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ABSTRACT

In this paper, we considered method of interpolation of the approximate solution and collocation
of the differential system to generate a continuous linear multistep method. The basic properties
of the method was investigated and found to be zero stable, consistent, P-stable and convergent.
The method was tested on numerical examples solved by the existing methods, our method was
found to performed better in terms of accuracy.
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1 INTRODUCTION

Mathematical modeling of real- life problems
usually result into functional equation, for
example, Ordinary differential equation and
Partial differential equation, Integro and Integral
differential equation, Stochastic differential
equation and others. Not all ordinary differential
equations such as those used to model real life
problems can be solved analytically.

In this paper, we consider solving directly second
order initial value problems (IVPs) of ordinary
differential equations (ODEs) of the form

y′′ = f(x, y, y′), y(a) = 0, y′(a) = y′
0, xϵ[a, b]

(1.1)

Equation (1.1) arises from many physical
phenomena in a wide variety of applications
especially in engineering such as the motion of
rocket or satellite, fluid dynamic, electric circuit
and other area of application. Many scholars
have worked at solving (1.1) numerically by
reducing it to a system of first order equations
[1], [2] and others. In spite of the success of this
approach, it suffers some setbacks, according
to [3] and [4], the setback are; un-economical
in term of cost of implementation, increased
computational burden and wastage of computer
time, increased dimension of the resulting
systems of equations to be solved. The method
becomes inefficient when the given system of
equation to be solved cannot be solved explicitly
with respect to the derivative of the highest
order. The approach for solving the system of
higher order ODEs directly has been suggested
by [5], [6], [7] and [8]), according to [4] and
[9], continuous linear multistep method have
greater advantages over the discrete method,
they gives better error estimate and provides
a simplified form of coefficient for further
analytical work at different points and guarantee
easy approximation of solution at all interior
points of the integration interval. Among the
authors that proposed the linear multistep

method are Kayode [5] and [10] to mention
few. They developed an implicit linear multistep
method which was implemented in predictor
corrector mode and adopted Taylor’s series
expansion to provide the starting value. These
authors independently proposed methods of
various order of accuracies to proffer solution to
problem (1.1) at only grid points. In addition a
few authors [11] and [12] have introduced hybrid
methods to solving problem (1.1) but with lower
accuracies.

In this research work, power series was used
as basis function in generating the continuous
hybrid linear multistep for the solution of
problem (1.1).

2 METHODOLOGY

We consider a power series approximate solution
of the form

p(x) =

(c+i)−1∑
j=0

ajx
j (2.1)

where c and i are the number of collocation and
interpolation points respectively

The second derivatives of (2) gives

y′′(x) =

(c+i)−1∑
j=0

j(j − 1)ajx
j−2 = f(x, y, y′)

(2.2)
Equation (2.1) and (2.2) are respectively
interpolated and collocated at selected grid
points and off-grid point to obtain the required
methods.

Equation (2.1) was interpolated at one grid point
and at one off grid point x = xn+1 and xn+r.
Equation (2.2) was collocated at four grid points
x = xn+i,i = 0, 1, 2, 3, 4 and evaluating at the
end point i.e x = xn+i,i = 3 respectively, gave
rise to system of equations which can be express
in matrix form

AX = B (2.3)
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

1 xn+3 x2
n+3 x3

n+3 x4
n+3 x5

n+3 x6
n+3

1 xn+r x2
n+r x3

n+r x4
n+r xn+r

5 xn+r
6

0 0 2 6xn 12x2
n 20x3

n 30x4
n+1

0 0 2 6xn+1 12x2
n+1 20x3

n+1 30x4
n+1

0 0 2 6xn+2 12x2
n+2 20x3

n+2 30x4
n+2

0 0 2 6xn+3h 12x2
n+3 20x3

n+3 30x4
n+3

0 0 2 6xn+4 12x2
n+4 20x3

n+4 30x4
n+4





a0

a1

a2

a3

a4

a5

a6


=



yn+3

yn+r

fn

fn+1

fn+2

fn+3

fn+4


This is then solved using Gaussian Elimination method to obtained the parameters aj ’s which is
then substituted in (2.1) to obtain the continuous system (2.4) after some algebraic simplifications.
Using the transformation in [11]

t =
x− xn+k−1

h
dt

dx
=

1

h
The coefficients are put as follows:

