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ABSTRACT 
 

Although sentiment analysis for COVID-19 tweets is becoming popular, no study has mined a 
sentiment other than polarity. This study aims to extract ‘disaster’ sentiment by using various 
machine learning models, statistically validate sentiment markers extracted by deep learning, and 
discuss the potentials of ‘disaster’ as valid sentiment marker. 
A total of 7,613 disaster tweets from Kaggle site were utilized to train nine machine learning 
models. A total of 15,619 tweets in English sent from USA were downloaded using streaming API 
with keywords of Covid, and Omicron, respectively and were classified into disaster/non-disaster 
categories using the four best performing models: MNB, deep learning, USE and BERT. Principal 
component analysis, correlation analysis and regression analysis were performed to determine the 
psychometric properties. 
Cronbach Alpha for 13 sentiment markers was 0.71. All 4 machine learning markers were loaded 
in a factor. A higher level of unfavorable emotions (e.g., fear), a lower level of favorable emotions 
(e.g., joy), and a higher level of negative polarity were found during surging Omicron variants than 
early onset of COVID-19. The higher frequency of disaster tweets was found during surging 
Omicron variants than the early onset of COVID-19. 
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Our study revealed that disaster tweets were characterized to be a higher level of unfavorable 
emotions and negative polarity, and a lower level of favorable emotions. Since disaster as a 
sentiment marker was evidently reliable and valid, it should be a part of the sentiment analysis in 
describing the global health issues. 
 

 
Keywords: Machine learning; sentiment analysis; COVID-19; disaster; natural language processing; 

twitter mining. 
 

1. INTRODUCTION 
 
With over 192 million daily active users reported 
[1], Twitter provides a unique data source for 
public health researchers due to the real-time 
nature of the content and the ease of accessing 
and searching publicly available information. 
Specifically, Twitter data have been used in the 
areas of surveillance, detection of health 
problems, health promotion, and professional 
communication. For example, prior studies have 
successfully utilized Twitter users’ commentaries 
to investigate health promotion topics such as 
smoking cessation [2], dietary habits [3], fitness 
[4], social media as an education resource [5], 
and cancer screening [6]. Twitter has also been 
used among health agencies, government 
organizations, hospitals, and medical journals to 
disseminate information in a timely and up-to- 
date manner [7], resulting in a massive increase 
in tweets related to COVID-19 in a short time- 
frame. 
 
Throughout the COVID-19 pandemic, Twitter has 
been one of the most commonly used social 
media platforms for people worldwide to express 
their viewpoints and general feelings concerning 
the pandemic that has hampered their daily lives 
[8]. A plethora of studies related to the disease 
have been published since its outbreak using 
free, accessible, real-time data on Twitter, with 
topics including, but not limited to: dissemination 
of misinformation on COVID-19 [9-11], self- 
reported symptoms [12-15], mental health and 
emotional wellbeing [16-19], behaviors related to 
seeking global health care [20], and geo-
temporal analysis for dispersion of the disease 
[21]. 
 

Sentiment analysis, or opinion mining, for 
COVID-19-related tweets has been an 
emergingly popular research area related to 
Twitter mining. Sentiment analysis is defined as 
the process of identifying and extracting the 
subjective information from Tweets, including 
opinions, feelings about a particular topic or 
subject matter, or judgments [22]. The 
development of data science technology has 

allowed researchers to determine the emotional 
tone behind the messages regarding the COVID- 
19 pandemic in large volumes. Major topics on 
Twitter sentiment analyses related to COVID-19 
include the general public opinion on COVID-19 
[23-25], government policies such as social 
distancing and mask policies [26,27], lockdowns 
[28], efficacy of hydroxychloroquine [29], and 
vaccinations [30-32]. In these studies, either rule-
based methods [30,31] or machine learning 
techniques [23,26,32] were used to extract the 
sentiments. Only a limited number of studies, 
however, utilized both methods [25,33]. 
Moreover, no study has extracted a sentiment 
other than polarity (positive, neutral, or negative) 
from Twitter data, such that machine learning 
models in previous studies were trained with data 
labeled as polarity (negative or positive). The 
COVID-19 pandemic can be regarded as a 
disaster that combines a biological threat with 
various vulnerabilities, such as the organizational 
and response capacity of health systems, 
overcrowding, informality, social work practices, 
and public transport [34]. Therefore, it is highly 
recommended that disaster should be 
considered as another sentiment beyond polarity 
to be captured by sentiment analysis on COVID-
19. 
 
