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ABSTRACT 
 

The salophen ligand and its complexes of Ni(II), Co(II), Cu(II), and Mn(II) are explored in terms of 
synthesis, conductivity; magnetic measurements, elemental analysis, FT-IR; electronic spectra, 
and antibacterial activities. The 3D molecular modeling structures of the ligand and its metal 
complexes are obtained by using Argus lab software. The experimental data shows that the ligand 
is tetradentate and bonded to the metal ion via N2O2 donor atoms. Antibacterial activity of the 
synthesized compounds are checked against the microbes Bacillus cereus and Escherichia coli. 
The metal complexes exhibit antibacterial activity higher than that of the free ligand. This works 
contributes to the science of Schiff base compounds, in addition to stimulating the synthesis of new 
ligands and its complexes for the future advancement of coordination chemistry. 
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1. INTRODUCTION 
 
Schiff bases are considered as a very important 
class of compounds in organic chemistry. These 
are suitable candidates for the formation of 
coordination compounds with several metal ions 
via azomethine and phenolic groups. The 
general structural feature of Schiff base and its 
compounds is the azomethine group with a 
formula RHC=NR1 where R and R1 are alkyl, 
aryl, heterocyclic or cyclo alkyl groups which can 
be variously substituted. 
 
Azomethine (C=N) linkage in the compounds is 
very important for biological activity, numerous 
azomethine derivatives have been reported to 
have notable antifungal, anticancer and 
antibacterial activities [1-3]. Therefore, they have 
attracted great attention of the scientists to the 
synthesis of metal complexes with Schiff bases 
and also because of their easy formation and 
strong metal binding ability [4].  
 

Schiff base ligands and its complexes can be 
employed for metal biosite modelling, nonlinear 
optical materials, model of reaction centres of 
metalloenzymes and luminescence materials [5, 
6]. More importantly, Schiff base compounds 
have also played a vital role in the development 
of coordination chemistry [7,8].  
 

Metal complexes involving derivatives of 
salicylaldehyde and aromatic or aliphatic amines 
are of massive significance because of their 
potential use as catalyst for some catalytic 
reactions [9-13] and biological activities [14-16] 
etc. Salophen ligand offers a tetradentate 
chelating system to form stable metal complexes 
and thus they have very strong � →  �∗ 
intermolecular interactions. Metal complexes of 
salophen-type ligands have widespread 
applications as heterogeneous and 
homogeneous catalysts in many organic 
transformation reactions [17].  
 

The 3D molecular modeling of compounds 
provides a three-dimensional image which 
permits a chemist to better see the manner in 
which atoms and molecules can interact. 
These models can be utilized to interpret existing 
observations or to predict new chemical behavior 
of the compounds. 
 

With this background, the present work deals 
with the synthesis and characterization of 
salophen ligand and its complexes with Ni (II), 

Co (II), Cu (II), and Mn (II). The geometry of the 
synthesized compounds were confirmed by 
energy optimization through molecular 
mechanics calculation supported in Argus Lab 
software program. The antibacterial activity of the 
synthesized compounds were also examined 
herein. 
 

2. MATERIALS AND METHODS 
 

2.1 Reagents 
 

All the starting reagents and materials used in 
this work were of standard analytical grade from 
Merck and Loba and used without further 
purification. Melting points were measured on a 
digital melting point apparatus. Elemental 
analyses for CHN were performed using a Vario 
EL cube [Germany elements (Elemental) 
analysis system]. UV-vis spectra were obtained 
on UV-Visible spectrophotometer [JASCO 503] 
using a quartz cuvette. FT-IR spectra were 
recorded on a FT-IR spectrophotometer [JASCO, 
FT-IR/4100] Japan using KBr pellets as the 
standard reference. ESI-MS spectra were done 
with an Agilent Technologies MSD SL Trap mass 
spectrometer with ESI source coupled with an 
1100 Series HPLC system. Magnetic 
susceptibilities of the metal complexes were 
measured using a Sherwood Scientific MX Gouy 
magnetic susceptibility apparatus.  
 

