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Abstract: Digital soil maps are paramount for supporting environmental process analysis, planning 

for the conservation of ecosystems, and sustainable agriculture. The availability of dense time series 

of surface reflectance data provides valuable information for digital soil mapping (DSM). A detailed 

soil survey, along with a stack of Landsat 8 SR data and a rainfall time series, were analyzed to 

evaluate the influence of soil on the temporal patterns of vegetation greenness, assessed using the 

normalized difference vegetation index (NDVI). Based on these relationships, imagery depicting 

land surface phenology (LSP) metrics and other soil-forming factors proxies were evaluated as en-

vironmental covariates for DSM. The random forest algorithm was applied as a predictive model to 

relate soils and environmental covariates. The study focused on four soils typical of tropical condi-

tions under pasture cover. Soil parent material and topography covariates were found to be simi-

larly important to LSP metrics, especially those LSP images related to the seasonal availability of 

water to plants, registering significant contributions to the random forest model. Stronger effects of 

rainfall seasonality on LSP were observed for the Red Latosol (Ferralsol). The results of this study 

demonstrate that the addition of temporal variability of vegetation greenness can be used to assess 

soil subsurface processes and assist in DSM. 
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1. Introduction 

A range of complex factors, such as soil-forming factor interaction and pedogenic 

processes, determines soil distribution across geographical regions. Digital maps in raster 

format currently represent soil-forming factors coined as environmental covariates [1]. 

The digital soil mapping (DSM) framework quantitatively integrates relationships be-

tween climate, vegetation patterns, and a geomorphological setting at the landscape level 

into a soil map [1,2]. A remarkable convergence of several geospatial information toward 

DSM has occurred, primarily due to the fast evolution of remote sensing products and 

increasing information on web-based platforms for easy access to an extensive catalog in 

a ready-to-use format. Historically, the most applied environmental covariates consist of 

a raster format representing the space of the current information rather them temporal 

variations [3,4] (Wadoux et al., 2021; Coelho et al., 2021). Since several geospatial data 

could be surrogates for soil-forming factors, new environmental covariates should be ad-

equately evaluated and interpreted with caution when applied with machine learning al-

gorithms to ensure their real meaningfulness concerning soil prediction [3]. 
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Historically, pedologists have recorded and observed vegetation pattern information 

to support the spatial prediction of soil types on different scales [5]. Such soil–vegetation 

correlation is possible since spatial and temporal dynamics of vegetation serve as indica-

tors of the interaction between soil conditions and climate regimes. Organisms and vege-

tation are dynamic soil-forming factors, and their relationship with climate and soil prop-

erties is vital, particularly with regard to factors that constrain plant growth and vigor, 

such as water availability and fertility [6,7]. 

Soil moisture regimes have been intensely monitored in developed countries, fur-

nishing support for soil classification systems [8]. Conversely, the lack of country-based 

soil and climate monitoring on a detailed scale led pedologists to classify native vegetation 

with the purpose of soil mapping. In this case, plant deciduousness is the primary basis 

for making inferences about soil-hydric regimes [9]. However, native vegetation remnants 

for inferences have been increasingly scarce. Thus, there is an avenue to be explored by 

applying satellite-based vegetation indexes to increase the accuracy of information. In 

turn, soil information could aid vegetation index interpretations. 

Reliable detection and mapping of plant dynamics can be achieved through remote 

sensing of vegetation greenness. This is because the spectral features of plants are closely 

tied to their biomass, yield, health, and vigor, making them a valuable metric for assessing 

greenness. The normalized difference vegetation index—NDVI—is the most commonly 

used index [10–12]. With the increasing availability of remote sensing and cloud-compu-

ting technology, continuous collections of satellite imagery can be used to add a temporal 

dimension to studies using spectral vegetation indexes [13,14]. Research on using tem-

poral variability of vegetation indices in DSM has taken various approaches, including 

single-season analysis based on wet versus dry conditions [15] and analysis of time series 

of dense vegetation indexes [16,17]. 