Although Twitter data demonstrates promising 
prospects in public health research with the 
increasing trend of studies using Twitter data, the 
validity of Twitter data is of major concern 
stemming from computer-generated spam, 
topically irrelevant information, unorthodox 
abbreviations, and misspelled words. Despite the 
development of various self-correcting computer 
algorithms to capture, clean, analyze, and 
visualize Twitter data, validation remains an 
important issue. One previous study by Bovet 
and colleagues [35] attempted to validate Twitter 
data on opinions of supporting presidential 
candidates by comparing relevant Twitter data 
with national polling estimates. However, no prior 
study has determined the psychometric 
properties of the sentiment data extracted by 
Twitter mining. Thus, this study aimed to 1) 
extract ‘disastrous’ sentiment from tweets 
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regarding COVID-19 by using various machine 
learning models; 2) statistically validate 
sentiment markers extracted by machine 
learning; and 3) discuss the possibilities of the 
disaster’ sentiment as a valid sentiment marker 
in describing global health issues such as the 
COVID-19 pandemic. Specifically, with respect to 
statistical validation the study aims to answer the 
following questions: 
 

(1) Internal consistency (reliability): How well 
does the sum score of the selected 
sentiment markers extracted by deep 
learning and rule-based methods capture 
the expected score in the entire domain? 

(2) Construct validity: How well do the 
sentiments generated by deep learning 
measure the same construct or idea? 

(3) Criterion related validity: How well do the 
sentiment markers extracted by deep 
learning correlate with those from rule- 
based methods? and 

(4) Responsiveness: How well do sentiment 
markers generated by deep learning detect 
the change in sentiment of COVID-19? 

 

2. MATERIALS AND METHODS 
 
2.1 Overview of the Processes 
 
Sentiment analysis is a useful way to decipher 
the mood and emotions of the general public that 
are expressed in social network platforms (e.g., 
Twitter for the current study) [22]. These 
sentiments are useful for a better understanding 
of various events and the impact they have 
caused. The flow chart in Fig. 1 presents the 
processes of sentiment analysis for tweets 
related to COVID-19. The public opinion 
extraction on major health issues was performed 
through machine learning (i.e., left side of the 
flow chart) and lexicon-based methods (i.e., right 
side of the flow chart). For opinion extraction 
through machine learning, a total of 7,613 
labeled tweets were loaded from the Kaggle site 
and cleaned using the Natural Language Toolkit 
and regular expression modules. The cleaned 
data were used to train and validate the models 
of four machine learning algorithms, three deep 
learning models, and two transfer learning 
models with pre-trained encoders. The 
performance of the trained models was 
evaluated by four metrics (accuracy, precision, 
recall and F1), and we selected the best 
performing models to predict the test data (i.e., to 
classify the tweets into disaster or not). Lexicon- 
based sentiment analysis was conducted only for 

the test data including 154,719 tweets captured 
using Twitter's streaming application 
programming interface (API). The VADER 
(Valence Aware Dictionary for Sentiment 
Reasoning) function was used to extract polarity 
(positive, neutral and negative). National 
Research Council Canada (NRC) sentiment 
lexicons were used to extract the Plutchik’s 
emotions (anger, fear, trust, anticipation, disgust, 
joy, sadness, and surprise) [36] from the tweets. 
Results from the machine learning and lexicon- 
based sentiment analysis were combined to 
conduct further analyses. 

