Journal of Experimental Agriculture International

Evaluation of Grain Yield of Two Varieties of Cowpea (*Vigna unguiculata*) Subjected to Four Agricultural Practices in Gùrué District, Mozambique

Germias Horácio António¹, José Bofana^{1,2*}, Francisco Gimo³ and Sueco Albino Cipriano^{1,2}

¹Universidade Católica de Moçambique-Faculdade de Agricultura, Cuamba-Niassa, Mozambique. ²Centro de Investigação Agraria e Desenvolvimento Sustentável, Cuamba-Niassa, Mozambique. ³National Cooperative Business Association, CLUSA International, Gùrué, Mozambique.

Authors' contributions

This work was carried out in collaboration among all authors. Author GHA designed the study and the experimental protocol and conducted the field experiment. Author JB designed the topic, managed the analysis of the study and prepared the manuscript. Author FG assisted in the conduction of the experiment and author SAC contributed to the statistical analyses and revision of the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JEAI/2019/v36i530247 <u>Editor(s):</u> (1) Dr. Mohamed Fadel, Professor, Microbial Chemistry, Department Genetic Engineering and Biotechnology, Division National Research Center, Egypt. <u>Reviewers:</u> (1) Raúl Leonel Grijalva-Contreras, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Mexico. (2) Dr. Virendra Singh, School of Agricultural Science and Engineering, IFTM University, India. Complete Peer review History: <u>http://www.sdiarticle3.com/review-history/46780</u>

> Received 25 November 2018 Accepted 03 February 2019 Published 29 May 2019

Original Research Article

ABSTRACT

To evaluate the effect of four agricultural practices on grain yield, two varieties (IT-16 and IT-18) of cowpeas were tested in the agricultural year 2016/2017 an experimental field where the following agricultural practices were tested: tillage, tillage + mulch, zero tillage and zero tillage + mulch. The randomized complete blocks design, a scheme consisting of two factors: agronomic practices and varieties was used. The plant height, number of pods per plant, weight of 100 seeds and grain yield in kg ha⁻¹ were considered as parameters for analysis. From the results, it was concluded that for the yield of grain of different varieties under study, the variety IT-18 subjected to zero tillage + mulch and the variety IT-16 subjected to tillage had better performance achieving 2600.00 kg ha⁻¹ and 1725.00 kg ha⁻¹ respectively; therefore, recommended to the farmers.

*Corresponding author: E-mail: b.bofana@gmail.com;

Keywords: Agricultural practices; cowpea (Vigna unguiculata); grain yield; varieties; Gùrué.

1. INTRODUCTION

Nowadays, supplying the crescent worldwide population index with adequate food, when people are getting low grain yields, with food scarcity and additional nutrients becoming one of the major factors facing the challenges of food security, is the major focus in the field of agriculture [1]. For instance, there are different agronomic practices with great effect on the quality of the harvested crops [2].

The most known agronomic practices are the tillage, zero tillage and mulch. While tillage is a system of managing crop residue on the soil surface with minimum or no tillage [3]; the zero tillage is conceptualized as a tillage system in which soil disturbance is reduced to sowing operations and traffic only, and where weed control must be achieved by chemical means involving higher water content in the top soil layer, reduced soil aeration, stronger mechanical resistance to root penetration, smaller soil temperature amplitudes, and a different pattern of nutrient distribution in the soil profile [4].

The mulch systems offers a great agro-ecological potential providing innumerous services such as water conservation, enhancement of crop yield and improvement of the soil ecology [5]. It conserves the moisture in the soil, thus increasing the yield of crops by about 20% [6].