The acquisition of satellite-based temporal vegetation indexes allows studies of sea-

sonal patterns in plant phenophases, called land surface phenology (LSP) [10]. Consider-

ing a local-scale analysis, soil–landscape conditions drive plant changes in their coloring 

and leaf fall [18] (Caparros-Santiago et al., 2021), and climate drives the cycles of plants 

throughout the season [19] (Wolkovich et al., 2012). The rhythm of different phenological 

events has been considered a critical biological indicator [18] (Caparros-Santiago et al., 

2021). Once related with soil types, LSP imagery can provide a valuable environmental 

covariate to enhance DSM. By utilizing LSP imagery related to vegetation growing sea-

sons (such as season start and end, integrated NDVI, and seasonal amplitudes), infor-

mation depicting the climate-driven cycles of vegetation greenness can be synthesized 

[20]. Despite the demonstrated feasibility of using LSP metrics for DSM predictive models 

for soil properties, such as organic carbon, sand, and calcium content [21,22], the impact 

of soil taxonomic class and its interaction with rainfall seasonality has been overlooked, 

particularly in tropical regions where data scarcity poses a challenge for detailed map-

ping. 

This study aims to evaluate the use of LSP metrics for DSM as an effective environ-

mental covariate, combined with relief and soil parent material proxies. The hypothesis 

tested is that the temporal variability of vegetation greenness is influenced by the interac-

tion of soil and rainfall seasonality, producing a temporal signature that can be captured 

through remote observation to enhance DSM. 

2. Materials and Methods 

2.1. Study Area and Soil Survey 

A comprehensive study of the soil in an area of 314 hectares located on the Campus 

of the Federal University of Lavras, Minas Gerais state, Brazil, was conducted. The soil 

sampling was carried out in a regularly spaced grid, with approximately 130 m of nearest 

neighbor distance between each sample [23] (Figure 1). The soils were sampled and de-

scribed according to standard procedures outlined in an earlier paper [24], and chemical 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/phenology
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and physical analyses were carried out according to a previous study [25]. The soils were 

then classified according to the Brazilian soil classification system [24]. 

The climate of the region is classified as Cwb, which is a humid tropical climate with 

a dry winter and temperate summer, according to Köppen’s classification criteria [26]. The 

vegetation cover in the area is a mosaic of pasture, native forest, forest plantation, and 

agriculture, as determined by data from the MapBiomas project (https://mapbiomas.org/ 

(accessed on 5 January 2020)). It was also found that there has been no significant change 

in land cover between the years 2012 and 2019 [27]. 

Overall, the study provides a detailed analysis of the soil in the area, which will be 

beneficial for future research and development projects on the Campus of the Federal Uni-

versity of Lavras. 

 

Figure 1. Study area, land cover, and survey locations at Federal University of Lavras, Southern 

Minas Gerais state, Brazil. Topographic contours represent 10 m intervals. 

2.2. Vegetation Greenness Time Series and Land Surface Phenology 

We searched the Google Earth Engine database for all 168 scenes captured by the 

Landsat 8 OLI sensor between 19 April 2013 and 12 August 2020, using path 218 and row 

75, for surface reflectance imagery. Unfortunately, 17 scenes were unavailable. The image 

collection has already undergone atmospheric correction and orthorectification, making 

it better suited for temporal analysis. We then cropped the selected collection to the study 

area for pasture land cover only. Finally, we calculated the NDVI proxy for vegetation 

greenness and scaled it using Equation (1): 

NDVI =  
NIR − R

NIR + R
× 104 (1) 

where NIR is near-infrared surface reflectance (band 5) and R is red surface reflectance 

(band 4). The factor of 104 was applied for more efficient use of memory. Image cropping 

and NDVI calculation were performed in the raster package [28] in the R platform [29]. 

The LSP metrics were obtained using the TIMESAT algorithm [30], which was spe-

cifically designed for extracting seasonal parameters from optical remote sensing 
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vegetation indices. TIMESAT uses seasonal models such as asymmetric Gaussian func-

tions, double logistic, and the Savitzky–Golay filter. The process of selecting and fitting 

the seasonal models was iterative and involved visual interpretation and reference checks 

with NDVI literature values [20,30]. To accomplish this, the temporal stack of NDVI im-

ages derived from Landsat 8 imagery was analyzed using TIMESAT. 

The primary source of noise in the temporal signal of NDVI is caused by the occur-

rence of clouds and shadows, generating a negatively biased noise [31]. To address this, a 

weighted least-squares approach was implemented in TIMESAT. This involved assigning 

higher weights to high NDVI values in the time series to construct an upper envelope of 

data, which was used to fit the seasonal model [20,30]. In cases where Landsat 8 scenes 

were completely cloud-covered or had unavailable dates, they were treated as “no data” 

and excluded from input into TIMESAT. 