 
2.2 Data 
 

2.2.1 Training data 
 

Unlike prior studies on Twitter sentiment mining 
where data labeled as positive or negative were 
used for model training, this study used disaster 
data for the same purpose. To build models to 
classify the tweets into disaster and non-disaster 
categories, we trained the dataset named 
“Natural Language Processing with Disaster 
Tweets” [37], where a total of 7,613 tweets were 
labeled into two groups: 3,271 as disaster and 
4342 as non-disaster, and included ID, 
keywords, location, text, and target. Before 
training, we used the Python module of Natural 
Language Toolkit (NLTK) and regular expression 
(RE) for data cleaning to remove emojis, 
usernames, links, and punctuations in the text of 
the tweets. Texts excluding “stop” words, which 
do not convey any meaning (e.g., 'is', 'are', 'and,' 
etc.), were lemmatized to identify the base form 
of a word, called Lemma (e.g., 'go' from 'went') 
based on the dictionary. For this processing, all 
the tweets were tokenized before applying all the 
methods for data cleaning. These were then 
detokenized and converted into NumPy arrays. 
The data were randomly split into two sets for 
training (90%) and validation (10%). 
 

2.2.2 Test data 
 

A total of 66,627 tweets were captured using 
Twitter's streaming application programming 
interface (API) method. After filtering to include 
only tweets written in English sent from the U.S., 
15,619 tweets were utilized for the analysis. All 
test data were cleaned using the same 
procedure that we used for training data. 
 

2.2.2.1 COVID wave I (Early onset of COVID-19) 
 

A total of 1,531 qualified tweets with the keyword 
“COVID-19” were captured between August 20 
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and August 21, 2020. During this period, a total 
of 46,022 new cases and 1,100 deaths were 
reported in a day on average, which were 
decreasing from the peak on July 17, 2020. 
Google search returned no salient news related 
COVID-19 during this period. 
 

2.2.2.2 COVID wave II (Surging omicron variants) 
 

A total of 14,088 qualified tweets with the 
keywords “COVID-19” and “omicron” were 
captured for 3 days from December 29, 2021. 
During this period, 344,470 new cases and 1,383 
deaths were reported in a day on average. New 
cases, but not deaths, were rapidly surging due 
to the Omicron variant during this period. 
Mainstream media released news related to 
COVID-19 during this time frame, with some 
example headlines including. “The latest wave of 
COVID-19 cases is ‘unlike anything we’ve ever 

seen,’ doctor says” [38]; “U.S. Covid cases rise 
to pandemic high as delta and omicron circulate 
at same time” [39]; and “U.S. airlines grapple 
with Omicron-related disruptions on last day of 
the year” [40]. 
 

2.3 Machine Learning Model Building 

 
For some baseline models which would be 
utilized as a benchmark for further experiments 
to build upon, we created a Scikit-Learn Pipeline 
using the term frequency-inverse document 
frequency (TF-IDF) formula to convert our words 
in tweets to numbers, and then model them with 
the algorithms of Multinomial Naïve Bayes, Ridge 
Classifier, and Extreme Gradient Boosting and 
Multi-layer Perceptron classifier. These were 
chosen by referring to the Scikit-Learn machine 
learning map [41]. 

 

 
 

Fig. 1. Processes of the opinion mining 
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Regarding the model building for deep learning, 
we started with a single layer dense model. The 
model took our texts and labels as input, 
tokenized the texts, created an embedding, 
found the average of the embedding (using 
Global Average Pooling), and then passed the 
average through a fully connected layer with one 
output unit and a Sigmoid activation function. A 
long short term-memory (LSTM)-powered 
recurrent neural network (RNN) was included in 
our second deep learning model. LSTM is a type 
of RNN that addresses other RNNs with 
additional cells, inputs, and outputs. LSTM takes 
a very similar structure to the dense model but 
the difference is in adding the LSTM layer 
between embedding and dense layers. Gated 
recurrent units (GRUs), which is similar to a 
LSTM with a forget gate, was modeled as our 
last deep model. GRUs have been shown to 
exhibit better performance on certain smaller and 
less frequent datasets because of its fewer 
parameters than LSTM. GRU has a very similar 
structure to LSTM but the difference is in 
including GRU layer instead LSTM layer between 
embedding and dense layers. Our embedding 
layer yielded a 128-dimensional vector for each 
word. Each deep learning model used its own 
trained embeddings because reusing the 
embedding would involve data leakage between 
models, resulting in an uneven comparison 
eventually. 
 
