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Abstract 
 

Background: Generalized Linear models are mostly fitted to data that are not correlated. However, very 
often data that are collected from health and epidemiological studies are correlated either as a result of the 
sampling methods or the randomness associated with the collection of such data. Therefore, fitting 
generalized linear models to such data that produce only fixed effects could lead to over dispersion in the 
model estimates. 
Objectives: The objective of this study is to fit both generalized linear and generalized linear mixed 
models to a correlated data and compare the results of the two models. 
Methods: Logistic regression is employed in fitting the generalized linear model since the dependent 
variable in the study is bivariate whilst the GLIMMIX model in SAS is used to fit the generalized linear 
mixed model. 
Results: The generalized linear model produces over dispersion with higher errors among the parameter 
estimates than the generalized linear mixed model. 
Conclusion: In dealing with a more correlated data, generalized linear mixed model, which can handle 
both fixed and random effects, is preferable to generalized linear model.  
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1 Introduction 
 
The GLIMMIX procedure is an add-on procedure in SAS/STAT software which is a product in SAS 9.1 on 
the Windows platform. This procedure is currently downloadable for the SAS 9.1 release from Software 
Downloads at support.sas.com. 
 
The GLIMMIX procedure performs estimation and statistical inference for generalized linear mixed models 
(GLMMs). A generalized linear mixed model is a statistical model that extends the class of generalized 
linear models (GLMs) by incorporating normally distributed random effects. A GLM can be defined in terms 
of several model components: 
 

 a linear predictor � that is a linear combination of regression coefficients: �� = ��
′� 

 a link function �(. ) that relates the mean of the data to the linear predictor, �(�[��]) = �� 
 a response distribution for �� from the exponential family of distributions 

 
The exponential family of distributions is very broad and contains many important distributions. For 
example, the binary, binomial, Poisson, negative binomial, normal, beta, gamma, and inverse Gaussian 
distribution are members of this family. A special case of the generalized linear model arises when the Yi are 
normally distributed and the link function is the identity function. The resulting models are linear regression 
and analysis of variance models with normal errors. 
 
Generalized linear models apply when the data are uncorrelated. However, in many studies, like in our 
present study, observations exhibit some form of dependency. For example, measurements of different 
attributes are taken from the same mother, observations are collected over time, sampling or randomization 
is carried out hierarchically, and so forth. 
 

2 Objectives  
 
The main objective is to use the GLIMMIX procedure [1,2] to propose a joint modeling of correlated binary 
and continuous data as pertains in our present study where we have both binary variables such as antenatal 
care and locality, and continuous variable like age in the data. 
 
Other specific objectives are; 
 

1. To propose a joint model involving correlated binary and continuous data using the GLIMMIX 
procedure 

2. To compare the GLM with the model by the GLIMMIX procedure using the same data. 
 

3 Methods  
 
The study employed data based on the third round Multi Indicator Cluster Survey (MICS) conducted by 
Ghana Statistical Service [3]. The issues regarding this data include the following; 
 

1. The data exhibit some randomness (e.g., selection of the households, women were asked several 
questions spanning between two years – survey period, the classifications for ages and parity were 
also done randomly) 

2. There is high correlation between variables such as age and parity (number of children ever born) 
3. The data contain both categorical and continuous variables (e.g., antenatal care and mothers’ age) 
4. The data show a prediction for a binary variable. 
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To address the deficiencies of generalized linear models and linear mixed models outlined above, we employ 
the GLIMMIX procedure to model our data so as to come up with a more efficient model compared with the 
generalized linear model. A model that can address both fixed and random effects issues since the data is 
non normal and exhibit correlation among some parameters especially age and parity. PROC MIXED is 
another way of dealing with both fixed and random effects; however, it is appropriate only when the data is 
normal unlike our present study where the data being dealt with is not normal in which the prediction for the 
binary variable is bounded. 
 
Our earlier investigation dealt with a binary outcome modelling approach using PROC GENMOD with the 
link function, [4,5]. The analysis is now extended to PROC GLIMMIX which involves both marginal (R-
side) and random (G-side) effects – random intercept model. The GLIMMIX technique fits statistical models 
to data with non-constant variability or correlations and where the response is not necessarily normally 
distributed by using RMPL. The problem is that GLMs are fitted to uncorrelated data that have only fixed 
effects. 
 