Thirteen different LSP maps were obtained for each season: season start time, season 

end time, season length, NDVI base level, season mid-time, largest NDVI value for the 

fitted function, seasonal amplitude, rate of increase at the beginning of the season, rate of 

decrease at the end of the season, large seasonal integral, small seasonal integral, NDVI 

value for the start of the season, and NDVI value for the end of the season [20,30]. 

2.3. Additional Soil Environmental Covariates: Topography and Parent Material 

Considering the scale of analysis and the most important drivers of soil formation, 

maps depicting topography and soil parent material were also evaluated. SAGA-GIS [32] 

was used to derive terrain attributes commonly used in DSM applications based on a 5 m 

resolution DEM (digital elevation model), which was interpolated by the ANUDEM 

method from topographic contours of 1 m of vertical distance [33]. Besides DEM, the fol-

lowing terrain attributes were also calculated: slope, diffuse insolation, direct insolation, 

saga wetness index (SWI), stream power index (SPI), topographic position index (TPI), 

multiresolution valley bottom flatness (MRVBF), and multiresolution ridge top flatness 

index (MRRTF). 

Despite the lack of a detailed geological map for the study region, we were able to 

generate soil parent material proxies using proximal sensor data and knowledge of soil–

geology relationships. Silva et al. [34] and Curi et al. [23] interpreted magnetic suscepti-

bility from B and C soil horizons of the same area to generate spatial information about 

soil parent material. Magnetic susceptibility was measured using a Barrington MS2B mag-

netometer (Bartington Instruments Co., Ltd., Oxford, UK) at low frequency. We 

resampled all soil covariates to match the spatial resolution of the Landsat 8 data (30 m). 

In addition to magnetic susceptibility, soil texture, obtained by the pipette method 

[35], and soil organic matter, determined by wet oxidation [25], were also obtained from 

Curi et al. [23] and were used to support additional analyses. 

2.4. Digital Soil Mapping 

After harmonizing and gathering the environmental covariates, the complete frame-

work of DSM was established, as displayed in Equation (2): 

Soil classes = f (LSP metrics, topography, parent material) + Ɛ (2) 

Climate and organisms were considered spatial constants due to the scale of this 

study. Thus, the soil classes were spatially associated (f) with environmental covariates 

through a random forest algorithm [30,31]. Random forest [36,37] is currently one of the 

most applied machine learning algorithms in soil science due to its remarkable perfor-

mance of bootstrapping and bagging features to reveal patterns in complex soil spatial 

association [38–40]. This non-parametric data-driven model has obtained accurate soil 

predictions even when based on many environmental covariates [41]. Random forest pa-

rameterization followed the approach proposed by Hengl et al. [38]: mtry = 5 (an approx-

imate integer of the square root of the number of covariates, i.e., 30) and ntrees = 500 (num-

ber of trees sufficient to fit a model) [37]. To ensure adequate sample size, only soil classes 
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with at least six records or samples under pasture vegetation cover were analyzed. These 

included Haplic Cambisol, Red Latosol, Red-Yellow Latosol, and Red-Yellow Argisol 

(soils classified according to Santos et al. [24]). According to Soil Survey Staff [42], those 

soil types correspond to Typic Dystrudept, Rhodic Hapludox, Typic Hapludox, and Typic 

Hapludult, respectively. Additionally, according to the World Reference Base for Soil Re-

sources [43] (IUSS Working Group WRB, 2015), those soils respectively correspond to 

Cambisol, Ferralsol, and Acrisol. 

The accuracy (Ɛ) associated with the spatial prediction model was assessed using re-

peated 5-fold cross-validation allowing the calculation of global accuracy and the kappa 

index [44] statistical metrics. 

Random forest is referred as a “black box” model [45] because it is difficult to under-

stand how model inputs and environmental covariates are combined to make the final 

prediction. To improve the interpretability of the models and uncover patterns, the rank 

of variable importance was obtained by the mean decrease in classification accuracy cal-

culated globally and for each soil taxonomic class [36]. Permuting the environmental co-

variate values that might increase the prediction error could be interpreted as a score of 

importance. A higher score indicated a more critical environmental covariate due to its 

significant effect on the prediction. 