2.2 Synthesis of Schiff Base Ligand, L 
[C20H16N2O2] 

 
To a stirring solution of o-Phenylenediamine 
(0.32 g, 3 mmol) dissolved in about 20 mL 
ethanol, a solution of salicylaldehyde (0.64 mL, 6 
mmol) in 10 mL of ethanol was added drop wise. 
This has resulted an orange color solution, which 
was refluxed for three hours (Scheme 1). The 
reaction mixture was cooled and kept for 
evaporation at room temperature leading to 
isolation of solid orange product. The product 
thus formed was filtered and washed several 
times with ethanol and dried in oven under 60ºC 
[18,19]. The product was found to be soluble in 
DCM, DMF and DMSO. 
 

2.3 General Methods for the Synthesis of 
Metal Complexes  

 

1 mmol of Schiff base ligand (L) dissolved in 10 
mL ethanol was taken in a two necked round 
bottom flask and kept on magnetic stirring. After 
that, 1 mmol of metal salts (nickel acetate 
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tetrahydrate for Ni-complex, cobalt acetate 
tetrahydrate for Co-complex, copper acetate 
monohydrate for Cu-complex and manganese 
chloride tetrahydrate for Mn-complex)           
dissolved in 20 mL of ethanol was added 
dropwise to the stirring solution. Then the 
reaction mixture was refluxed for about three 
hours. Aiming to remove the traces of unreacted 
starting materials, the complexes were then 
filtered and washed several times with                 
ethanol and diethyl ether. Finally, the product 
was dried in oven under 60ºC. It is important to 
note that all the synthesized complexes were 
soluble in DCM, DMF and DMSO. The proposed 
structure of the metal complex is illustrated in 
Fig. 1. 
 

2.4 Metal Weight Estimation 
 

A known weight of the metal complex was taken 
into a conical flask and concentrated H2SO4 (500 
L) was added to it. It was fumed down to 
dryness and the process was repeated. 
Concentrated HNO3 (500 L) and HClO4 (500 
L) were then added and the mixture was fumed 
to dryness. The process of adding acids and 
fuming down to dryness was continued until 
there was no black materials. 100 mL distilled 
water was added to dissolve the residue. Finally, 
the weight of the metal was estimated 
complexometrically [20] and gravimetrically using 
EDTA (Ethylenediamine tetra acetic acid) and 
DMG (Dimethyl glyoxime) respectively. Excellent 
agreement of results were found.  

2.5 Molecular Modeling Studies 
 
The computational study of the synthesized 
compounds were done using molecular 
calculation with ArgusLab 4.0.1 version software. 

 
2.6 Antibacterial Activity Study 
 
Antibacterial activity was checked by the Agar-
ditch method [21]. The in vitro antibacterial 
screening effects of the examined compounds 
were tested against Bacillus cereus and 
Escherichia coli. The compounds were dissolved 
in dimethyl sulfoxide (DMSO) to get final 
concentration of 5 mgmL

-1
. In order to activate 

the bacterial strain, it was inoculated in 25 mL of 
Mac Conkey agar and incubated for 24 h at 
37ºC. Activated bacterial strain solution was 
prepared in normal saline (0.9% NaCl solution). 
The bacterial density was adjusted to 0.5 
McFarland standard units. Mueller-Hinton agar 
was transferred over sterile 90 mm Petri dishes. 
Then 1 mL of activated bacterial strain solution 
was inoculated into the media at 40-45ºC. The 
medium was permitted to solidify. Fine well was 
made with the help of cork borer in the plates 
and then the plates was filled with test solution 
(synthesized compounds dissolved in DMSO 
solution). Controls were run for the solvent and 
each bacteria. The plates were then incubated at 
37ºC for 24 h. The inhibition zones produced by 
the tested compounds were measured at the end 
of the incubation period. 