The questions are; What does one do when there is correlation and random effects in the data? Which model 
do we apply to the data? Should we still fit a GLM to the data? 
 
The GLMs are applied on uncorrelated data. (It assumes a fixed linear process fitted to normal or non-
normal data but has no random effect). However, in many studies, as is the case in our present study, there 
may be some amount of dependency among observations. For instance, measuring different attributes from 
the same mothers over a period of time may cause dependency. In fact, in our earlier analysis, age and parity 
are found to be highly correlated. 
 
The GENMOD procedure in SAS fits GLMs for independent data using maximum likelihood. The 
procedure also handle data that are correlated using the marginal GEE approach of [6-10]. 
 
The LMMs are improvement on GLM which assumes a linear process with fixed and random components 
fitted to normal data. However, the LMMs is handicapped when the data is non-normal (especially when the 
response variable is binomial as in our present study and in many health and epidemiology studies). 
 
The models fit by the GLIMMIX technique extend the GLM by allowing correlations among the responses. 
This can be achieved with an inclusion of random effects in the linear predictor and/or by directly modeling 
the correlations among the data. 
 
The GLIMMIX technique differentiate the two procedures as “G-side” and “R-side” random effects. This 
term draws on a common specification of the linear mixed model [11-19]. 
 

� = �� + �� + �                                                                                                                              (1) 
 
The G-side random effects are computed the same way by adding random effects to the linear predictor. This 
provides a model of the form  
 

(�[�|�]) = �′� + �′�                                                                                                                       (2) 
 
A model with only R-side random effects, [20-23] is known as a marginal model in that no random effects 
exists on which the response could be conditioned. In such a model, the mean is specified as  
 

(�[�]) = (�) = � ′�                                                                                                                          (3) 
 
When these elements are combined, we can represent the models fit by the GLIMMIX approach as follows:  
 

[�|�] = ���(�� + ��) = ���(�) = �              
 



 
 
 

Ofori et al.; AJPAS, 8(3): 31-37, 2020; Article no.AJPAS.59281 
 
 
 

34 
 
 

���[�] = �              
 
[�|�] = ��/����/�                                                                                                                            (4) 

 
where ���(. ) represents the inverse link function [24,25]. 
 

3.1 Justification for random intercept model 
 

1. The linear mixed model assumes that the random effects follow a normal distribution and the 
variance is not a function of the mean. The constant variance assumption is not applicable when 
analysing a zero/one trait, such as LBW (0) or NWB (1). Here, the response variable is Binomial. 
Hence, for a predicted LBW incidence, the variance is (1−�), which is a function of the mean. 

2. The normality assumption does not hold for a binary trait. The result is a random variable that can 
take two values only, one or zero. Contrary, the normal distribution is a bell-shaped curve that can 
take any real number. 

3. Predictions from linear mixed models can handle any value whilst predictions for a binary variable 
is bounded (0,1) or cannot take negative values for a count variable. 

4. More importantly, if data are correlated, a standard GLM will show over-dispersion in relation to 
the binomial distribution. The best way to deal with this over-dispersion is by adding the G-side 
random effects to indirectly model the correlation which is influenced by distributing the random 
effects. 

 
As a result of these shortcomings associated with the GLMs and the LMMs, coupled with the dependency 
(correlation) among the variables, for instance age and parity, there is the need to come up with a model that 
will address the identified challenges. 
 

4 Results 
 
Table 1 compares the Generalized linear model and the Generalized linear mixed model (or Random 
intercept model). Since the data collection processes involved some randomness we sought to explore the 
data by comparing the GLM which deal with uncorrelated data and GLMM which invokes correlation 
processes. It is realize in both cases, the random intercept model using the GLIMMIX procedure predicts 
better than the GLM as shown in Table 1. This means that in a well correlated data such as in epidemiology 
and health studies where data are mostly correlated as is the case in our present study, random intercept 
model using the GLIMMIX procedure is the preferred choice. Comparing the two models, it can easily be 
deduced from the fit statistics that the errors are far lower with the proposed model (GLMM) than the GLM. 
The greater variability exhibited by the parameter estimates in the GLM indicates over dispersion. The 
GLMM on the other hand shows perfect correlation between age and parity, fitting very well to the data. 
This shows that fitting a GLM to a more correlated data will lead to over dispersion in the binomial model. 
 