Universal Sentence Encoder (USE) and 
Bidirectional Encoder Representations from 
Transformers (BERT) were used to train our data 
as transfer learning models. There are several 
substantial benefits to leveraging pre-trained 
models: simple to incorporate, able to achieve 
solid model performance quickly without 
substantial task-specific architecture 
modifications, require not as much labeled                
data and versatile use cases from transfer 
learning, able to predict, and able to extract 
feature. 
 
The USE released in 2018 encodes text into high 
dimensional vectors that can be used for text 
classification, semantic similarity, clustering and 
other natural language tasks. The model is 
trained and optimized for greater-than-word 
length text, such as sentences, phrases, or short 
paragraphs. Unlike the embedding we created 
for the deep learning models which encoded at 
the word level, the USE created a whole 
sentence level embedding. Its input is variable 
length English text and the output is a 512 
dimensional vector. The model for the study was 

built with the USE as our embedding layer which 
passed through a fully connected layer with a 64- 
dimensional vector with the Rectified Linear Unit 
(ReLU) activation function and then output layer 
with a sigmoid activation function. The trainable 
parameters were only in our two dense output 
layers. In other words, the USE weights were 
kept frozen and used as a feature-                 
extractor. 
 
Our other transfer learning model used BERT, 
wherein the BERT is pre-trained from unlabeled 
data extracted from a corpus with 800 million 
words and English Wikipedia with 2,500 million 
words, respectively. BERT is designed to pre- 
train deep bidirectional representations from 
unlabeled text by jointly conditioning on both left 
and right context in all layers. Thereby, the pre- 
trained BERT model can be fine-tuned with just 
one additional output layer to create state-of-the- 
art models for a wide range of tasks. Where each 
word has a fixed representation under Word2Vec 
and GloVe regardless of the context within which 
the word appears, BERT takes into account the 
context for each occurrence of a given word 
which allows the production of context-informed 
word embeddings capturing other forms of 
information that result in more accurate feature 
representations. This in turn results in better 
model performance. Our model including BERT 
was pre-trained with a 768-dimension vector with 
the addition of a single output dense layer. All 
machine learning models were trained with 
TensorFlow in Python. 
 

2.4 Model Evaluation and Selection 
 
The four main metrics that were used to evaluate 
the models’ performance of classification include 
accuracy, precision, recall, and F1. Accuracy is 
defined as the percentage of correct predictions 
for the test data, which is calculated by dividing 
the number of correct predictions by the number 
of total predictions. Precision is the ratio of 
correctly predicted observations to total 
observations. It can answer how many tweets 
are actually disaster-related among all tweets 
that were predicted as disaster. Recall is the ratio 
of correctly predicted positive observations to all 
observations in actual class. It can answer how 
many the model classified as disaster from all the 
tweets that truly were disaster. F1 is the 
weighted average of precision and recall. A good 
F1 score (close to 1) means that the model 
produced low false positives and low false 
negatives, which allows us to correctly identify 
real threats. 
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Table 1 represents the evaluation metrics by the 
models that we trained. Overall, the performance 
of machine learning models was fairly good in 
classifying the tweets into disaster or non- 
disaster. While the performance of the multi-layer 
perceptron classifier was relatively lower, better 
performance was shown in the Multinomial Naïve 
Bayes, Feed-forward neural network dense 
model, USE, and BERT. The four best 
performing models were selected to classify the 
test data: multinomial Naïve Bayes, feed- forward 
neural network dense model, transfer learning 
models using USE and BERT. 
 