 

 
 

Scheme 1.  Synthesis of Schiff base ligand, L [C20H16N2O2] 
 

 
 

Fig. 1.  Proposed structure of the synthesized complexes 
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3. RESULTS AND DISCUSSION 
 

3.1 Synthesis 
 

The Schiff base ligand, L was prepared in good 
yield from the condensation reaction of 
salicylaldehyde and o-phenylenediamine in a 2: 1 
stoichiometric ratio. Treatment of the Ni(II), 
Co(II), Cu(II) and Mn(II) salts with the ligand L, 
formed complexes corresponding to 1:1 metal-
ligand ratio. Physical and analytical data of 
studied compounds are presented in Tables 1 
and 2. 
 

3.2 Molar Conductivity Measurements 
 

The molar conductance values of 10-3 M solution 
of the metal complexes in DMSO are presented 
in Table 2. The low molar conductance value 
revealed that all the metal complexes were non-
electrolyte in nature [22]. 
 

3.3 Elemental Analysis 
 

The micro analysis data of the synthesized 
compounds are given in Table 2. The analytical 
data suggest that all the complexes are 
mononuclear. The data also reveal that metal to 
ligand ratio for the complexes is 1:1. Moreover, 
these data also supports the proposed structure 
of the ligand and complexes. 
 

3.4 FT-IR Studies 
 
FT-IR spectrum of the studied compounds are 
shown in Figs. 2-6. IR spectrum of the free 
ligand, L was compared with the spectra of the 
complexes to determine the binding mode of the 
ligand to metal in the complexes. Characteristic 
IR peaks of the ligand and its metal complexes 
are given in Table 3. From the IR spectrum it can 
be seen that, the diagnostic spectral bands of the 
ligand appeared at 1638 and 1298 cm

-1
 due to 

C=N and C–O vibrations, respectively. The 
characteristics azomethine stretching frequency 
at 1638 cm

-1
 of the free ligand was shifted to 

lower frequencies by some extent upon 
complexation suggesting coordination of Schiff 
base through azomethine nitrogen [23]. The 
strong band of phenolic C-O stretching vibration  
observed at 1298 cm

-1
 of the ligand was shifted 

towards lower frequencies on complexation, 
indicating phenolic oxygen atom in Schiff base 
took part in complex formation [24]. The 
coordination through the azomethine nitrogen 
and phenolic oxygen to metal atom were further 
supported by the appearance of additional M-N & 
M-O vibrations in the region 761-753 cm

-1
 and 

536–601 cm
-1

, respectively in the IR spectra of 
metal complexes. The broad band appeared in 
the region 3434-3436 cm

-1
 together with new 

band in the region 631- 640 cm
-1

 in the spectra of 
the metal complexes confirmed the presence of 
coordinated water molecules. This suggests an 
octahedral geometry for all the complexes. 
 

3.5 ESI-mass Spectra 
 
The ESI-Mass spectra of the ligand and 
complexes are presented in Fig. 7. The obtained 
m/z values are similar to the formula weight 
(Table 3) which further supports the proposed 
structure of the synthesized compounds. 
 

3.6 UV-visible Spectra and Magnetic 
Measurements 

 
The electronic spectra of the ligand, L and all the 
complexes were recorded in DMSO at ambient 
temperature (Fig. 8). UV-visible spectral data are 
given in Table 3. The absorption band at 272 nm 
of the Schiff base ligand is due to benzene 
� →  �∗ transition [25]. Another band at 334 nm 
is attributed to the � →  �∗ transition of the non-
bonding electron located on azomethine nitrogen 
atom of the ligand. 
 

Usually, three different absorption bands are 
observed for an octahedral Ni(II) ion [26]. In this 
work, the electronic spectrum of the Ni(II) 
complex is well-matched with an octahedral 
geometry. Three absorption bands were 
observed for the Ni(II) complex at 264, 377 and 
478 nm corresponding to the 3T1g(P) → 3A2g(F), 
3T1g(F) → 

3
A2g(F) and 

3
T2g(F) → 

3
A2g(F) 

transitions, respectively. On the basis of 
electronic spectral bands, an octahedral 
geometry is therefore proposed for the Ni(II) ion. 
The complex is paramagnetic with a magnetic 
moment of 3.7 B.M at room temperature. 
 