α3 =
−rh + th + 3h

−rh + 3h

α 7
2
= − th

−rh + 3h

β0 =
1

1440
(
45 th6 − 147 th6r + 112 th6r − 17 t2h6 − 2 trh6

h4
)

β1 =
1

360
(
108 th6 − 89 th6r + 24 t2h6 − 19 trh6

h4
) (2.4)

β2 =
1

240
(
189 th6 − 12 th6r − 41 t2h6 − 41 th6r + 16 trh6

h4
)

β3 =
1

360
(
144 th6 + 188 t2h6 + 5 th6r − 13 trh6

h4
)

β4 = − 1

1440

27 th6 − 12 th6r − 135 t2h6 + 19 th6r − 12 trh6 + 2 trh6

h4

The first derivative of (2.4) are follows:

α′
3 =

h

−rh + 3h

α′
7
2
= −(

h

−rh + 3h
)

β′
0 =

1

1440
(
45h6 − 35h6r − 34 t− 2 rh6

h4
) (2.5)

β′
1 =

1

360
(
108h6 + 48 th6

h4
)

β′
2 =

1

240
(
189h6 − 12h6r − 82 th6 + 16 rh6

h4
)

β′
3 =

1

360
(
144h6 + 376 th6 + 5h6r − 13 rh6

h4
)
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β′
4 = − 1

1440
(
−12h6r − 270 th6 + 2 rh6

h4
)

simplifying the result gives a discrete hybrid linear multistep method

yn+4 =(
−rh + th + 3h

−rh + 3h
)yn+3 + (− th

−rh + 3h
)yn+r+

1

1440
(
45 th6 − 147 th6r + 112 th6r − 17 t2h6 − 2 trh6

h4
)fn+

1

360
(
108 th6 − 89 th6r + 24 t2h6 − 19 trh6

h4
)fn+1+

1

240

189 th6 − 12 th6r − 41 t2h6 − 41 th6r + 16 trh6

h4
)fn+2+

1

360
(
144 th6 + 188 t2h6 + 5 th6r − 13 trh6

h4
)fn+3

− 1

1440
(
27 th6 − 12 th6r − 135 t2h6 + 19 th6r − 12 trh6 + 2 trh6

h4
)fn+4

(2.6)

Evaluating (2.4) and (2.5) at t = 1 gives a discrete hybrid linear multistep method.

yn+4 =
1

1440h3 (3h− rh)
(−1440 rh yn+3h

3 + 5760 yn+3h
4 − 1440 yn+rh

4+(
2 rh6 + 324h6 − 81 rh h5 − 60 rh3h3 + 55 rh4h2 − 18 rh5) fn+4

+
(
320 rh3h3 + 3984h6 − 1508 rh h5 − 8 rh6 − 280 rh4h2 + 84 rh5) fn+3

+
(
2664h6 + 570 rh4h2 + 12 rh6 − 1050 rh h5 − 720 rh3h3 − 144 rh5) fn+2+(

108 rh5h− 1932 rh h5 − 8 rh6 + 960 rh3h3 + 1584h6 − 520 rh4h2) fn+1+(
2 rh6 + 84h6 − 500 rh3h3 + 720 rh2h4 − 469 rh h5 + 175 rh4h2 − 30 rh5) fn)

(2.7)

y′
n+4 =

1

1440h4(3h− rh)
[1440 yn+3h

4 − 1440 yn+rh
4+(

2 rh6 + 55 rh4h2 − 18 rh5h+ 1425h6 − 60 rh3h3 − 448 rh h5) fn+4+(
5604h6 − 8 rh6 + 84 rh5h+ 320 rh3h3 − 280 rh4h2 − 2048 rh h5) fn+3+(
570 rh4 − 768 rh h5 + 12 rh6 − 144 rh5h+ 1818h6 − 720 rh3h3) fn+2

+
(
960 rh3h3 − 2048 rh h5 + 1932h6 + 108 rh5h− 8 rh6 − 520 rh4h2) fn+1+(

720 rh2h4 − 30 rh5h− 500 rh3h3 − 448 rh h5 + 21h6 + 2 rh6 + 175 rh4h2) fn]

