding real
matrix equation
ATYBT =CT, (10)

where AT € R8*12 BT CT € R8*8 and Y is an unknown matrix.

Step 2. Find P,Q,U,V, such that R'"P = P, R"Q = —Qand S™U = U, S'V = —V.
According to Trench [8], P, Q can be obtained from an orthonormal basis for the eigenspace of R*
associated with A = 1, —1, respectively. Similarly, U, V can be obtained from an orthonormal basis
for the eigenspace of ST associated with A = 1, —1, respectively.

0O 0 0 0 10 0 O© o 0 0 0
08 0 0 0 00 0 0 0 —06 0 0
0 060 0 00 0 0 08 0 0 0
o 0 0 0 00 0 1 o 0 0 0
0 080 0 00 0 0 06 0 0 0
p_|06 0 0 0 00 0 0, |0 08 0 0
o 0 1 0 00 0 0| o o0 o o0
0O 0 0 0 00 —080 O 0 0 —06
0O 0 0 -06 00 0 O 0 0 —08 0
O 0 0 0 01 0 © o 0 0 0
O 0 0 -0800 0 O 0O 0 06 0
0 0 0 0 00 06 0 0 0 0 —08]
0 0 08 07 0 0 0  06]
0 0 0 —06 08 0 0 0
08 0 0 0 0 0 06 0
0 —06 0 0 0 —08 0 0
U=1o o8 o o[V |0 -6 0o 0|
06 0 0 0 0 0 —08 0
0O 0 0 08 —06 0 0 0
L0 0 06 0 | Lo 0o 0 —08]

and U, V are calculated from (2).
Step 3. Perform the following decomposition and verify whether (10) has a solution or not.

AT[ P Q ] = [ A A ], Ay ERSXS,Az €R8X4,

l/’\[ T X X
{ o }BT: [ BT (BT ], BieR¥S, By € RO,

By MATLAB, we have

B B
rf A A CTl=r[ A A |=8 71| B :r[ 1}:8,

ct A | | 0 A | Ct A | _ | 0 A | _
r[82 O}_r[Bz 0]—12, r[Bl O}_r[Bl O]—&

Thus, it follows from Theorem 1 that the matrix Equation (10) is consistent.
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Step 4. Calculate the (RT, ST)-symmetric solution Y of the matrix Equation (10) by (5):

[ —0.80 0 0 -1.20 1.60 0 0 —0.60
—1.64 0.48 1.28 0 1.00 0.96 036 —0.48
—0.96 1.00 —-048 -—-064 —048 —1.36 0 —-0.72

0 120 —0.80 0 0 —-0.60 —1.60 0
—1.28 0 —1.64 0.48 036 —048 —1.00 -0.96
Y — 0.48 0.64 —0.96 1.00 0 —-072 0.48 1.36
- —1.60 0 0 0.60 —0.80 0 0 -1.20
—-1.00 —-096 —0.36 048 —1.64 0.48 1.28 0
0.48 1.36 0 072 —-0.96 1.00 —-048 —0.64
0 0.60 1.60 0 0 1.20 —-0.80 0
—0.36 0.48 1.00 096 —1.28 0 —1.64 0.48
L 0 072 —-048 —-1.36 0.48 0.64 —0.96 1.00 |

Step 5. Generate X from Y by the formula (4):

—-080 O 0 1.20

X =| —164 048 |+ | —128 0 |i
—0.96 1.00 048 0.64

—1.60 0 0 0.60

+| —1.00 —-096 |j+ | —0.36 048 |k
0.48 1.36 0 0.72

Step 6. Verify whether X is an (R, S)-symmetric solution to AXB = C or not. By direct
computation, X satisfies
RXS =X, AXB =C.

Thus, X is our required solution.
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