2.5. Rainfall Seasonality 

A time series of rainfall was built from daily precipitation data from the 83687 

BDMEP—INMET station, available at http://www.portal.inmet.gov.br (accessed on 10 

January 2020). The daily data were combined to match the temporal resolution and dates 

of the NDVI time series, meaning that daily rainfall data were accumulated over 16-day 

periods (Figure 2). Using TIMESAT, an analysis of the rainfall time series allowed for the 

identification of seven seasons. Consequently, the initial image collection was filtered to 

match these periods. 

 

Figure 2. Time series of aggregated 16-days rainfall for the study area (date format: year-month-

day). 

Finally, Spearman’s rank correlation analysis was performed between the most im-

portant LSP covariate ranked from random forest importance scores and the accumulated 

seasonal rainfall at each soil class based on median values. 
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3. Results 

3.1. Soil Charachterization 

According to the findings from the soil field campaign [23], the most commonly ob-

served soil types are Haplic Cambisol, Red-Yellow Argisol, Red-Yellow Latosol, and Red 

Latosol. More information on the soil’s properties can be found in Figures 3 and 4. The 

primary soil parent material, with the exception of Red Latosol which is derived from 

gabbro, is composed of granite-gneiss—a metamorphic rock that contains alternating 

bands of mafic and felsic minerals. Soils such as Haplic Cambisol, Red-Yellow Argisol, 

and Red-Yellow Latosol were formed from this material. Gabbro, on the other hand, is less 

resistant to weathering due to its higher felsic mineral content [46]. Consequently, soils 

formed from gabbro, like the Red Latosol, tend to be thicker and more clayey than others. 

 

Figure 3. Boxplots of soil organic matter (SOM) content by soil taxonomic class and soil horizon. 

RYL: Red-Yellow Latosol, RYA: Red-Yellow Argisol, RL: Red Latosol, HC: Haplic Cambisol. 
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Figure 4. Soil texture class distribution (dots) and center confidence regions (90% confidence) 

around centroids (squares) by soil horizon for each taxonomic class. Data points of A horizon in 

blue and B horizon in red. RYA: Red-Yellow Argisol, HC: Haplic Cambisol RYL: Red-Yellow Latosol, 

RL: Red Latosol. Cl: clay, SiCl: silty clay, SaCl: sandy clay, ClLo: clay loam, SiClLo: silty clay loam, 

SaClLo: sandy clay loam, Lo: loam, SiLo: silty loam, SaLo: sandy loam, Si: silt, LoSa: loamy sand, Sa: 

sand. 

Although the origin of soil material can influence the soil formation, other factors and 

processes also play a role in determining soil characteristics. This can be demonstrated by 

looking at a chronosequence, which is a sequence of soils ordered by age, from younger 

to older. For example, in the chronosequence Haplic Cambisol → Red-Yellow Argisol → 

Red-Yellow Latosol and Red Latosol, the following physical and hydraulic characteristics 

were observed by Gonçalves et al. [47]: an increase in soil thickness, an increase in soil 

water storage capacity, a shift in B horizon structure from blocky to granular, an increase 

in permeability, a decrease in bulk density, and an increase in clay content. As for soil 

organic matter, the overall trend is that its concentration decreases with depth, with sim-

ilar mean values among soils. However, some samples of Red-Yellow Argisol and Red 

Latosol have higher organic matter contents, as shown by the points in the boxplots. 

3.2. Accuracy Assessment of DSM Predictive Models 

DSM predictive model presented a median global accuracy of 61.1% and a kappa 

value of 0.43, considered a fair level of agreement [48]. The error rate appeared to be pro-

portional to the occurrence frequency of the analyzed soil classes. The dominant soil clas-

ses, such as Red Latosol (12.1%) and Red-Yellow Latosol (25.2%), had a lower error rate 

compared to the less frequent classes, such as Red-Yellow Argisol (47.3%) and Haplic 
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Cambisol (87.3%). Figure 5 shows the soil map with only the pasture vegetation cover 

(164.74 ha) and the spatial distribution of the analyzed soils. The geographical distribution 

showed a predominance of Red Latosol (83.95 ha, representing 50.96% of the area), fol-

lowed by Red-Yellow Latosol (58.55 ha, 35.54%), Red-Yellow Argisol (12.16 ha, 7.38%), and 

Haplic Cambisol (10.09 ha, 6.12%). 