Apart from the climatic conditions and soil ecology, the yield of many crops is also seriously affected by the agronomic practices, varieties utilized and the application or not of fertilizers. For the farmers who experience challenges of using fertilizers due to the costs, the usage of varieties which have the capacity of fixing Nitrogen into the soil such as soybean (Glycine max) and cowpea, is_the better alternative. The cowpea. scientifically known as Viana unguiculata [7] is an annual legume originated in Africa and widely expanded to Asia and America [8]. In fact, in the selected study area, this crop is farmed by small scale farmers for subsistence and for research activities by local research companies. Many studies are being developed to increase the actual yield acquired by the smallscale farmers, which has been reported to be less than 100 kg ha⁻¹. The national average is at 250 kg ha⁻¹ [9]. It is estimated that, worldwide, the total area under production amounts to about 12.5 million hectares with an annual production of over 3 million tones [10]. Central and West Africa amounts to 64% of the area with about 8 million hectares followed by about 2.4 million hectares in Central and South America, 1.3 million hectares in Asia and about 0.8 million hectares in East and Southern Africa [10]. Production level in countries like Brazil, Cuba, Ghana, Mozambique, Nigeria, Sri Lanka, Sudan, Zambia and Zimbabwe is increasing due to availability of improved cowpea varieties [10].

This study aimed to evaluate the grain yield of 2 varieties of cowpea subjected to 4 agricultural practices so as to recommend the best agronomic practice with the ability to produce a better grain yield in cowpea varieties under Mozambique conditions.

2. MATERIALS AND METHODS

The experiment was carried out in the fields of the sheepfold of NCBA CLUSA International company, in the region of Tetete, District of Gùrué, located to the North of Zambezia Province, in the region of high Zambezia (Fig. 1); which is situated in a region dominated by the rock of the plateau zone and the mountainous area whose altitude varies between 500 to 1000m. The average annual rainfall is around 1,995.7 mm, mean annual evapotranspiration is 1,226.7 mm. The average annual temperature is 21.9°C. The highest temperature is registered in the month of November (32.5°C) and the lowest in the month of July (12°C), [11].

The experimental design used was the randomized complete block design in bi-factorial scheme (4x2); the first factor composed of four agricultural practices (tillage, tillage + mulch, zero tillage and zero tillage + mulch) and the second composed of two varieties (TI-16 and TI-18) where the combination of the two factors were given 8 repeated treatments in 4 blocks, totaling 32 plots.

Each experimental unit occupied an area of 20 m^2 with 5 simple lines each. The separation between the parcels was 0.5m and between blocks 1 m. The productive area was $640m^2$ and the total area of the test was $826.5 m^2$. The description of the treatments is shown in Table 1.

During the experiment, data about plant height (cm), number of pods per plant, 100 seed weight (g) and grain yield (kg ha⁻¹) were collected. The data collected from the experiment were organized in Microsoft Excel and analyzed using

the statistical package SISVAR for the analysis of variance (ANOVA). The data that were significantly differentiated in the ANOVA, were submitted to the Tukey test at 5% of significance for the comparison of averages of the treatments. To determine the ANOVA; the schema of analysis of variance for experiment in randomized blocks for 2 factors was used.

3. RESULTS AND DISCUSSION

3.1 Growth and Phonological Parameter (Plant Height)

The results of plant height showed in Table 2, reveals that the varieties as well as the treatments (agronomic practices) were differentiated when compared with their averages. However, the variety IT-18 presented

a good average result, especially in the practice tillage+mulch where the plants in this practice are revealed to be tall (with an average of 101.43 cm) when compared to others.

The results obtained in this study, are in agreement with the results verified by [12] while studying the growth and yield response of cowpea (*Vigna unguiculata* L. Walp.) to integrate the use of planting pattern and herbicide mixtures in Wollo, Northern Ethiopia. The average of plant height registered was between 86.0 cm to 96.0 cm. These results also show that the different agronomic practices applied may have significant influence on plant height when compared to the study developed by [13] where the results obtained were below the average of 70.0 cm.

