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ABSTRACT 
 
This study employed fifty-f ive selected versions of the Runge-Kutta (RK) fourth order schemes 
tagged (RKV_1, RKV_2, …, RKV_55), inclusive is the classical fourth order scheme RKV_55 to 
simulate the dynamics of harmonically excited nonlinear pendulum using adaptive time step 
technique over a range of drive parameters, initial conditions and excitation frequencies. A 
FORTRAN program was developed to carry out the simulation and validated by comparing 
Poincare section obtained with literature standard. The Poincare sections generated compares 
favourably with those published in literature, thus validate the algorithm. Furthermore, the study 
results show that number of steps each Runge-Kutta version used to complete the specified 
simulation periods of the nonlinear pendulum differs significantly. Ranking the versions by the 
number of steps indicated that RKV_55 is not the fastest version as other versions such as RKV_2, 
RKV_8, RKV_9, RKV_10, and RKV_51 outperformed it. In addition, the performance of these 
versions are not significantly affected by the change in initial condition but are greatly affected by 
the change in angular drive frequency. 
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1. INTRODUCTION 
 
[1] defined dynamical system as any physical or 
abstract entity whose form at any given time can 
be defined by some set of numbers, called 
system variables, and whose configuration at a 
later time is uniquely determined by its present 
and past configurations through a set of rules for 
the transformation of the system variables. 
 
Several engineering and science problems are 
usually modelled mathematically to form 
differential equations, such ordinary differential 
equations and partial differential equations [2].  
Once the governing equation has been 
formulated analysis can proceed. 
 
Analytical or exact methods were used to derive 
solutions for some of these problems. Useful 
insight into the behaviour of some systems were 
excellently provided, by these solutions. 
However, the class of problems that their 
analytical or exact solution can be derived are 
limited. Therefore, analytical solutions have 
restrained practical value since most 
engineering posed problems are nonlinear and 
involve complex shapes and process [3]. 
 
When engineering posed problems, becomes 
difficult to solve directly, transformation of the 
original system to an approximated one is 
usually done, and analysis is carried out due 
to the solution provided by the approximated 
system.  However, because of the existence of 
some missing information in the approximation, 
one cannot say that the solution of the 
approximated system reflects the solution of the 
original system [4]. In most cases, numerical 
methods are broadly used for solving these 
mathematical problems developed in science 
and engineering where it is hard or yet 
impossible to obtain exact solutions because 
they give more accurate results and realistic 
error information [2]. 
 
Runge-Kutta ( RK) m e t h o d s  a r e  c o m m o n l y  
e m p l o y e d  t o  numerically solve IVPs (Initial 
Value Problems), because, they are well known 
for their speed and accuracy. Around the 1900, 
German Mathematicians C. Runge and M W. 
Kutta formulated the Runge-Kutta (RK) methods, 
and ever since it has become a crucial family of 
implicit and explicit iterative methods needed 
to estimate the solutions of ordinary differential 
equations. These methods solve higher order 

derivative with high accuracy, even though they 
require less computation [5]. Fourth order RK 
methods are the most popularly used in solving 
most initial value problems. Similar to the 
second order methods, there are infinite versions 
of the fourth order method. The most 
commonly used fourth-order Runge-Kutta 
method is the classical fourth-order Runge-Kutta 
method [3]. 
 
[2] carried out a comparative study on numerical 
solutions of initial value problems for ordinary 
differential equations using Euler and Runge-
Kutta method. The approximated solution of the 
solved differential equation and the maximum 
error obtainable was calculated for different step 
size 0.1, 0.05, 0.025 and 0.0125. The results 
indicated that the solution obtained numerically 
by the two proposed methods compares 
favourably with the exact solutions. Also, to 
increase the accuracy of the approximated 
solution for both methods a smaller step size 
should be used. He concluded that the Runge-
Kutta method is more accurate and also the 
approximate solution converged faster to the 
exact solution when compared to the Euler 
method. 
 
