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In this paper, two numerical integration methods for solving Initial Value Problems (IVPs) in Ordinary 
Differential Equations (ODEs), namely “Third Order One Step Scheme (TOOSS) and Second Order One 
Step Scheme (SOOSS)” have been considered. The order of convergence, consistency and the stability 
properties of the schemes have been investigated. From the analyses, it is observed that SOOSS and 
TOOSS have second order convergence and third order convergence, respectively. It is also observed 
that both numerical integration methods are consistent and stable. Moreover, three IVPs of stiff 
differential equations were solved to examine the performance of SOOSS and TOOSS in terms of 
absolute relative errors. Hence, the numerical results show that TOOSS performs better than SOOSS 
because of its higher order of accuracy. 
 
Key words: Accuracy, consistency, convergence, final absolute relative error, stability region, stiff differential 
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INTRODUCTION 
 
Mathematical model is a means of translating real life 
situations into mathematical symbols and relations. This 
concept is commonly used in Sciences and Engineering. 
Models are developed to help in understanding of 
physical phenomena. These models frequently resulted 
in equations that contain derivatives of unknown function 
of one or several variables. These types of equations are 
referred to as Differential Equations. Differential 
equations are not only encountered in physical sciences, 
but also in diverse fields like Economics, Medicine, 
Psychology, Operation Research and even in areas such 
as Biology and Anthropology. In reality, the analytical 
solutions of some of the equations arising from modelling 
of real life situations might  not  be  easily  obtained.  This 
 

 necessitated the need for approximate solution by the 
application of numerical methods. To that extent, several 
algorithms have been proposed in literature based on the 
nature and the type of the differential equations to be 
solved such as Wambecq (1976), Jain (2003), Davis 
(2013), Qureshi et al. (2013), Fadugba and Falodun 
(2017), Fadugba and Okunlola (2017), just to mention a 
few. This paper is motivated by the work of Qureshi and 
Fadugba (2018). In this paper, the order of convergence, 
consistency and stability properties of the Fadugba-
Falodun and Fadugba-Okunlola schemes were 
investigated. The TOOSS and SOOSS have been applied 
on IVPs of first and second order ODEs (Fadugba and 
Ajayi, 2017; Qureshi and Fadugba, 2018; Fadugba, 2019;   
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ORDER OF CONVERGENCE OF THE SCHEMES 
 
In order to check the order of convergence of the 
schemes, the formula of the schemes is subtracted from 
the Taylor's series expansion for y(x) in powers of h 
under the localizing assumptions. The convergence of 
TOOSS and SOOSS is presented as follows. 
 
 
Order of convergence of TOOSS 
 
From the Taylor’s series, one obtains: 
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Fadugba and Okunlola (2017) derived a scheme of the 
form: 
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Using Equations 1 and 2, the local truncation error 
becomes: 
 

1)()(  nn yhxyTOOSSLTE       

                                       (3) 
 

























),(
2

1
),(

2

),(
4

1
),(),()1(

8

1

)())(,(
!4

1
))(,(

!3

1

))(,(
2

1
))(,()()(

)2()1(
2

)2()2(2

5)3(4)2(3

)1(2

nnnn

nnnnnn

h

n

nnnn

nnnnn

yxfyxf
h

yxfyxfhyxfey

hOxyxfhxyxfh

xyxfhxyxhfxyTOOSSLTE

    

                                                               (4) 
 

Replacing the term 
he2

in Equation 4 by its Maclaurin’s 

series given by  
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Therefore, Equation 4 becomes: 
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Thus, 
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Under the local assumptions, the terms up to h

3
 have 

been cancelled, then Equation 7 becomes: 
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Hence, the TOOSS has the convergence of third order. 
 