In the UV-visible spectrum of the Co (II) complex, 
absorption peaks are observed around 262, 309, 
424 nm regions due to 4T1g (F) → 4T1g (P), 4T1g 
(F) → 

4
A2g (P), and 

4
T1g (F) → 

4
T2g (F), transitions 

respectively. The electronic spectral peak 
positions and high magnetic values (4.6 B.M) 
indicates an octahedral configuration for the 
complex CoL [26,27]. 
 

The electronic spectra of the copper complex 
(CuL) show a band at 263 nm due 
to 2B1 g → 2Eg and two peaks at 323 and 
420 nm assigned to d-d transitions and a charge 
transfer band, respectively, of an octahedral 
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Fig. 2. IR spectrum of the ligand, L 
 

 
 

Fig. 3. IR spectrum of the complex, NiL 
 

geometry [28,29]. The hexa-coordinated Cu(II) 
ion with d

9
 electronic configuration usually 

prefers distorted octahedral geometry, which is a 
direct consequence of Jahn–Teller effect [30]. 
Thus, octahedral complexes usually exist with a 
set of four strongly and two weakly coordinating 
ligands. Further confirmation was done by 
magnetic moment value 1.96 BM, which is 
consistent with proposed octahedral geometry of 
the complex, CuL [31,32]. 

 
Mn (II) complexes display three bands 263, 331 
and 409 nm assignable to 

4
A1 g (4G) 

→ 
6
A1 g, 

4
T2 g→

6
A1 g (4G) and 

4
T1 g→ 

6
A1 g (G) 

transitions, which lie in the same range as 
reported for octahedrally coordinated Mn(II) ion 
[33]. The magnetic moment, 4.88 BM is an 
additional evidence for an octahedral structure.  

 
From the electronic spectral and magnetic 
moment data of the synthesized compounds, it 
can be concluded that all of the metal complexes 
show an octahedral geometry in which ligands 
act as tetradentates. 
 

3.7 Molecular Modeling Studies 
 
The computational study of the compounds gives 
a clear idea about the three-dimensional 
arrangement of different atoms in the molecules. 
The probable geometry of the ligand, L and 
complexes were evaluated using molecular 
calculation with ArgusLab 4.0.1 version software 
[34,35], presented in Figs. 9 and 10, respectively. 
The ligand structure was built and geometry 
optimization was performed using quantum 
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mechanics based AM1 (Austin Model 1) 
approximation and also molecular orbital 
calculations were done. AM1 showed final self 
consistent field (SCF) energy, final geometrical 
energy and heat of formation for the synthesized 
ligand, -88203.1869, -88387.6244 and 47.7269 
kcal/mol, respectively. After the geometry 
optimization by Universal Force Field (UFF) 
technique [36-38], the final geometrical energy of 
the ligand, L was 58.5771kcal/mol. The electron 

density surfaces of highest occupied molecular 
orbitals (HOMO) and lowest unoccupied 
molecular orbitals (LUMO) for the ground state of 
the synthesized ligand were obtained using AM1 
[Fig. 9 (b) and (c)]. On electrostatic potential 
(ESP) mapped electron density surface of L [Fig. 
9(d)], red color shows the highest electron 
density region which is around phenolic O-atoms 
and mixed red and violet colors around 
azomethine N-atoms indicates the second

 

 
 

Fig. 4. IR spectrum of the complex, CoL 
 

 
 

Fig. 5. IR spectrum of the complex, CuL 

 
Table 1. Physical data of the ligand, L and its metal complexes 

 

Compound Empirical Formula FW (g/mol) Colour (%yield) m.p. (⁰C) 
L C20H16N2O2 316.35 Orange (83%) 190 
NiL C20H18NiN2O4 409.06 Red (78%) >300 
CoL C20H18CoN2O4 409.30 Brown (84%) >300 
CuL C20H18CuN2O4 413.91 Brown (80%) >300 
MnL C20H18MnN2O4 405.31 Pink (82%) >300 
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Fig. 6. IR spectrum of the complex, MnL 
 

