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ABSTRACT 
 
The paper concerns the nanopowder high-speed, 104 – 109 s–1, compaction processes modelling by 
a two-dimensional granular dynamics method. Nanoparticles interaction, in addition to known 
contact laws, included dispersive attraction, the formation of a strong interparticle bonding (powder 
agglomeration) as well as the forces caused by viscous stresses in the contact region. For different 
densification rates, the "pressure vs. density" curves (densification curves) were calculated. 
Relaxation of the stresses after the compression stage was analysed as well. The densification 
curves analysis allowed us to suggest the dependence of compaction pressure as a function of 
strain rate. It was found that in contrast to the plastic flow of metals, where the yield strength is 
proportional to the logarithm of the strain rate, the power-law dependence of applied pressure on the 

strain rate as 1/4p v  was established for the modelled nanosized powders. 

  

 
Keywords: Nanopowder; granular dynamics method; discrete element method; high-speed 

compaction. 
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1. INTRODUCTION 
 
The nanopowder cold compaction is a very 
important stage of novel nanostructured 
materials production by the powder metallurgy 
[1,2]. As known, nanopowders in contrast to 
coarse-grained materials are very hard to densify 
due to the strong interparticle “friction”, which is 
caused by the intense dispersion attraction, and 
agglomeration of particles [2,3]. To achieve a 
proper compact density for sintering the high 
quality, defect-free ceramic article, applying the 
high pressure of about several gigapascals is 
required. Such high pressures can even exceed 
the durability of pressing tools [2–4]. Thus, the 
theoretical description of powder body and 
reliable forecasting the compaction processes 
take on high topicality.  
 
The present paper is devoted to the development 
of a theoretical description of oxide nanosized 
powders cold compaction processes in the 
frameworks of the granular dynamics method 
[5,6]. This method is of interest due to the oxide 
nanoparticles, for example, produced by the 
method of wires electric explosion [7] or target 
laser evaporation [8], usually have high strength 
properties and a spherical form. Therefore, such 
particles are the most convenient object for 
simulations. Nowadays the granular dynamics 
method is extensively used for the description of 
compaction processes of different micro- and 
nanopowders [5,6,9,10]. However at that 
quasistatic compaction processes are still to be 
investigated. After every step of model cell 
deformation, the new equilibrium locations of 
particles are determined during a large number 
of equilibration steps [5,6].   
 
In view of the necessity to achieve extremely 
large compaction pressures, the magnetic pulsed 
methods [2,4] attract a great attention at present 
time. These methods allow increasing the 
pressure into compacts owing to the inertial 
effects. The relative rate of compact densification 
is of 10

4
 – 10

5
 s

–1
. It is known that dynamical 

yield strength is not equal to a static one, as a 
rule. For example, the yield strength of metal at 
high-speed loading can exceed the static limit            
by several times [11–13]. Corresponding         
studies for nanopowders have not been 
conducted yet.   
 

2. NUMERICAL EXPERIMENT DETAILS  
 
We simulate the dynamical processes of uniform 
pressing, which are characterized with the 

relative densification rate (1 / )( / )v d dt   , 

where  is density and t  is time, from value 

6.8×108 s–1 up to 6.8×104 s–1. To perform the 
qualitative analysis, we restrict to 2D geometry. 
The model cell has a form of a square

cell cellL L . 

The density is implied as a relative area of the 
model cell occupied by the particles, i.e.

2 2
cell( / 4) /p gN d L  , where 1000pN   is the 

number of particles in the cell, gd  is the particle 

diameter. Periodic boundary conditions are used 
on all sides of the cell. For initial packing 
generation, the algorithm defined in [5] is used, 
which allows us to create isotropic and uniform 
structures in a form of the connected 2D-periodic 
cluster. The initial density 

0 is 0.5. The system 

deformation is performed by simultaneous 
changes of cell sizes and proportional rescaling 
of particles coordinates. This procedure 
corresponds to the instantaneous propagation of 
elastic perturbation along the model cell. The 
relative displacements and rotations of particles 
are determined by the usual equations  
 

2 2

2 2
, ,

d r d
m f J M
dt dt

 


 (1) 

 

where 3( / 6) m gm d    is the particle mass, 
m  is 

the density of the particle material, r is the 
particle position vector, f and M  are the total 

force and torque caused by other particles, 
2 /10gJ md  is inertia moment,   is the rotation 

angle. The Verlet algorithm [14] is applied for the 
numerical solution of the equation (1).  
 