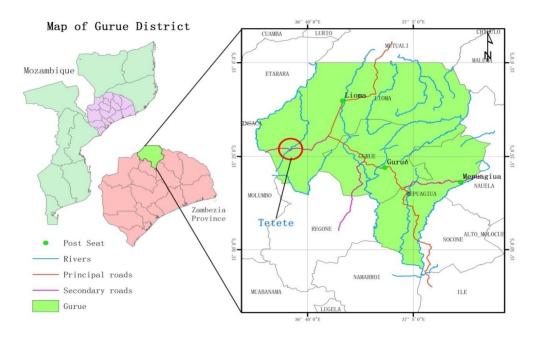


Fig. 1. Location of the study area. This figure shows the location map of the experiment, which is Tetete site in Gùrué district, Zambezia province

Treat	Code	Agronomic practices
1	T1	Zero tillage + var. IT-16
2	T2	Zero tillage + Mulch + var IT-16
3	Т3	Tillage + var. IT-16
4	T4	Tillage + Mulch + var IT-16
5	T5	Zero tillage + var. IT-18
6	Т6	Zero tillage + Mulch + var. IT-18
7	Τ7	Tillage + var. IT-18
8	Т8	Tillage + Mulch + var. IT-18

Agronomic practices	Varietie	S	
	IT-16	IT-18	
Tillage	69.43 aB	62.37 aA	
Zero Tillage	88.10 bA	84.18 bA	
Zero Tillage + Mulch	82.12 bA	90.63 bB	
Tillage + Mulch	83.93 bA	101.43 cB	
General Average	82.77		
CV (%)	5.12		
DMS	5.91		

Table 2. Results of the plant height in two varieties analyzed under different agronomic practices

*Means followed by the same lower-case letter in the columns<u></u> did not present significant differences between treatments at 5% level of significance and means followed by the same capital letter in the lines did not present significant differences between the varieties at the level of 5% of significance

Table 3. Results of the average number of pods per plant in two varieties analyzed under different agronomic practices

Agronomic practices	Var	ieties
-	IT-16	IT-18
Tillage	9.95 aA	16.33 aB
Zero Tillage	15.20 bA	19.85 abB
Zero Tillage + Mulch	15.13 bA	21.23 bcB
Tillage + Mulch	15.90 bA	23.90 cB
General Average		17.17
CV (%)		10.71
DMS		3.63

*Means followed by the same lower-case letter in the columns did not present significant differences between treatments at 5% level of significance and means followed by the same capital letter in the lines did not present significant differences between the varieties at the level of 5% of significance

Table 4. Results of the average hundred seed weight in two varieties analyzed under different agronomic practices

Agronomic practices	Vario	eties
-	IT-16	IT-18
Tillage	12.60 aB	9.33 aA
Zero Tillage	12.90 aB	11.60 bA
Zero Tillage + Mulch	12.90 aB	10.28 aA
Tillage + Mulch	12.93 aB	9.10 aA
General Average	11.4	44
CV (%)	5.3	36
DMŠ	1.2	21

*Means followed by the same lower-case letter in the columns, did not present significant differences between treatments at 5% level of significance and means followed by the same capital letter in the lines, did not present significant differences between the varieties at the level of 5% of significance

3.2 Number of Pods per Plant

Significant differences (5%) from Tukey analysis were verified in the analysis of the number of pods per plant (Table 3). In this parameter, the variety IT-18 showed better results when compared with the variety IT-16 and the treatment tillage+mulch had better performance in both varieties, registering 15.90 and 23.90 for IT-16 and IT-18 respectively.

As expected from the plant height, the tillage showed lowest results when compared with the other treatments in both varieties and results of low average of number of pods were verified by [14] in their study of the effect of four different tillage practices on cowpea performance. Considering that the plant height is an important parameter linked with the productivity of the crops [14] the results obtained in this study can also be justified based on the results obtained on plant height.