2.5 Lexicon-based Sentiment Analysis 
 
Lexicon-based sentiment analyses were 
conducted for the entire test dataset including 
154,719 tweets captured by using Twitter's 
streaming application programming interface 
(API) method. The VADER function was used to 
extract polarity (positive/negative). VADER is a 
model used for text sentiment analysis that is 
sensitive to both polarity (positive/negative) and 
intensity (strength) of emotion. The sentiment 
score of a text can be obtained by summing up 
the intensity of each word in the text. The 
vaderSentiment library in python was used to 
estimate the compound scores, which is a metric 
that calculates the sum of all lexicon ratings that 
have been normalized between -1 (most extreme 
negative) and +1 (most extreme positive). The 
NRC emotion lexicons of the tidytext package in 
R were used to extract possible emotions such 
as anger, fear, and trust. The NRC sentiment 
lexicon categorizes words into mutually non-
exclusive sentiments such as anticipation, anger, 
disgust, joy, fear, surprise, sadness, and trust 
(i.e., the Plutchik wheel of emotions) [36]. The 

package returns the word counts per               
emotional category per tweet. Different types of 
diagrams, such as bar plots, line graphs, and 
Word Cloud, were implemented to understand 
patterns between our datasets. For visualization, 
we used many pre-built libraries available in 
Python. 
 

2.6 Statistical Analysis Plan 
 
We conducted additional statistical analyses with 
the combined results from rule- and machine 
learning-based opinion mining. All statistical 
analyses were conducted using SAS 9.4. 
Cronbach’s coefficient alpha was estimated to 
investigate an internal consistency of the 13 
markers extracted from the opinion mining, on a 
scale from zero to one with a value closer to one 
being a more reliable measurement instrument 
and showing higher internal consistency. A 
principal component analysis was performed to 
determine if there were any multi-dimensional 
structures (i.e., possible multi-domains) among 
markers extracted from opinion mining. Solutions 
for factors were examined using varimax 
rotations of the factor loading matrix. 
 
A series of generalized linear models (GLM) 
were performed to determine any mean 
difference between health issues in emotions 
and sentiments extracted from rule-based 
opinion mining. A series of logistic regression 
analyses were performed to determine any 
difference between health issues in opinions 
(disaster or not) extracted from machine 
learning-based opinion mining. Pearson 
correlation coefficients were estimated to 
determine the correlation of markers between 
machine learning and rule-based sentiment. 

 
Table 1. Evaluation of performance of machine learning, deep learning and transfer learning 

models 
 

 Machine learning Deep learning Transfer learning 

MNB XGBoost RC MLP Dense LSTM GRU USE BERT 

Accuracy 0.81 0.78 0.78 0.74 0.81 0.78 0.77 0.81 0.81 

Precision 0.82 0.79 0.78 0.74 0.81 0.78 0.77 0.81 0.82 

Recall 0.81 0.78 0.78 0.74 0.81 0.78 0.77 0.81 0.81 

F1 0.80 0.77 0.78 0.74 0.81 0.77 0.77 0.80 0.81 
MNB: Multinomial Naïve Bayes; RC= Ridge Classifier; XGBoost = Extreme Gradient Boosting; MLP= Multi-layer 

Perceptron classifier; USE=Universal sentence encoder; Dense model= Feed-forward neural network dense 
model; LSTM= Long short-term memory; GRU= Gated Recurrent Unit; BERT= Bidirectional Encoder 

Representations from Transformers 
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3. RESULTS 
 