The results from our random intercept model using the GLIMMIX procedure produced better results with 
minimal errors compared with the logistic regression model. This indicates that the randomness 
(dependency) among some of the covariates is an issue among epidemiology and health data. This stands to 
reason that in dealing with such data sets, both fixed effects and random effects must be looked at especially 
where normality assumptions are violated as is the case in our present study. 
 

5 Discussion 
 
The random intercept model enhances the results of the generalized linear model by taking into 
consideration the randomness in the data. The results show some dependencies among some variables, 
especially parity and age. The model indicates greater variability in the GLM than the random intercept 
model. Comparing both GLM and GLMM, it is realized in both cases, the random intercept model using the 
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GLIMMIX procedure predicts better than the GLM as shown in Table 1. This means that in a well correlated 
data such as in epidemiology and health studies where data are mostly correlated as is the case in our present 
study, random intercept model using the GLIMMIX procedure should be the preferred choice. The GLMM 
also provides age especially age above 35 as significantly associated with low birth weight. The GLM 
however, shows over dispersion in the results as there are greater variability among the parameter estimates 
compared with the random intercept model, which shows perfect correlation between age and parity. 
 

Table 1. Comparison of GLM and GLMM 
 

Parameters Generalized linear model Generalized linear mixed model 
Estimates 
(β) 

Std. 
error 

Hypothesis test Exp. (β) Estimates 
(β) 

Std. 
error 

t 
Value 

Pr>|t| 
Wald 
Chisq 

Sig. 

Intercept -0.912 1.7216 0.281 0.596 0.402 0.3844 0.19750 1.95 0.0519 
locality=1 0.066 0.1688 0.153 0.696 1.068 4.16E-08 0.00003 0 0.9990 
Locality =2 0 - - - 1 0 . . . 
ANC=1 0.151 1.1049 0.019 0.892 1.162 0.01234 0.12730 0.10 0.9233 
ANC=2 0 - - - 1 0 . . . 
Age 0.205 0.1026 4.008 0.045 1.228 0.02830 0.011070 2.56 0.0144 
Age squared -0.003 0.0016 3.196 0.074 0.997 -0.00036 0.000168 -2.14 0.0379 
Parity1*age -0.049 0.0274 3.234 0.072 0.952 -0.00134 0.002053 -0.65 0.5163 
Parity2*age -0.035 0.0271 1.645 0.200 0.966 -0.00134 0.002053 -0.65 0.5163 
Parity3*age -0.028 0.0268 1.118 0.290 0.972 -0.00134 0.002053 -0.65 0.5163 
Parity4*age -0.025 0.0261 0.944 0.331 0.975 -0.00134 0.002053 -0.65 0.5163 
Parity5*age -0.013 0.0264 0.253 0.615 0.987 -0.00134 0.002053 -0.65 0.5163 
Parity6*age -0.014 0.0268 0.272 0.602 0.986 -0.00134 0.002053 -0.65 0.5163 
Parity7*age -0.029 0.0255 1.278 0.258 0.972 -0.00134 0.002053 -0.65 0.5163 
Parity8*age -0.020 0.0346 0.348 0.555 1.021 -0.00134 0.002053 -0.65 0.5163 
Parity9*age -0.036 0.0275 1.740 0.187 0.964 -0.00371 0.002696 -1.38 0.1761 
Parity10*age 0    1 0   . 
(Scale) 1         
Model fit statistics 
 -2Res Log Likelihood AIC AICC BIC CAIC HQIC 
GLM 236.428 500.857 501.176 573.589 587.589 - 
GLMM 340.54 372.540 372.960 455.50 471.500 403.650 

 

6 Conclusion 
 
The random intercept model enforced the importance of giving credence to randomness in epidemiology and 
health data such as what pertains in our present study, which usually have some correlations among some of 
the covariates since information are collected on individual subjects over a period of time. The results of this 
model identified the dependency among some variables and compared to the logistic model provided better 
results with fewer errors. The GLM also showed over dispersion with greater variability in the parameter 
estimates than the GLMM, giving an indication that GLM performs poorly when fitted to a more correlated 
data. 
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