Agronomic practices	Vari	eties	
	IT-16	IT-18	
Tillage	1,725.0 bcA	1,862.5 bA	
Zero Tillage	1,950.0 cB	718.78 aA	
Zero Tillage + Mulch	656.0 aA	2,600.0 cB	
Tillage + Mulch	1,502.5 bA	1,737.5 bA	
General Average		1594.06	
CV (%)	12.47		
DMS	391.83		

Table 5. Results of the average of grain yield in two varieties analyzed under different agronomic practices

*Means followed by the same lower-case letter in the columns, did not present significant differences between treatments at 5% level of significance and means followed by the same capital letter in the lines, did not present significant differences between the varieties at the level of 5% of significance

Table 6. Correlation between the different analyzed parameters with the grain yield

Parameters	Plant height	N° of pods per plant	Hundred seeds weight
Plant height			
N° of pods per plant	0.669		
100 seeds weight	0.114	0.092	
Grain yield	0.010	-0.204	0.037

In other study developed by [15] about the tillage and mulching effect on growth and yield of cowpea grown following rice in the Post-Monsoon season of Northeastern Thailand, the values of number of pods per plant were low when compared to the results obtained here, even on the treatment where the mulch were applied. However, in this study, it was reported that the tillage affected the number of pods per plant. Based on this result, it can be inferred that the number of pods per plant does not depend only on the agronomic practices applied, but also on the varieties under analysis.

3.3 Hundred Seed Weight (Grams)

For the results of hundred seeds weight (in grams) (Table 4), it can be seen that the different varieties showed different responses, the variety IT-16, which registered lowest values of plant height and average of number of pods, presented better results in this parameter. However, for this parameter, the treatments zero tillage and zero tillage+mulch, showed better results for both varieties.

The results obtained in our study, are in agreement with the results observed by El-Shaieny [16] where they found an average of hundred seed weight of about 11 grams for one of the varieties under analysis. However, those results are low when compared to the results obtained by El-Shaieny [16] while studying the Stability analysis of components characters in cowpea (*Vigna unguiculata* (L.) Walp), where the results obtained were based on an average of 18 grams.

On the other hand, the results obtained in this study are superior to the results observed by [17], whereby in their evaluation of the effect of tillage practice on growth and yield of three selected Cowpea varieties (same as the practices under analysis in this study), obtained averages between 7-10 grams. The highest average of hundred seeds weight were verified in the agronomic practice convectional tillage. From these results, it can be concluded that the hundred seeds averages do not rely only on the agronomic practices, but also on the varieties.

3.4 Grain Yield (kg ha⁻¹)

Considered to be one of the major elements leading to improved results of grain yields; the hundred-seed weight showed a different trend in this study. The variety which had the better results of hundred seeds weight (IT-16) had a low grain yield average compared to the IT-18. The best results of grain yield were recorded in the variety IT-18 with an average of 2,600 kg ha⁻¹. This value was observed in the treatment zero tillage + mulch. On the other hand, the variety IT-16 showed a high grain yield of 1,950 kg ha⁻¹ in the treatment zero tillage (Table 5).

These results are in agreement with the results reported by [17] who recorded a grain yield of a value between 890 kgha⁻¹ and 1,720 kgha⁻¹, where the more valuable results were observed in zero tillage and tillage+mulch agronomic practices. However, for the grain yield, in this study, the varieties as well as the agronomic practices had a major contribution.

In other approach, it is documented that the zero tillage can reduce the input costs and Labour, and conserve the soil, however it can lead to the negative effects on plant growth due to the soil compaction [18]. This affirmation is not in agreement with the results from the current study, where the high yield averages in both varieties (IT-16 and IT-18) were observed in the agronomic practices in which the zero tillage was used.

3.5 Correlation between Variables

A positive relationship between the plant height, number of pods per plant, 100 seeds weight and grain yield were observed. However, the number of pods per plant and grain yield were not correlated. The relationship observed between hundred seeds weight and grain yield was positive, though it does not mean that an increment on the value of one will increase the value of the other one. This can be confirmed from the results of hundred seed weight (Table 4) and grain yield (Table 5), especially in the variety IT-18 where the mean of hundred seed weight was high in agronomic practice zero tillage, but then again registered lowest grain yield mean.