3.1 Reliability of Sentiment Markers 
 

The Cronbach’s Alpha for the 13 markers that 
were extracted by rule- and machine learning- 
based opinion mining was 0.71, which was 
deemed as having good internal reliability. 
Principal component analysis was used to 
identify and compute composite scores for the 
factors underlying the 13 markers. Initial Eigen 
values indicated that the first three factors 
explained 30.8%, 18.5%, and 11.5% of the 
variance, respectively. The three-factor solution 

was selected for additional factor analyses 
because of the ‘leveling off’ of eigenvalues on the 
scree plot after three factors. Table 2 presents 
the factor loadings and communalities based on 
a principal components analysis with varimax 
rotation for the 13 markers extracted by rule- and 
machine learning-based opinion mining. The 
negative emotions including “anger,” “disgust”, 
“fear,” “sadness,” as well as the VADER score 
were loaded in the first factor; all four markers 
generated by machine learning were loaded in 
the second factor; and positive emotions 
including “anticipation,” “joy,” “surprise,” and 
“trust” were loaded in the third factor. 

 
Table 2. Factor loading of 13 opinion markers extracted by rule- and machine learning- based 

methods 
 

  Factor 1  Factor 2  Factor 3  

Anger 0.793 0.161 0.140 

Fear 0.774 0.351 0.106 

Sadness 0.774 0.334 0.048 

Disgust 0.752 -0.126 0.090 

Vader -0.578 -0.258 0.320 

DENSE 0.095 0.823 0.027 

MNB 0.021 0.792 -0.050 

BERT 0.194 0.670 -0.010 

USE 0.279 0.655 -0.040 

Joy -0.093 -0.125 0.833 

Anticipation 0.104 -0.062 0.779 

Trust 0.000 0.075 0.706 

Surprise 0.418 0.073 0.594 

 
Table 3. Correlation coefficients between machine learning-based and rule-based opinion 

markers 
 

 MNB DENSE USE BERT 

MNB 1 0.58*** 0.21*** 0.23*** 

DENSE 0.58*** 1 0.30*** 0.28*** 

USE 0.21*** 0.30*** 1 0.35*** 

BERT 0.23*** 0.28*** 0.35*** 1 

Anger -0.04*** 0.12*** 0.19*** 0.05*** 

Anticipation -0.02* 0.01 0.09*** 0.03** 

Disgust -0.07*** 0.01 0.20*** 0.14*** 

Fear 0.06*** 0.21*** 0.30*** 0.17*** 

Joy -0.05*** -0.03** -0.10*** -0.09*** 

Sadness 0.06*** 0.16*** 0.22*** 0.23*** 

Surprise -0.05*** 0.11*** 0.20*** 0.10*** 

Trust 0.01 0.09*** 0.00 -0.06*** 

Vader -0.12*** -0.17*** -0.27*** -0.10*** 
*p-value 0.05-0.01; ** p-value 0.01-0.001; *** p-value <0.001 
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Table 4. Difference in machine learning-based opinion markers between early onset and 
surging omicron variants 

 

 Early onset of 
COVID-19 

Surging omicron 
variants 

Least square mean difference 
(95% CI) 

 n % n %  

Multinomial Naïve 
Bayes

†
 

295 19.3 3854 27.4 0.46(0.29~0.62) *** 

DENSE model
†
 446 29.1 5313 37.7 0.39(0.25~0.53) *** 

Universal Sentence 
Encoders

†
 

434 28.4 3996 28.4 0.00(-0.14~0.14) 

BERT
†
 306 20.0 3725 26.4 0.36(0.2~0.52) *** 

Vader (mean, SD)
‡
 -0.06 0.55 -0.06 0.53 0.01(-0.03~0.04) 

†
 Logistic regression analyses conducted to determine the difference in prevalence of tweets being classified into 

disaster. 
‡
ANOVA analysis conducted to determine any mean difference in the level of positivity *** p-value <0.001 

 

3.2 Correlation of Sentiment Markers 
between Machine Learning and Rule- 
Based Methods 

 
Table 3 shows the correlation of markers 
between machine learning rule-based sentiment 
The markers generated by machine learning 
were positively associated with unfavorable 
emotions including “anger”, “fear”, “sadness” and 
“disgust,” and negatively associated with Vader 
scores, and favorable emotions including 
“anticipation,” “joy,” “surprise,” and “trust”. 
However, “trust” and “anticipation” had no 
significant association with USE and                    
BERT. 
 