The stress tensor ij  averaged over the model 

cell is calculated by the known expression 
[5,9,10] 
 

( ) ( )

2
cell

1
,kl kl

ij i j
k lg

f r
d L 


   (2) 

 

where the summation is performed over all pairs 

of interacting particles (k,l); ( , )k lf  is the total force 

affecting the particle k from the particle l; ( , )k lr  is 
the vector connecting the centers of the particles. 
The particle interactions described in detail 
elsewhere [5, 6] include the elastic repulsion 
(modified Hertz law), the “friction” forces 
(Cattaneo – Mindlin law), the dispersive attraction 
force (Hamaker’s formula), and the contact 
elasticity of flexure because of strong interparticle 
bonding. Alumina is used as the particle material 
for which, in particular, the Young modulus E is 
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382 GPa and the Poisson ratio p  is 0.25. Other 

parameters of interaction laws correspond to the 
system of II type in [5,6], which imitates strongly 
agglomerating nanopowders [15] with particle 
diameter 10gd  nm. The exception as compared 

to the 3D simulations is only the larger value of 
friction coefficient 0.5 used in the present 

study.  
 

The high value of the speed of modelled 
processes requires taking into account the 
viscous stresses in the vicinity of the contact area 
of particles. Using the similarity of Hooke's elastic 
law and the Navier – Stokes equations the 
authors of [16] obtained the rigorous solution of 
the problem on contact interaction of viscoelastic 
spheres. In general case, the influence of the 
viscous stresses has a form [16,17]  
 

visc
edf df A

d dt





, (3) 

 

where 
viscf  is the total force of the viscous 

stresses, 
ef  is the elastic force,   is the variable, 

which describes the body deformation, and the 
coefficient A neglecting the bulk viscosity is 
described as: 
 

2

2

(1 )(1 2 )

3

p p

p

A
E

  



 
 . 

 

The shear viscosity coefficient   is estimated by 

the known data on ultrasound damping into 
alumina [18]. The coefficient of damping into the 

isotropic medium 2 3/ (2 )t m tc    [19], where  

and 
tc are the frequency and speed of sound. 

Using the value 230t   dB/m at the frequency of 

/ 2 1.0   GHz [20] the shear viscosity 
coefficient   for alumina of 0.001 Pa·s was 

obtained. 
 
Starting from the equation (3) it is not difficult to 
write all expressions which describe the 
interactions of viscoelastic spherical particles. For 
example, for the linearized tangential force of 
"friction" we have  
 

t
m m

f d
c a Ac a

E dt


  ,     

4

(2 )(1 )
m

p p

c
 


 

, 

 
where   is the relative tangential displacement of 

contacting particles, / 2ga hd  is the contact 

spot radius, gh d r   is the depth of particle 

overlapping. 
 

The characteristic time 2 1/2(( ) / (6 ))m gT d E  , 

which transforms the equations (1) to 
dimensionless form, is equal to 0.74 ps for our 
systems. The reduced time step of the numerical 

solving the equations (1) is , / 0.04t t dh h T  . The 

relative decreases of model cell sizes 
cell cell/L L  

corresponding to the time step are equal to 
values 10–5, 10–6, 10–7, 10–8, or 10–9. These 

values result in strain rates (in s
–1

): 8
1 6.8 10v   , 

7
2 6.8 10v   , 6

3 6.8 10v   , 5
4 6.8 10v   , and 

4
5 6.8 10v   . 