4. CONCLUSION

Based on the results, it can be concluded that in Gùrué District, Mozambique, the cowpea grain yield is not only affected by the agronomic practices, but also by the varieties applied. Based on these findings, the usage of a combination of the varieties IT-16 and IT-18 in agronomic practice zero tillage and zero tillage + mulch respectively is recommended since they are the combinations which showed more greater results.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Olusanya AO, Gideon OO, Emmanuel TK Akinjide MA, Akash T, Ademayowa AO.

Yield and growth characteristics of Cowpea (*Vigna unguiculata*) as affected by prior heat stress and nutrient addition. African J. Agric. Res. 2016;11(43):4269– 4276.

- 2. Putnam BD, Orloff S, Ackerly T. Agronomic practices and forage quality. Changes. 2000;10–12.
- Unger PW, TM McCalla. Conservation tillage systems. Adv. Agron. 1980;33(C): 1–58.
- 4. Baeumer K, Bakermans WAP. Zero-tillage. Adv. Agron. 1973;25:77–123.
- Erenstein O. Smallholder conservation farming in the tropics and sub-tropics: A guide to the development and dissemination of mulching with crop residues and cover crops. Agriculture, Ecosystems and Environment. 2003; 100(1–3):17–37.
- Maduakor HO, R Lal, OA Opara-Nadi. Effects of methods of seedbed preparation and mulching on the growth and yield of white yam (*Dioscorea rotundata*) on an ultisol in south-east Nigeria. F. Crop. Res. 1984;9(C):119–130.
- Haruna IM, A Usman. Agronomic efficiency of cowpea varieties (*Vigna unguiculata L. Walp*) under varying phosphorus rates in Lafia, Nasarawa State, Nigeria. Asian J. Crop Sci. 2013;2(5):209–2015.
- Iruhvwu D. Production guidelines for cowpeas. Dep. Agric. For. Fish. South Africa. 2015;1:24.
- Walker T, Cunguara B, Avaliação dos Rumos da P, D do Feijão Nhemba no Programa. Feed the Future. da USAID, em Moçambique em; 2016.
- 10. Ngalamu T.Cowpea Production Handbook. 2015.
- 11. da M, Estatal A. Perfil Do Distrito De Gurue Província Da Zambézia; 2005.
- Mekonnen G, JJ S. Growth and yield response of cowpea (*Vigna unguiculata L. Walp.*) to integrated use of planting pattern and herbicide mixtures in Wollo, Northern Ethiopia. Adv. Crop Sci. Technol. 2016; 04(06).
- Science B, Aikins SHM, Afuakwa JJ. Growth and dry matter yield responses of cowpea. ARPN J. Agric. Biol. Sci. 2008; 3(586):50–54.
- Afuakwa JJ, Aikins SH. Effect of four different tillage practices on cowpea performance. World J. Agric. Sci. 2010; 6(6):644–651.

António et al.; JEAI, 36(5): 1-7, 2019; Article no.JEAI.46780

- Polthanee AS, Wannapat. Tillage and mulching affect on growth and yield of cowpea grown following rice in the postmonsoon season of northeastern Thailand. Kasetsart J. Nat. Sci. 2000;34(2):197–204.
- EI-Shaieny AAH, Abdel-Ati YY, El-Damarany AM, Rashwan AM. Stability analysis of components characters in cowpea (*Vigna unguiculata (L.) Walp*). J. Hortic. For. 2015;7(2):24–35.
- R. Khaemba, J. Kinama, G. Chemining'wa. Effect of tillage practice on growth and yield of three selected cowpea varieties. J. Exp. Agric. Int. 2017;14(3):1–11.
- Ewansiha SU, Udensi, Kamara A. Effect of tillage on the growth and yield of cowpea varieties in Sudan savanna agroecology of Northern Nigeria. Annu. Res. Rev. Biol. 2015;5(3):275–284.

© 2019 António et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle3.com/review-history/46780