 

Figure 5. Digital soil map under pasture cover at Federal University of Lavras, Minas Gerais state, 

Brazil. RYL: Red-Yellow Latosol, RYA: Red-Yellow Argisol, RL: Red Latosol, HC: Haplic Cambisol. 

Blank areas within the perimeter of the study area are vegetation types dissimilar to pasture. 

3.3. Covariates Importance for DSM 

The results of the DSM evaluation of environmental covariates are displayed in Fig-

ure 6, showing the variable importance rank. The maps of the most important environ-

mental covariates can be found in Figure 7. The LSP metrics, notably LI—NDVI and the 

base NDVI value of the seasons 2014–2015 and 2015–2016, were found to be as important 

as the covariates that depict parent material (magnetic susceptibility) and topography 

(CNBL). LI—NDVI is calculated by integrating the function spanning from the beginning 

to the end of each season using an asymmetric Gaussian function [30] and has been suc-

cessfully associated with seasonal vegetation productivity [6,17,49]. The base level, which 

is defined as the averaged fitted minimum value of NDVI, has been reported as an efficient 

DSM covariate [21] and reflects the soil condition in which vegetation cycles are driven. 
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Figure 6. Random forest variable importance of the covariates assessed for the digital soil map. 

MS_B: Magnetic susceptibility of B horizons, CNBL: channel network base level, SPI: stream power 

index, SWI: saga wetness index, TPI: topographic position index, MRVBF: multiresolution valley 

bottom flatness, SOS_t: time for the start of the season, EOS_t: time for the end of the season, LOS_t: 

length of the season, BV_NDVI: base level value, TMS_t: time for the middle of the season, 

MV_NDVI: maximum value for the fitted function during the season, Amp_NDVI: seasonal ampli-

tude, LeftD: rate of increase at the beginning of the season (left derivative), RightD: rate of decrease 

at the end of the season (absolute value of right derivative), LI_NDVI: large seasonal integral, 

SI_NDVI: small seasonal integral, SOS_NDVI: value for the start of the season, EOS_NDVI: value 

for the end of the season. 
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Figure 7. Random forest most important covariate maps: MS: Magnetic susceptibility of B horizons, 

CNBL: channel network base level, LI_NDVI: large seasonal integral, BV_NDVI: base level value. 

Black spots in LI and BV maps (below zero values) indicate insufficient data to fit a seasonal func-

tion. 

3.4. Relationships between Rainfall and Vegetation Greenness for Each Soil Type 

A correlation analysis was performed using Spearman’s rank correlation to investi-

gate the relationship between median LI—NDVI values (which were identified as the 

most important LSP metric by random forest) and the accumulated seasonal rainfall. The 

analysis revealed that the soil type with the strongest correlation was RL, with a correla-

tion coefficient of 0.7 and a p-value of less than 0.05 (Table 1). This suggests that there is a 

strong relationship between the pasture greenness over RL soil and the seasonal rainfall. 

Table 1. Spearman’s rank correlation (Rho) between seasonal rainfall and large integrated NDVI for 

each soil class. 

Soil Type Rho p-Value 

Red-Yellow Latosol 0.4 0.05 

Red-Yellow Argisol 0.5 0.03 

Red Latosol 0.7 0.02 

Haplic Cambisol 0.4 0.04 

Figure 8 presents the complete time series of vegetation greenness based on the large 

integrated NDVI for each soil class. The vegetation response seems to depend on the ac-

cumulated rainfall in the previous season; a yearly scale can also be observed. It was ob-

served that dissimilar median large integrated NDVI values responses to rainfall season-

ality were present among all soil types, which reinforces the potential of such information 

as an environmental covariate in contrasting soils. 
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Figure 8. Rainfall seasonality (grey bars) and its relation with large integrated NDVI (lines) for each 

soil taxonomic class. RYL: Red-Yellow Latosol, RYA: Red-Yellow Argisol, RL: Red Latosol, HC: Hap-

lic Cambisol. 

The Red-Yellow Argisol soil type presented higher values of large integrated NDVI 

in the seasons of 2013–2014, 2015–2016, and 2019–2020. This fact is thought to be related 

to increasing clay content in the B horizon and the blocky structure due to the pedogenetic 

process (illuvial clay accumulation). This fact along with higher SOM might increase the 

water-holding capacity even during dry seasons. 