Table 2. Analytical data of the compounds 
 

Compound 
 

Found (Calculated) (%) µeff  (B.M.) Conductivity (µScm-1) 
M C H N 

L - 76.03 
(75.93) 

5.02 
(5.10) 

8.98 
(8.86) 

- - 

NiL 14.12 
(14.35) 

58.34 
(58..72) 

4.56 
(4.44) 

6.47 
(6.85) 

3.7 4 

CoL 14.16 
(14.40) 

58.45 
(58.69) 

4.72 
(4.43) 

6.56 
(6.84) 

4.6 
 

8 

CuL 15.14 
(15.35) 

58.46 
(58.03) 

4.52 
(4.38) 

6.47 
(6.77) 

1.96 
 

4 

MnL 13.02 
(13.55) 

59.82 
(59.27) 

4.41 
(4.48) 

6.46 
(6.91) 

4.88 9 

 

Table 3. IR (cm
-1

), UV (nm) and ESI-MS data of the compounds 
 

Compound v (O-H) v (C=N) v (C-O) v (M-N) v (M-O) λmax ESI-MS 
L 3467 1638 1298 - - 272, 334 316.037 
NiL 3436 1614 1277 761 581 264, 377, 478 409.004 
CoL 3435 1620 1192 753 573 262, 309, 424 409.304 
CuL 3434 1608 1187 754 536 263, 323, 420 413.087 
MnL 3434 1623 1153 758 601 263, 331, 409 405.057 

 
highest electron density region. The high electron 
density around phenolic O- atoms and 
azomethine N-atoms is the reason for the 
coordination with metal ions and are in good 
support of the proposed structure of the 
complexes (Fig. 10). The 3D structure of the 
compounds is very significant in exploring the 
structure in the absence of XRD crystal structure 
data. The possible geometry for the Ni (II), Co 
(II), Cu (II), and Mn (II) complexes were 
generated using molecular mechanics (UFF) 
calculations (Fig. 10). The details of the bonding 
and energy parameters optimized by molecular 
modeling calculations of the metal complexes are 
represented in Table 4. 

3.8 Antibacterial Activity 
 

The antibacterial activity of the compounds were 
investigated against the microorganism Bacillus 
cereus and Escherichia coli with the 
concentration of 5 mgmL-1 employing agar ditch 
method. The zone of inhibition were measured in 
diameter (mm). The antibacterial activity results 
are presented in Table 5. All the metal 
complexes showed anti-bacterial activity over the 
free ligand. The ligand, L exhibited very little 
activity against both the organisms. The 
complex, CoL showed high activity against the 
microbes Escherichia coli. All other complexes 
exhibited almost similar activity. The variation in 
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the activity of different metal complexes against 
tested organisms depends on either the 
impermeability of cells of organisms or the 
difference in ribosomes of bacterial cell [39]. The 
reasons of showing moderate to higher anti-
bacterial activity of the complexes than that of 
free ligand can be explained on the basis of 
Overtone's concept and Tweedy's chelation 
model [40]. Polarity of metal ion is reduced to a 
greater extent due to the overlapping of the 
ligand orbital and partial sharing of positive 

charge of metal ion with donor atoms of the 
ligand on chelation [41]. In addition, the 
delocalization of the π-electron is increased over 
the whole chelate sphere and improves the 
lipophilicity of the metal complex. The lipophilic 
character of the central metal atom is also 
increased upon chelation, which consequently 
favors the permeation through the lipid layer of 
cell membrane [42]. The variation in anti-
bacterial activity is due to the cell membrane of 
the organisms and also the nature of metal ions. 