3.3 Difference in Machine Learning- 
Based Sentiment between Health 
Issues 

 
While the dense model classified the highest 
number of tweets to be disaster (37% for entire 
dataset, 29% during the early onset of COVID- 
19, and 38% during surging Omicron variants), 
only 26% (20% during the early onset of COVID- 
19, and 27% during surging Omicron variants) 
were classified as disaster by the BERT model. 
Table 4 shows the prevalence of tweets 
predicted to be categorized as disaster by four 
ML models by each dataset. A higher prevalence 
of tweets categorized as disaster was                    
found during the surging Omicron variants 
compared to the early onset of COVID-19.               
This pattern persisted regardless of prediction 
models with one minor exception: no difference 
was found when USE was used as the   
prediction model. There was a non- significant 
difference in mean Vader scores between the 
early onset of  COVID-19 and surging Omicron 
variants. 

4. DISCUSSION AND CONCLUSION 
 

Our study showed that select machine learning 
models classified 26% - 37% of tweets as a 
disaster, with more disaster tweets classified by 
the neural network dense model (37%) than the 
other three machine learning models (27% by 
multinomial naïve Bayesian model, 28% by USE, 
and 26% by BERT). This is comparable to 35% 
and 40-45% of negative tweets that were 
classified by support vector machine [26] and 
CNN-LSTM [42], respectively. Although the 
frequency of disaster tweets varied by select 
models, the patterns in different frequencies of 
disaster tweets among the health issues (i.e., 
early onset of COVID-19, surging Omicron 
variants) persisted regardless of the models used 
for this study. A higher frequency of disaster 
tweets was found during the surging Omicron 
variants than during the early onset of              
COVID-19. The results from our machine 
learning models may be reliable such that tweets 
collected during the surging Omicron variants 
included more unfavorable emotions than those 
collected during the early stages of COVID-19. 
However, the frequency of emotions in fear and 
disgust, and polarity of VADER scores did not 
differ between the early onset of COVID-19 and 
surging Omicron variants, which may be due to 
people’s perceived low severity in Omicron 
variants juxtaposed with people’s perceived 
surprise in surging cases. 
 

All 13 sentiment markers extracted from rule- 
and machine learning-based methods were 
internally consistent and unidimensional: the 
estimated Cronbach alpha was an acceptable 
level at 0.71, implying that the markers were only 
measuring one latent variable or dimension (i.e., 
sentiment). Further investigation using principal 
component analysis revealed that all four 
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disaster markers generated by machine learning 
were loaded in a factor, implying that disaster 
markers constituted a unique domain beyond 
Plutchik’s emotions and polarity. While polarity 
comprised of a domain with unfavorable 
emotions including fear, disgust, sadness, and 
anger, favorable emotions such as surprise, 
anticipation, joy, and trust made up the other 
domain. These results suggest that sentiment 
markers including disaster have a clear construct 
validity as the markers are measuring their own 
construct. 
 
Another value of disaster as a valid maker for 
sentiment analysis is in its responsiveness to 
change of the COVID-19 pandemic over time. 
Responsiveness is defined as the ability of a 
measure to detect changes over time in the 
measured construct [43]. Since the early onset of 
COVID-19 when a total of 46,022 new cases 
were reported in a day on average, new cases of 
COVID-19 rapidly increased by 344,470 in a day 
during the period of the surging Omicron variant. 
It is, therefore, expected that the sentiment also 
changed as new cases did. Our data showed 
that a higher frequency of disaster tweets was 
found during the surging Omicron variants 
compared to the early onset of COVID-19 while 
the level of polarity (VADER scores) did not differ 
between two periods. That is, disaster markers 
as well as emotion markers successfully 
detected the change in sentiment between the 
early onset of COVID-19 and the surging 
Omicron variant, implying that the disaster 
marker, unlike polarity, is well-responsive to the 
changes in sentiment. Further studies are 
needed to determine the responsiveness of 
polarity sentiment extracted from machine 
learning in comparison to that of rule-based 
polarity. 
 