[6] in his work presents a numerical method for 
solving transient analysis in vibration analysis. 
The dynamic model of a combat vehicle was 
utilized, while the numerical simulation was 
conducted using Runge-Kutta fourth order 
method. The focus of the work was the 
discussion of the accuracy of numerical methods 
used to predict the value of deviation that 
occurs during the process of single shooting. The 
simulation results were observed to be unstable 
when the numerical approach of 0.01s time step 
was used, contrary to a time step of 0.001s that 
produced stable results. The study, therefore, 
confirmed the sensitivity of Runge-Kutta 
numerical method to time step selection. 
 
[7] investigated the dynamics of excited 
Duffing’s oscillator using several versions of 
second order Runge-Kutta method, second-order 
methods were used for this study because when 
likened with its higher order counterpart it has 
the most elementary algebraic formulation of 
relevant coefficients based on Taylors series 
expansion. They generated nine hundred and 
ninety-nine (999) versions tagged (V1, V2…., 
V999), which were suitably coded in FORTRAN-
90 compiler to generate numerical values for 
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q

constant time step integration of steady 
displacements and velocities for the Duffing’s 
equation so as to produce phase plots and 
Poincare sections. The Poincare sections 
generated by these versions from several 
agreeing driven parameters combination, 
compared favourably with those from literatures. 
The results also show some noticeable deviation, 
which was due to the adoption of lower order 
Runge-Kutta method. Finally, they were able to 
recheck and confirm the complicated and wide-
ranging nature of the solutions to the Duffing’s 
equation. 
 
An effective ordinary differential equation (ODE) 
integrator ought to maintain some adaptive 
power to direct or determine its own 
advancement, by making necessary changes in 
its step size. The main purpose of this adaptive 
step size control is to accomplish some preset 
accuracy in the solution with the least possible 
computational effort [8]. When the terrain is 
unstable and unpredictable many small steps are 
required, while few great strides should be used 
to speed through smooth terrains. The resulting 
gains in efficiency are not mere tens of percent’s 
or factors of two they can sometimes be factors 
of ten, a hundred, or more [8]. 
 
In designing an adaptive step size control 
scheme the most universal way lies in calculating 
the ‘local error’ at each step of the algorithm, that 
is the error made in computing the approximated 
solution at a given grid point assuming that the 
data from the previous grid point was exact [9]. 
The step size is then computed for every grid 
point, ensuring that the local error is lower than 
the predefined value called the tolerance. The 
value of the tolerance is set depending on the 
need for accurate results, for example to 10−q 
with q ranging from 3 to 9 [9]. 
 
[10] carried out a comparative analysis of time 
steps distribution in Runge-Kutta algorithms, this 
study utilizes combination of phase plots, time 
steps distribution and adaptive time steps 
Runge-Kutta fourth and fifth order algorithms to 
investigate a harmonically excited Duffing 
oscillator. The study objective was to visually 
compare the performance of fourth and fifth order 
Runge-Kutta as tools for seeking the chaotic 
solutions of a harmonically excited Duffing 
oscillator. The results show that, though fifth 
order algorithms favours higher time steps and 
as such faster to execute than fourth order for 
all studied cases, but at the expense of reliability 
of the computed results. This also contributes to 

the fact that Runge-Kutta fourth scheme has 
been preferred and considered reliable than 
other schemes. In the aspect of time step 
selection, they set the tolerance (εt) of their 
solution at 10-6 for all the steps in the 
computation, while the local error(ε) compares 
the predicted results taking two half-steps with 
taking a full step for one of the module 
investigated. 
 
From existing literatures, it is established that 
though the harmonically excited nonlinear 
pendulum has been studied in details using 
various Runge-Kutta schemes across different 
parameter space, there still exists a need to 
study the equation across other parameters 
using several versions of one of these methods. 
Therefore, this study seeks a solution reliable in 
speed to this system, using several versions of 
fourth order Runge-Kutta schemes. 
 
2. METHODOLOGY 
 
2.1 Harmonically Excited Nonlinear 

Pendulum 
 
This research is strictly based on the numerical 
simulation of the normalized governing equation 
of harmonically excited nonlinear pendulum 
given by equation (1) [11]. 
 