  

 
 

 

 

 

 
Fig. 7. ESI-Mass spectra of the (a) L, (b) NiL, (c) CoL, (d) CuL, and (e) M nL 
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Fig. 8. Electronic spectra of the ligand and metal complexes 

 

 
 

Fig. 9. Molecular modeling structure of the ligand, L, (a) optimized geometry, (b) HOMO,  
(c) LUMO and (d) Electrostatic potential mapped electron density surface
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Table 4. The selected bond lengths, bond angles and energy parameters of the complexes 
 
Complex Atoms Bond length 

(Angstrom) 
Bond energy 
(kcal/mol) 

Atoms Bond angel 
(Degree) 

Bond angel energy 
((kcal/mol) 

Final geometry energy 
((kcal/mol) 

 
 
 
 
 
 
 
NiL 

O(7)-Ni(25) 
O(14)-Ni(25) 
N(16)-Ni(25) 
N(18)-Ni(25) 
Ni(25)-O(26) 
Ni(25)-O(27) 

1.847 
1.847 
1.885 
1.885 
1.872 
1.872 

294.600 
294.600 
306.276 
306.276 
283.008 
283.008 

O(7)-Ni(25)-O(14) 
O(7)-Ni(25)-N(16) 
O(7)-Ni(25)-N(18) 
O(7)-Ni(25)-O(26) 
O(7)-Ni(25)-O(27) 
O(14)-Ni(25)-N(16) 
O(14)-Ni(25)-N(18) 
O(14)-Ni(25)-O(26) 
O(14)-Ni(25)-O(27) 
N(16)-Ni(25)-N(18) 
N(16)-Ni(25)-O(26) 
N(16)-Ni(25)-O(27) 
N(18)-Ni(25)-O(26) 
N(18)-Ni(25)-O(27) 
O(26)-Ni(25)-O(27) 

90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 

295.751 
316.977 
316.977 
289.809 
289.809 
316.977 
316.977 
289.809 
289.809 
340.090 
310.824 
310.824 
310.824 
310.824 
284.114 

 
 
 
 
 
 
 
124.7467 

 
 
 
 
 
 
 
 
CoL 

O(7)-Co(25) 
O(14)-Co(25) 
N(16)-Co(25) 
N(18)-Co(25) 
Co(25)-O(26) 
Co(25)-O(27) 

1.939 
1.939 
1.972 
1.972 
1.939 
1.939 

254.562 
254.562 
267.453 
267.453 
254.562 
254.562 

O(7)-Co(25)-O(14) 
O(7)-Co(25)-N(16) 
O(7)-Co(25)-N(18) 
O(7)-Co(25)-O(26) 
O(7)-Co(25)-O(27) 
O(14)-Co(25)-N(16) 
O(14)-Co(25)-N(18) 
O(14)-Co(25)-O(26) 
O(14)-Co(25)-O(27) 
N(16)-Co(25)-N(18) 
N(16)-Co(25)-O(26) 
N(16)-Co(25)-O(27) 
N(18)-Co(25)-O(26) 
N(18)-Co(25)-O(27) 
O(26)-Co(25)-O(27) 

90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 

255.557 
275.391 
275.391 
255.557 
255.557 
275.391 
275.391 
255.557 
255.557 
296.982 
275.391 
275.391 
275.391 
275.391 
255.557 

 
 
 
 
 
 
 
 
254.0424 
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Complex Atoms Bond length 
(Angstrom) 

Bond energy 
(kcal/mol) 

Atoms Bond angel 
(Degree) 

Bond angel energy 
((kcal/mol) 

Final geometry energy 
((kcal/mol) 

 
 
 
 
 
 
CuL 

O(7)-Cu(25) 
O(14)-Cu(25) 
N(16)-Cu(25) 
N(18)-Cu(25) 
Cu(25)-O(26) 
Cu(25)-O(27) 

1.997 
1.997 
2.016 
2.031 
2.022 
2.022 

168.223 
168.223 
181.007 
176.938 
162.029 
162.029 

O(7)-Cu(25)-O(14) 
O(7)-Cu(25)-N(16) 
O(7)-Cu(25)-N(18) 
O(7)-Cu(25)-O(26) 
O(7)-Cu(25)-O(27) 
O(14)-Cu(25)-N(16) 
O(14)-Cu(25)-N(18) 
O(14)-Cu(25)-O(26) 
O(14)-Cu(25)-O(27) 
N(16)-Cu(25)-N(18) 
N(16)-Cu(25)-O(26) 
N(16)-Cu(25)-O(27) 
N(18)-Cu(25)-O(26) 
N(18)-Cu(25)-O(27) 
O(26)-Cu(25)-O(27) 