 

3. RESULTS AND DISCUSSION 
 
Fig. 1 presents the time-dependent hydrostatic 
pressure Sp( ) / 2ijp    averaged over 80 

calculations and typical calculation curves for the 
compression rate v3. Averaging the other rates 
has been performed over 100 (

1v , 
2v ) and 10 (

4v ) 

independent calculations. For the rate 
5v the only 

one calculation has been carried out. 
 
It is helpful to note that the initial structures are 
being generated by the algorithm [5], which places 
the neighbouring particles at equilibrium distances 
when attraction compensates repulsion, requires, 
however, a preliminary relaxation step. It is 
needed since the dispersion forces between 
further particles are not taken into account in the 
algorithm that results in slight fluctuations of 
particles in the initial structure. In order to 
extinguish the fluctuations, initially generated 
structure relaxes for 10 ns (see the inset in Fig. 1). 
 
Compression of the model cell was performed up 
to the density 0.95 where the pressure arrives 

at about 3 GPa. After that, the system was relaxed 
during 30 ns. A considerable reduction of stresses 
is observed at this relaxation stage. This reduction 
for the hydrostatic pressure is well approximated 
by an expression 
 

0 1 1 2 2( ) exp( / ) exp( / )p t p p t p t      , (4) 

 
Coefficients of the approximation (4) for the 
simulated strain rates are presented in Table 1. 
Post-compression relaxation proceeds in two 
stages: “rapid” with a characteristic time of about 
tenths of nanoseconds, and “slow”, which lasts 
from several up to tens of nanoseconds. Change 
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of hydrostatic pressure during relaxation 
decreases from 441 MPa (it is about 17% of the 
compaction pressure) at the densification rate v1 
almost to zero at the rate v5. So, the compaction 

of the model system at the densification rate of the 
order of 10

4
 s

–1
 can be considered as a nearly 

quasistatic process. 

 

 
 

Fig. 1. The time dependence of pressure for the densification rate 6
3 6.8 10v    s

–1
. Dashed 

lines are examples of calculation curves, solid line is the average over 80 independent 
calculations. Insert shows the period of the preliminary relaxation (10 ns) and the beginning of 

the compression.  
 

 
 
Fig. 2. Densification curves in “density – pressure” coordinates for strain rates 

1v  (solid line), 

3v  (dashed line), and 
5v  (dotted line). Line 1 is the asymptotic curve according to the eqs. (5) – 

(8). Insert shows the low-pressure region in the expanded scale. 
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Table 1. The coefficients of approximations (4) 
 

 
0p , MPa 

1p , MPa 
1 , ns 

2p , MPa 
2 , ns 

1v  2603.9 441.1 0.07 35.3 4.9 

2v  2810.3 109.7 0.20 72.0 4.3 

3v  2803.2 13.3 0.45 84.1 9.2 

4v  2835.1 49.8 0.15 29.0 10.0 

5v  2868.6 0.0 — 1.3 30.0 

 
Fig. 2 presents the compaction curves 
corresponding to the different densification rates. 
It is interesting that the ( )p   curve for 

1v rate has 

a local maximum at the beginning, which is very 
similar to the yield drop at stress-strain curves of 
metals [21]. This maximum has a dynamical 
nature and is caused by the retardation of 
relaxation processes from the powder 
compression. According to the simulation results, 
an increase in pressure up to the local maximum 
takes about 0.02 ns. This time is significantly less 
than the time of the "rapid" relaxation, which is 
about 0.07 ns (see Table 1) at the rate

1v . At 

slower densification rates this maximum 
disappears. 
 