1
sin( ) gcos( )Dt

q
                  (1) 

 
In other to simulate equation (1) with any of 
fourth order Runge-Kutta schemes demands its 
transformation to a pair of first order differential 
equation (2) and (3) under the assumption that 
(θ1 = angular displacement θ2 = angular 

velocity). 
 

                                                      (2) 
 

, , , , ,                                       (3) 
 
The differential equation contains three 
changeable parameters which are: the driving 
force amplitude (g), the damping or quality 
parameter (q) and the angular drive frequency 
(ωD) 
 

2.2 The Fourth Order Runge-Kutta 
 

For an arbitrary first order differential equation               
( ( , )y f x y ), the corresponding fourth order 
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Runge-Kutta predictive scheme is given by 
equation (4). 
 

 (4) 
 
Where h is the step size, the b’s are constant 
and the k’s are: 
 

,              (5) 
 

,                       (6) 
 

,        (7) 
 

,
                                                         (8) 

 
The coefficients of equations (4) to (8) are 
defined as in table 1 in accordance with 
explanations provided by [12]. 
 
2.3 Versions of Fourth Order Runge-Kutta 

Adopted for This Study 
 
Assuming that Table 1 by contents satisfies 
the fourth order conditions, then the values of 
these coefficients can be calculated from the 
general equations as explained by [12]. 
 
Table 1. Butcher’s tableau for general fourth 

order scheme 
 

 
 
Using equations (2) and (3) above, the following 
transformations were made, so as to incorporate 
the governing equation of the harmonically 
excited nonlinear pendulum to the general fourth 
order Runge-Kutta method [13]. 
 

These quantities are then used in the following 
recurrence formula: 
 

									  (9) 

 
									          

                                                                        (10) 
 

           (11) 
 

The coefficients of equations (9) to (11) are 
defined as in table 1 in accordance with 
explanations provided by [12]. 
 
2.4 Validation Cases 
 
The under-listed parameters were used to test 
run the FORTRAN subroutines written for this 
study. The Poincare sections obtained for test 
cases were used to compare the published ones. 
 
2.4.1 Test Case – I 
 
, , ≡ 2, 1.5, , initial conditions (0, 0), 

transient and steady simulation (50, 10000), 
number of simulation within a period (500). 
 
2.4.2 Test Case – II 
 
, , ≡ 4, 1.5, , initial conditions (0, 0), 

transient and steady simulation (50, 10000), 
number of simulation within a period (500). 
 
2.5 Time Step Selection 
 
[3] argued that, there are limitations to the 
solution of the ordinary differential equation of 
some dynamical systems that demonstrate a 
sharp change when they are evaluated using 
constant time step size. To achieve the objective 
of this work, the step doubling adaptive time step 
technique was used. Equations (12) and (13) 
below were used to increase and decrease the 
time step (h) respectively. The tolerance (εt) was 

set at 10-6   for all computation steps,              
while the local truncation error (ε) was 
calculated by comparing the predicted results 
taking two half-steps with taking a full step. 
Equation (12) is used if ε < εt and equation (13) 

is used if ε > εt. 
 

/                           (12) 
 

/                           (13) 
 
From equations (12) and (13) above α is the 
step size control factor, which takes its value 
within the range (0 < α < 1). In this study, one 
hundred and one (101) values of α which 
ranged from 0.25 to 0.95 were looked into so as 
to select the one that proves fastest in all 
simulation. 
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Table 2. Transformation equations, for calculating the displacement and velocity of a 
dynamical system 

 

t   	 , , , , ,  

  , ,  

	 	 , ,  

	 	 , ,  

    , ,  

 
Table 3. Summary of investigated points on the study parameter plane 

 

Sets Initial conditions 
(x,y) 

Excitation frequency  
(ωD) 

Total excitation 
perion (T) 

Set 1 
Set 2 
Set 3 
Set 4 
Set 5 
Set 6 

(0, 0)  
(π, 0)  
(0, 0)  
(π, 0)  
(0, 0)  
(π, 0) 

0.3333 
0.3333 
0.6667 
0.6667 
1.0000 
1.0000 

500 
500 
500 
500 
500 
500 

 
To achieve this, a quick simulation was done 
using (RKV_2, RKV_8, RKV_9, RKV_10, 
RKV_51, and RKV_55) at (0, 0) initial condition. 
The simulation was done to a simulation time 
length of five hundred excitation periods and the 
total time steps were taken by each version for 
respective values of α collated and divided by 
their equivalent constant time steps to obtain the 
time step ratio. 
 