(2.8)

Simplifying (2.7) and (2.8) at r = 7
2
, we have:

yn+4 =2 yn+ 7
2
− yn+3 +

h2

422400
(35024fn+4 + 105160fn+3 + 10560fn+1 − 48290fn+2 − 3465fn) (2.9)

y′
n+4 =2 yn+3 − 2 yn+ 7

2
− h2

23040h
(−2912 fn+1 + 7146 fn+2 − 14376 fn+3 − 7663 fn+4 + 525 fn)

(2.10)

The predictors and its first derivative are developed using power series as the basis function to
obtain

yn+4 = −yn+3 + 2 yn+ 7
2
+

h2

1344000
(3900fn − 21980fn+1 + 55300fn+2 − 83300fn+3 + 382080fn+ 7

2
)

y′
n+4 = yn+ 7

2
− yn+3 +

h2

201600h
(4985 fn − 28161 fn+1 + 71575 fn+2 − 142415 fn+3

+ 245216 fn+ 7
2
)
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3 ANALYSIS OF THE BASIC

PROPERTIES OF THE

METHOD

3.1 Order of the Method

Let the linear operator L associated with the
method (2.9) be defined as

L[y(x);h] =

k∑
j=0

αjy(xn + jh)− h2βjy
′′(xn+jh)

where y(x) is an arbitrary test function that is
continuously differentiable in the interval [a, b].
Expanding y(xn + jh) and y′′(xn + jh), j =
0, 1, ...,m in

Taylor series about xn and collecting like terms
in h and y gives;

L[y(x);h] =

c0y(x)+c1hy
′(x)+c2h

2y(2)(x)+· · ·+cph
py(p)(x)

(3.1)

Definition 1. The difference operator L
associated with the discrete implicit one step
method (3.1) are said to be of order p if in (3.2)
c0 = c1 = c2 = · · · = cp+1 = 0, cp+2 ̸= 0 see [1]

Definition 2. The term cp+2 is called the error
constant and it implies that the local truncation
error is given as

tn+k = cp+2h
(p+2)(xn) = 0(hp+3) see [1]

Definition 3. Linear Multistep method (LMM)
is a computational method for determining the
sequence yn which takes the form of a linear
relationship between yn+j and fn+j ,j = 0(1)k.
The general form of a linear k- step method for
mth order general odes may be written as

y(x) =
k∑

j=0

αjyn+j = hm
k∑

j=0

βjfn+j ,

αj ,βj are the coefficients of the method,
fn+j=f(xn+j ,yn+j ,y

i
n+j ,y

ii
n+j ,. . . ,y

m−1
n+j ),

j = 0(1)k, h is the steplength, m is the order of
ode to be solved: αk ̸= 0. α0 and β0 are not
both zero. [1]

Definition 4. A multistep method is said to be

P-satble, if its interval of periodicity is (0,∞) see
[13]

Order and Error constant of the Methods are
as follows Applying the linear operator L (3.1)
to determine the order and the error constants
of the derived method. Expanding the method
(2.9) and its derivative (2.10) by Taylor’s series
and combining the coefficient of the like terms in
hn gives

c0 = c1 = c2 = c3 = c4 = c5 = c5, c7 = −89
15360

=
5.794e−3

Hence, the method is of order 5 with error
constant c7 = 5.794e−3

and

c0 = c1 = c2 = c3 = c4 = c5 = c6 = 0, c7 =
5293
14

= 378.07

Hence, the method is of order 5 with error
constant c7 = 378.07

Zero Stability of the Method

Given the first characteristics polynomial of (2.9)
as:

ρ(r) = r4 − 2r
7
2 + r3 = 0

On solving ρ(r), r = 0, 1 which satisfies |RJ | ≥
1, j = 1, . . . , k. That the roots lies in the unit
circle and the multiplicity is simple. Hence the
method is zero stable.