It is noteworthy that the Haplic Cambisols, the youngest and shallowest soil, exhib-

ited low stability concerning vegetation responses. It reached the highest values of large 

integrated NDVI in the season 2016–2017 due to rainfall accumulation in the previous 

season and the lowest values in the next driest season (2017–2018), despite having high 

topsoil SOM content, which would increase the water-holding capacity of the soil. 

The Red Latosol was the soil type more correlated with rainfall seasonality despite 

having high clay content. Latosols with oxidic mineralogy present a granular structure in 

the B horizon [46], and this structure is responsible for quite contrasting soil porous pop-

ulations influencing plant water availability: macropores between aggregates and mi-

cropores within aggregates [50]. Water is held strongly in micropores, decreasing water 

availability for plants. Conversely, gravity readily removes water from macropores. Red 

Latosol has very high clay content, but Sans [51] noted that the unsaturated hydraulic 

conductivity decreases sharply within about two weeks of water saturation. 

Thus, plant water availability was conditioned by soil class and reached its maximum 

expression during the period of 2017–2018 when decreasing water input produced the 

expected theoretical pattern. This fact was also verified by Méndez-Barroso et al. [52]. 

Previous research utilizing the integrated NDVI metric as a measure of seasonal 

productivity has revealed a correlation between soil moisture, clay content, and natural 

fertility [49,53]. As noted by Araya et al. [6], vegetation productivity is directly propor-

tional to rainfall until it reaches a saturation point. This pattern is illustrated in Figure 8, 

which highlights similar processes, particularly for the RL soil type. 

4. Discussion 

4.1. Soil Control on the Response of Vegetation Greenness to Rainfall 

Previous studies have confirmed that temporal variability of vegetation greenness is 

an effective covariate for digital soil mapping. Dematte et al. [15] found that analyzing the 

seasonal differences of NDVI can capture the influence of soil types on vegetation green-

ness, as different soil types reflect varying water dynamics in depth. Maynard and Levi 

[16] also verified that soil acts as the primary link between vegetation and climate feed-

back, further supporting the use of vegetation temporal variability as a DSM covariate. 
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However, these studies did not explicitly consider the temporal dimension of vegetation 

in a phenological sense. Our research addresses this gap by analyzing the performance of 

time-synthetic images of NDVI phenological metrics and their relationship with seasonal 

rainfall as conditioned by soil types. 

4.2. Suitability of LSP Data for DSM 

Our study found that phenological synthetic imagery used as a DSM environmental 

covariate was just as important as parent material and relief proxies. This means that LSP 

imagery has great potential for use in DSM. However, it is important to note that the NDVI 

temporal signal may not accurately reflect the effects of water availability itself, as soil 

fertility and pollution can also impact the interaction between soil type and vegetation 

greenness. This can modify the time-spectral signature [15,54], thus affecting the results. 

Additionally, this fact might be one of the main sources of unexplained variability in the 

accuracy assessment. Therefore, future research should focus on functional signal filtering 

to identify stronger temporal signatures. These might be affected by biological indicators 

such as intraspecific or interspecific competition or genotypic diversity. Since this study 

was performed only in soils under pasture, the extension of this manuscript’s findings 

might be limited by biological indicators such as intraspecific or interspecific competition 

or genotypic diversity, since these factors also influence plant phenophases [55] (Menzel, 

2002), which, in turn, might influence LSP. 

5. Conclusions 

This study investigated the effects of soil type on the response of vegetation green-

ness to rainfall in a seasonal context. Our research confirms that soil, in conjunction with 

rainfall seasonality, influences the temporal variability of vegetation greenness. The sea-

sonal dynamics of rainfall act as a trigger for soil–plant interaction, causing the most re-

sponsive temporal signature when transitioning from a steady to a low-water input con-

dition. While soil-forming factors such as parent material and topography are essential 

for soil classification and mapping, LSP metrics related to the availability of seasonal wa-

ter to plants, large integrated NDVI, and the NDVI base level are also significant, partic-

ularly for the Red Latosol (Ferralsol). The map production process supports the use of 

vegetation seasonal metrics derived from remote sensing, along with other soil-forming 

factors, as a reliable source of information for the production of digital soil maps. 
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