Our findings should be interpreted in the context 
of specific limitations. The streaming API used 
for the study did not identify social bot accounts 
where automated accounts are created by 
industry groups and private companies that aim 
to influence discussions and promote specific 
ideas or products [44]. Further research is 
needed to determine the inter-issue difference 
after excluding tweets created by social bot 
accounts. 
 
The second limitation of our study is the 
exclusion of emojis from the analyses. Global 
emoji use has reached an all-time high, with 
more than one in five tweets containing an emoji 
compared to one-in-ten tweets in 2014 [45]. 

Emojis are defined as “visual representations of 
an emotion, idea or symbolism” and may 
enhance the exchange of emotional information 
by providing additional social cues beyond those 
found in a text message and can be used to 
further augment the meaning of a message as a 
whole [46]. It is not new to use emojis to convey 
ideas about health or disease. During the 
pandemic, Emojis were used in quite expressive 
ways using various symbols of smiley faces to 
express emotions ranging from confusion to 
sadness, alarm, frustration, and anxiety [47]. 
Emojis as self-reported emotions should thus be 
considered an important part of sentiment 
analysis. It is, therefore, important for future 
studies to understand users' emotions with the 
use of Emojis. 
 
Another limitation is that our study may be 
subject to issues related to representativeness of 
study samples. We included only tweets in 
English sent from the U.S. While language is 
clearly indicated in tweets, location is not. Only 
0.85% of all users [48] and 3.1% of all original 
tweets [49] were estimated to have an exact 
location (e.g., country code). We filtered out the 
tweets based on information in the location field 
of tweets, which was not clean. Of a total of 
66,627 tweets written in English, 34% included 
‘Not Applicable’ or a missing value in this field in 
our data. Some tweets indicated only a city 
name, which made it difficult to identify the 
country where the city belonged to (e.g., 
Birmingham in UK or USA?). Our filtering 
procedure identified only 23% tweets sent from 
the U.S. Thus, tweets sent from the U.S. may be 
under-filtered because of massive ‘Not 
Applicable’ location statuses, duplication of city 
names across the country, etc. It is also 
important to note that the keyword method for 
retrieving data that our study adopted may have 
excluded tweets from users who tweeted about 
the issues without using our targeted keywords, 
such that the inclusion of other search terms may 
have modified the results. Another issue related 
to representativeness is the unbalanced time 
span for data collection across the two health 
issues. We collected early onset COVID-19 
Twitter data for two days compared to surging 
Omicron Twitter data for five days. It is unknown 
that the time spent for data collection is 
appropriate to capture the representative 
samples per health issue. 
 
Despite these limitations, our study revealed that 
a higher frequency of disaster tweets was found 
during the surging Omicron variants than during 
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the early onset of COVID-19. This pattern 
persisted regardless of the machine learning 
models used for this study, although the models 
classified a varied frequency of disaster tweets. 
Disaster tweets were characterized to be a high 
level of unfavorable emotions and negativity and 
a lower level of favorable emotions. To our best 
knowledge, this is the first study to include 
disaster in sentiment analysis of COVID-19. It 
was reliable and valid in describing the global 
health issues. Not only was it internally 
consistent with polarity and emotions (internal 
reliability), but it also measured a unique 
sentiment other than emotions and polarity 
(construct and criterion validity). It also achieved 
better responsiveness to the changes of 
sentiment in COVID-19 than polarity 
(discriminant validity). Therefore, it is highly 
recommended that disaster should be a part of 
sentiment analyses in describing global health 
issues. 
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