 
Order of convergence of SOOSS 
 

The Taylor’s series expression for )(xy  in powers of h is 

given by: 
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Fadugba and Falodun (2017) derived a scheme of the 
form: 
  

),()1()),(),(( )1()1(

1 nn

h

nnnnnn yxfeyxfyxfhyy  


                                                              

                                                                                     (10) 
 

The local truncation error is given by  
 

1)()(  nn yhxySOOSSLTE                     (11)                

 

Using Equations 9 and 10, Equation 11 becomes: 
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Using the Maclaurin’s series expansion of 
he

and 

simplifying the Equation 12 under the localizing 
assumption, one gets: 
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Hence, SOOSS has the convergence of second order. 
 
 
Remark  
 
The analysis of local truncation error indeed determines 
the order of convergence for any numerical technique 
designed to solve IVPs in ODEs. 
 
 
CONSISTENCY PROPERTIES OF THE SCHEMES 
 
It is a known fact that any numerical method having an 
order of accuracy greater than or equal to 1 is considered 
to be consistent. In other words, a numerical integration 
method is said to be consistent if it has at least order p 
=1. 
 
 
Consistency analysis of TOOSS 
 
Among many, one of the ways to analyze the consistency 
of a numerical technique is to check that whether 
(Qureshi and Fadugba, 2018): 
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From Equation 14, it is observed that TOOSS has 
consistency characteristics. 
 
 
Consistency analysis of SOOSS 
 
Following the same procedures as that of the Qureshi 
and Fadugba (2018), one obtains that: 
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From Equation 15, it is observed that SOOSS has 
consistency characteristics. 
 
 
Remark  
 
For a numerical technique to be consistent, it is important  
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for the truncation errors to be zero when the step size h 
gets smaller and ultimately reaches to zero. 
 
 

STABILITY ANALYSES OF THE SCHEMES 
 

A numerical integration method is said to be stable if it is 
capable of damping out the small fluctuations carried out 
in the input data. A one step explicit numerical integration 
method is reserved to be stable if a small perturbation in 
the initial conditions of the IVP leads to a small 
perturbation in the following numerical approximation. 
 
 

Stability analysis of TOOSS 
 

For the stability analysis of TOOSS, one of the popular 
ways is to apply the scheme to the Dahlquist’s test 
equation: 
 

0,1)0(),()(   yxyxy            (16) 

 
whose exact solution is given by 
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where 0 is, in general, a constant. For an integration 

interval ],[ 1nn xx , where  
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The exact solution at the point  
 

1 nxx                (19) 

 
is obtained as 
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The numerical approximation obtained using TOOSS 
gives 
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Equation 21 becomes 
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Figure 1. The stability region (unshaded) of TOOSS. 

 
 
 
Comparison of Equations 20 and 23 shows that the factor 

A is merely an approximation for the factor )exp( h in 

the exact solution. Truly, the factor A is the four-term 

approximation for the Maclaurin's series for )exp( h  for 

small h . The error growth factor A can be controlled by 

1A so that the errors may not magnify. Thus, the 

stability of TOOSS requires that 
 

hz
zz
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!3!2
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32

           (24) 

 
Using Equation 24, the stability region is plotted in Figure 
1. Hence, TOOSS is found to be stable in Figure 1. 

 
 
Stability analysis of SOOSS 

 
To discuss the stability analysis of SOOSS, consider the 
following Dahlquist's test equation of the form: 
 

0,1)0(),()(   yxyxy                         (25) 

 
The exact solution of Equation 25 is given by 
 

)exp()( xxy               (26) 

 

For an integration interval ],[ 1nn xx , where nn xxh  1   

and following the procedures of Qureshi and Fadugba 

(2018);  the   exact   solution   at   the   point  1 nxx
 
 is 

 
 
 
 
obtained as: 
 

)exp()()( 1 hxyxy nn                (27) 

 
When applied SOOSS on this test problem, one gets: 
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where 
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Comparing Equations 27 and 28, it is clearly seen that 
Equation 28 is a three-term approximation for the function 

he
in the exact solution. The error growth factor given by 

Equation 28 can be controlled by 1B so that the 

errors may not amplify. Thus, the stability function of 
SOOSS requires that: 
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Setting 
 

hz                 (31) 

 
Therefore, Equation 30 becomes: 
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The region of absolute stability for SOOSS is defined by 
the region in the complex plane such 

that 1
!2

1
2


z

z . The stability region is plotted in 

Figure 2. 
 