As one can see on the Fig. 2, all the densification 
curves can be adequately approximated in the 
limit of large densities and pressures. To obtain 
the asymptote we use the interrelation of regular 
packing density of the disks on the plane with 
mean coordination number 

avk  (the number of 

particle contacts) in the form 
 

av
reg

av

/

tan( / )

k

k






. (5) 

 

At high pressures we can expect strong friction 
forces between particles. It should result to that 
the uniform compression of the system proceeds 
without relative displacement of particles. In such 
a case the density increases in 2D geometry as 
 

 
reg

2
( )

1 / g

h
h d





 . (6) 

 

For the hydrostatic pressure from Eq. (2) we have 
[9,10] 
 

av
3

( )
( )( )n g

g

h k
p f h d h

d




    , (7) 

 

where 
nf  is the normal part of the contact force 

without taking into account the viscous stresses, 

and angle brackets mean the average over all 
pairs of interacting particles. Replacing <…> in 
Eq. (7) with the corresponding interaction laws we 
get the dependence of ( )p  , which is implicitly 

determined by the equations (5) – (7) where the 
mean coordination number

avk  is a parameter. 

According to the analysis of simulation results, the 
interrelation of coordination number 

avk  with 

density for all the strain rates is well described by 
the expression 
 

2
av 2.3 3.0k    . (8) 

 
The asymptote relationship ( )p   determined by 

the equations (5) – (8) is shown in Fig. 2 (curve 1). 
It can be seen that the densification curves ( )p   

reach the asymptote in the high pressure limit. At 
the pressure of 3 GPa the error in the density 
according to the asymptote is less than 3%. 
 
To analyze the dependencies in Fig. 2, the 
densification curve ( )p  corresponding to the rate

3v  has been used as a reference one. Fig. 3 

shows the differences between the other 
densification curves and the reference one. These 
differences are well approximated by the 
expression: 
 

 3 0( , ) ( ) ( )vp v p p v  


    . 

 
The analysis performed reveals that the index 

3 , and the strain-rate-dependent coefficient 

vp  is well described by the expression 
1/4

0v v vp p k v  . As a result, taking the quasistatic 

conditions ( 0v , the line 6 in Fig. 3) as a 
reference line we have obtained 
 

 
31/4

stat 0( , ) ( ) vp v p k v      .  (9) 

 

where 21.5vk   MPa s1/4. Fig. 4 demonstrates the 

influence of compression rate on the acting 
pressure, which is determined by the equation (9). 
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Fig. 3. The differences of compaction pressures from the pressure corresponding to the rate 

3v  as a function of density. Symbols are the simulation results for the rate 
2v ; smooth lines are 

the dependences of Eq. (9) for the densification rates 
1v  – 

5v  and for the quasistatic conditions 

(the line 6). 
 

 
 

Fig. 4. Difference between dynamical and static compaction pressure as a function of strain 
rate for values of compact density   0.80 (line 1), 0.85 (line 2), 0.90 (line 3) and 0.95 (line 4). 

 
For example, it can be seen from Fig. 4 that 
achievement of the density 0.95  with the 

strain rate 810v   s
–1

 requires the pressure, which 

is larger than that at quasistatic process by 
200 MPa. 
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4. CONCLUSION 
 
For the first time, the influence of the compression 
rate on the compatibility of oxide nanopowders 
has been studied by a two-dimentional granular 
dynamics method. Processes of stress relaxation 
after the stage of high-speed compression with 
the strain rates of 10

4
 – 10

9
 s

–1
 up to the relative 

density 0.95  have been analyzed. In particular, 

it has been found that the time of the stress 
relaxation is about 10 ns when the strain rate 
decreases down to 10

6
 s

–1
. At this case the 

decrease of the mean pressure at the relaxation 
stage does not exceed 100 MPa which is 
significantly smaller than the compaction pressure 
(about 3 GPa). The explicit dependence of the 
compaction pressure, which is connected with the 
yield strength within phenomenology of powder 
body [1], on the strain rate has been established. 
It has been found that in 2D geometry, nanosized 
powders demonstrate the power-law dependence 

of pressure on strain rate as 1/4p v , in contrast 

to plastic flow of metals, where the yield strength 
is proportional to the logarithm of the strain rate 
[12]. 
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