2.6 Parameter Details of Studied Cases 
 
A point on the parameter plane is defined as a 
case. 101 × 101 cases were investigated at three 
different  excitation  frequencies                            

ω , 	 	1.0  alongside  uniform  step  

increment  of damping coefficient ( 2.0≤q≤4.0 ) 
and forcing amplitude ( 0.9≤g≤1.5 ) over large 
number of excitation period at the equilibrium 
positions (0,0) and (π,0) as initial conditions for 
displacement and velocity respectively. The 
starting simulation time step  for excitation 

period . The simulations were performed 

for 500-excitation periods, comprising 50-periods 
of unsteady and 450-periods of steady solutions. 
All integrations were carried out using the 55-
selected versions of the popular Runge-Kutta 
fourth order using the adaptive time step 
integration suitably coded in FORTRAN-95. 
 

From all the investigated points in the 
parameter plane, the versions were ranked 

from 1st to 55
th position. The summary of the 

results considers only the versions in the first 
position at each point. 

3. RESULTS AND DISCUSSION 
 
Fig. 1 and Fig. 2 are typical Poincare sections for 
each validation case, which compares  
favourably with published Poincare sections in 
literature, thus validates the algorithm as shown 
by [11]. 
 
Fig. 3 shows that, as the value of  increases, 
the time steps taken by each version to complete 
the simulation length reduces drastically making 
their time step ratio asymptotically approaching 
10%, as  approaches unity. Since the increase 
in the value of  reduces the time step ratio for 
all versions, it is therefore safe and time saving 
to select the value of  as close as possible to 
1.0. As a result, (α = 0.95) was used for this 
study. 
 
RKV_2, RKV_8, RKV_9, RKV_10 and RKV_51 
dominated the remaining fifty versions including 
the classical Runge-Kutta fourth order in Set 1 to 
Set 4, while in Set 5 and Set 6 only three 
versions dominated the rest versions. 
Performance of the versions is not significantly 
affected by change in initial conditions, but are 
significantly affected by changes in angular drive 
frequencies. 
 
Table 5 shows the simulation results carried out 
on the study parameter plane (2.0 ≤ q ≤ 4.0 and 
0.9 ≤ g ≤ 1.5) from Set 1 to Set 6. The frequency 
column on the tables shows the number of times 
a particular version took the first position on each 
point on the study parameter plane. 
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Fig. 1. Poincare section for Validation Case-I 
 

 
 

Fig. 2. Poincare section for Validation Case-II 
 

 
 

Fig. 3. Time step ratio of selected RK versions against several step size control factor ( ) 
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Table 4. Coefficients for the classical and the top six versions from all selected versions of 
fourth order Runge-Kutta schemes used 

 
Coefficient Selected Versions Fourth order Runge-Kutta Scheme 

RKV_2 RKV_8 RKV_9 RKV_10 RKV_51 RKV_55 
c2  
c3  
c4  
a21  
a31  
a32  
a41  
a42  
a43  
b1  
b2  
b3  
b4 

0.2551 
0.7449 
1.0000 
0.2551 
-0.7151 
1.4600 
4.2825 
-5.1027 
1.8203 
0.0615 
0.4385 
0.4385 
0.0615 

0.1386 
0.8614 
1.0000 
0.1386 
-2.2461 
3.1075 
-6.4297 
7.9183 
-0.4886 
-0.1980 
0.6980 
0.6980 
-0.1980 

0.1493 
0.8507 
1.0000 
0.1493 
-1.9983 
2.8490 
-6.7706 
8.3981 
-0.6275 
-0.1561 
0.6561 
0.6561 
-0.1561 

0.2575 
0.7425 
1.0000 
0.2575 
-0.6992 
1.4417 
4.0018 
-4.7515 
1.7498 
0.0641 
0.4359 
0.4359 
0.0641 