 
Remark  
 
The notion of stability may be taken in different contexts: 
it may be associated with the specific numerical 
technique used, or the step size h used in numerical 
computations or with the particular problem being solved. 
 
 
NUMERICAL EXAMPLES AND DISCUSSION 
 
Here presents the implementation of the two schemes on 
IVPs  of  stiff  differential   equations.  The   discussion  of  



 
 
 
 

 
 

Figure 2. The stability region (unshaded) of SOOSS. 

 
 
 
results is also presented. All the calculations were carried 
out via MATLAB R2014a, Version: 8.3.0.552, 32 bit (win 
32) in double precision. 
 
 
Example 1 
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Example 2 
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Example 3 
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The final absolute relative errors at x = b defined by 

FABRE = Nyby )(  generated via SOOSS and 

TOOSS for Examples 1 to 3 are shown in Tables 1 to 3, 
respectively. The plots of the Tables 1 to 3 were 
displayed in Figures 3 to 5, respectively. 

It is observed from Tables 1 to 3 that both SOOSS and 
TOOSS perform excellently and yield smaller error for 
every decreasing step length, h. It is also observed from 
Tables 1 to 3 that the order of accuracy of SOOSS and 
TOOSS have been confirmed when applied to stiff 
differential equations taking the step length h having a 
first order decrease in its magnitude, that is  h =10

-2
, 10

-3
,  
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Table 1. The FABRE via SOOSS and TOOSS for Example 1. 
 

h SOOSS TOOSS 

10
-2 

0.00089917 0.00002888 

10
-3

 0.00000081 0.00000002 

10
-4

 0.00000001 0.00000000 

10
-5

 0.00000000 0.00000000 

10
-6

 0.00000000 0.00000000 

 
 

 
Table 2. The FABRE via SOOSS and TOOSS for Example 2. 
 

h SOOSS TOOSS 

10
-2 

0.00240159 0.00014029 

10
-3

 0.00002088 0.00000012 

10
-4

 0.00000021 0.00000000 

10
-5

 0.00000000 0.00000000 

10
-6

 0.00000000 0.00000000 

 
 

 
Table 3. The FABRE via SOOSS and TOOSS for Example 3. 
 

h SOOSS TOOSS 

10
-2 

0.00139160 0.00012157 

10
-3

 0.00001210 0.00000010 

10
-4

 0.00000012 0.00000000 

10
-5

 0.00000000 0.00000000 

10
-6

 0.00000000 0.00000000 

 
 
 
10

-4
, 10

-5
, 10

-6
. It is clearly seen in Tables 1 to 3 for every 

decrease in h, there are second order and third-order 
decrease in the magnitude of the computed FABRE via 
SOOSS and TOOSS, respectively. It is observed from 
the Figures 3 to 5 that the FABREs generated via 
SOOSS are greater than that of the TOOSS. 

 
 
Conclusion 

 
In this paper, notes on the order of convergence, 
consistency and stability properties of TOOSS and 
SOOSS have been successfully presented. It is observed 
that TOOSS and SOOSS have the convergence of third 
order and second order, respectively. From the analysis, 
it is observed that the two methods are convergent, 
consistent since they have order of accuracy greater than 
1. It is also observed that TOOSS and SOOSS are stable 
as shown in Figures 1 and 2, respectively. Hence, it can 
be concluded from the numerical results that TOOSS 
performs better than SOOSS since it has a higher order 
of accuracy. 
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Figure 3. The plot of the FABRE generated via SOOSS and TOOSS using Table 1. 

 
 
 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.5

1

1.5

2

2.5
x 10

-3

h

F
in

a
l 
A

b
s
o
lu

te
 R

e
la

ti
v
e
 E

rr
o
r

 

 

SOOSS

TOOSS

 
 

Figure 4. The plot of the FABRE generated via SOOSS and TOOSS using Table 2. 
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Figure 5. The plot of the FABRE generated via SOOSS and TOOSS using Table 3. 
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