109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 
109.470 

134.931 
147.191 
145.503 
132.406 
132.406 
147.191 
145.503 
132.406 
132.406 
158.764 
144.465 
144.465 
142.831 
142.831 
129.963 

 
 
 
 
 
 
329.4080 

 
 
 
 
 
MnL 

O(7)-Mn(25) 
O(14)-Mn(25) 
N(16)-Mn(25) 
N(18)-Mn(25) 
Mn(25)-O(26) 
Mn(25)-O(27) 

2.126 
2.126 
2.148 
2.148 
2.152 
2.152 

192.873 
192.873 
207.068 
207.068 
186.005 
186.005 

O(7)-Mn(25)-O(14) 
O(7)-Mn(25)-N(16) 
O(7)-Mn(25)-N(18) 
O(7)-Mn(25)-O(26) 
O(7)-Mn(25)-O(27) 
O(14)-Mn(25)-N(16) 
O(14)-Mn(25)-N(18) 
O(14)-Mn(25)-O(26) 
O(14)-Mn(25)-O(27) 
N(16)-Mn(25)-N(18) 
N(16)-Mn(25)-O(26) 
N(16)-Mn(25)-O(27) 
N(18)-Mn(25)-O(26) 
N(18)-Mn(25)-O(27) 
O(26)-Mn(25)-O(27) 

90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 

193.626 
210.973 
210.973 
190.113 
190.113 
210.973 
210.973 
190.113 
190.113 
229.930 
207.206 
207.206 
207.206 
207.206 
186.731 

 
 
 
 
 
 
102.9443 
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Fig. 10. Molecular modeling structure of the complexes, (a) NiL, (b) CoL, (c) CuL and (d) MnL 
 

 
 

Fig. 11. Statistical representation for antibacterial activity for the ligand (L) and its complexes 
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Table 5. Antibacterial activity of the ligand L and its metal complexes (5 mg mL
-1

) 
 

Compound Diameter of inhibition zone of bacteria (mm) 
Gram positive Gram negative 
Bacillus cereus Escherichia coli 

L + + 
NiL + + + + + + 
CoL + + + + + 
CuL + + + + + + 
MnL + +  + +  
DMSO - - 

                                Control (DMSO): No activity (There was no inhibition zone); Note: High activity = + + + 
(Inhibition zone ˃ 12mm), Moderate = + + (Inhibition zone = 08-12mm) and Sight = + (Inhibition zone = 4-8 mm) 

 
4. CONCLUSION 
 
The spectral, elemental analysis, conductivity 
and magnetic measurements data, molecular 
modeling studies of the synthesized metal 
complexes of Ni(II), Co(II), Cu(II), and Mn(II) with 
the tetradentate ligand have shown octahedral 
geometry. The metal complexes are biological 
active and exhibit enhanced antibacterial activity 
compared to free ligand.  

 
The antibacterial activity and chemical properties 
is dependent on molecular structure of the 
compound. Hence, substitution at the aromatic 
ring of the ligand and replacing coordinated 
water molecules to the central metal atom by 
unidentate N-, S-, or O-donor ligand can modify 
the electronic and steric properties of the 
resulting complexes, which can enable fine-
tuning of chemical and biological properties of 
the ligands and metal complexes.  

 
It is important to note that numerous salophen 
ligands can be readily synthesized using 
commercially available derivatives of o-
phenylenediamine and salicylaldehyde. A more 
systematic investigation of metal-salophen 
complexes may be valuable. Metal-salophen 
complexes have been of much interest over the 
last years, largely because of its potential 
applications as therapeutic agents. But still there 
is need to explore the bioactivities of these 
already prepared metal-salophen complexes and 
to synthesize new salophen complexes with 
more properties. 
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