0.3333 
0.6667 
1.0000 
0.3333 
-0.3333 
1.0000 
1.0000 
-1.0000 
1.0000 
0.1250 
0.3750 
0.3750 
0.1250 

0.5000 
0.5000 
1.0000 
0.5000 
0.0000 
0.5000 
0.0000 
0.0000 
1.0000 
0.1667 
0.3333 
0.3333 
0.1667 

 
Table 5. Performance (first position) of top five versions across all Sets 

 
Sets Versions Frequency Percentage (%)
1 
 
 
 
 
 
2 
 
 
 
 
 
3 
 
 
 
 
 
4 
 
 
 
 
 
5 
 
 
 
6 

RKV_2 
RKV_8 
RKV_9 
RKV_10 
RKV_51 
TOTAL 
RKV_2 
RKV_8 
RKV_9 
RKV_10 
RKV_51 
TOTAL 
RKV_2 
RKV_8 
RKV_9 
RKV_10 
RKV_51 
TOTAL 
RKV_2 
RKV_8 
RKV_9 
RKV_10 
RKV_51 
TOTAL 
RKV_2 
RKV_10 
RKV_51 
TOTAL 
RKV_2 
RKV_10 
RKV_51 
TOTAL 

2680 
579 
842 
4078 
1194 
9373 
2642 
858 
366 
4169 
1274 
9309 
449 
2298 
655 
341 
5228 
8971 
448 
2296 
707 
297 
5250 
8998 
72 
3362 
6766 
10200 
68 
3346 
6787 
10201

26.27 
5.68 
8.25 
39.98 
11.7 
91.88 
25.9 
8.41 
3.59 
40.87 
12.49 
91.26 
4.4 
22.53 
6.42 
3.34 
51.25 
87.94 
4.39 
22.51 
6.93 
2.91 
51.47 
88.21 
0.71 
32.96 
66.33 
99.99 
0.67 
32.8 
66.53 
100 
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set in which the versions performed best are as 
follows: RKV_2 set 1, RKV_8 set 3, RKV_9 set 2, 
RKV_10 set 2 and RKV_51 set 6 covering 2680 
(26.27%), 2298 (22.53%), 858 (8.41%), 4169 
(40.87%) and 6787 (66.53%) points respectively, 
from all the 10201 simulation points. Also the set 
in which the versions performed poorly are as 
follows: RKV_2 set 6, RKV_8 set 6, RKV_9 set 5 
and set 6, RKV_10 set 4 and RKV_51 set 1 
covering 68 (0.67%), 0 (00.00%), 0 (00.00%), 
297 (2.91%) and 1194 (11.7%) points 
respectively, from all the 10201 simulation points. 
 
In Figs. 4 to 9, each dot on the parameter plane 
gives the coordinate (q, g) in which a particular 
version in the top five versions took the first 
position, and also provide clearer picture of the 
region in the plane where a particular version 
dominates. It is observed that the versions 
behaviour is not truly affected by change in the 
initial conditions, but are greatly affected by 
change in angular drive frequency. 
 
4. CONCLUSIONS 
 
This research has developed an algorithm that 
can simulate the dynamics of harmonically 
excited nonlinear pendulum; using several 
selected versions of fourth order Runge-Kutta 
schemes with the step doubling adaptive time 
step technique, one of which is the classical 
fourth-order Runge-Kutta. The Poincare sections 
obtained compares favourably with those found 
in literature and thus validates algorithm 
developed. Five out of the fifty-five versions 
studied exhibited domination over the remaining 
versions including the classical Runge-Kutta 
fourth order in the first four sets while only 
three versions dominated in the last two sets 
investigated. Thus there are some versions of 
fourth order Runge-Kutta schemes that are 
faster than the classical fourth order scheme 
when the adaptive step size control with the step 
doubling method is employed. The versions 
performance is not significantly affected by 
change in initial conditions, but are significantly 
affected by changes in angular drive 
frequencies.  While recommending all the top 
performing versions from this study preferentially 
as dynamics systems simulating tools further 
investigations with the same objective should be 
carried out on other versions not yet investigated. 
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