Consistency of the Method

A numerical method is said to be consistent if
the following conditions are satisfies

(i) the order p ≥ 1
(ii)

∑k
j=0 αj = 0

(iii) ρ(1) = ρ′(1) = 0
(iv)ρ′′(1) = 2!σ(1)

where, ρ(r) and σ(r) are the first and second
characteristics polynomials of our method.
According to [1], the first condition is a sufficient
condition for the associated block method to be
consistent. Our method is order p = 5 . Hence
it is consistent.

5
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Region of Absolute Stability of the
Method

Consider the stability polynomial∏
(z, h̄) = ρ(z)− h̄σ(z) = 0 (3.2)

To determine the region of absolute stability in
this work, a method that requires neither the
computation of roots of a polynomial nor the
solving of simultaneous inequality was adopted.
This methods according to [1] is called the
Boundary Locus Method (BLM).

Definition 5. The region R of the complex
h̄− plane such that the roots of

∏
(r, h̄) = 0

lie within the unit circle whenever h̄ lies in
the interior of the region is called the region
of absolute stability.

Thus, we redefine (3.3) in terms of Euler’s
number, eiθ, as follows

π(eiθ, h) = ρ(eiθ) = 0 (3.3)

so that, the locus of the boundary δR is given by

h̄(θ) =
ρ(eiθ)

σ(eiθ)
(3.4)

where ρ is the first characteristics polynomial
and σ is second characteristics polynomial

if
∏
(z, h̄) = 0, h̄ = λh2

then

h̄(r) =
ρ(r)

σ(r)
(3.5)

ρ(r) = r4 − 2r
7
2 + r3

σ(r) =
1

422400
(35024r4 + 105160r3 − 48290r2 + 10560r − 3465)

Using Matlab to plot (3.5) gives the required stability region below

Fig. 1. Region of Absolute Stability of the method.

As shown on the graph, the region of absolute stability of the method is (-24,0). The method is
P-stable .
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4 NUMERICAL EXAMPLES

Test problems

Problem 1

y′′ = y′: y(0) = 0; y′(0) = −1 ; h = 0.1

exact solution: y(x) = 1− exp(x)

Problem 2.

y′′ = 100y; y(0) = 1, y′(0) = −10, h = 0.01

exact solution:y(x) = exp(−10x)

Problem 3:

Resonance Vibration of a Machine

A stamping machine applies hammering forces on metal sheets by a die attached to the plunger
which moves vertically up and down by a fly wheel makes the impact force on the metal sheet
and therefore the supporting base, intermittent and cyclic. The bearing base on which the metal
sheet is situated has a mass, M = 2000kg. The force acting on the base follows a function: f(t) =
2000sin(10t),in which t=time in seconds. The base is supported by an elastic pad with an equivalent
spring constant k = 2 ∗ 105N/M. Determine the differential equation for the instantaneous position
of the base y(t) if the base is initially depressed down by an amount 0.1m.

Solution: The mass- spring system above is modeled as differential equation:

The Bearing base mass = 2000kg

Spring constant k = 2 ∗ 105N/m

Force (ma) on the metal sheet= m d2y
dt2

= my′′

i.e. ma = my′′ = 2000sin(10t); where a = y′′

Initial conditions on the system are

y(t0) = y0;
dy
dt
|t = 0 = y′(t0) = y′(0); t0 = 0, y′

0 = 0.1

Therefore, the governing equation for the instantaneous position of the base y(t) is given by

My′′ + ky = F (t); y(t0) = y0, y
′(t0) = y′0

Theoretical solution: y(t) = 1
10
cos10t+ 1

200
sin10t− t

20
cos10t

7
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4.1 Results

Table 1. Result of problem 1, for h=0.1

X Exact solution Computed solution Error in Error in [11]
new method

0.2 -0.221402758160170 -0.221402754700000 3.46017000e− 09 8.17176E − 07
0.3 -0.349858807576003 -0.349858801900000 5.67600300e− 09 3.10356E − 06
0.4 -0.491824697641270 -0.491824690000000 7.64127000e− 09 6.56957E − 06
0.5 -0.648721270700128 -0.648721260202993 1.04971347e− 08 1.14380E − 05
0.6 -0.822118800390509 -0.822118785895474 1.44950355e− 08 1.79656E − 05
0.7 -1.013752707470477 -1.013752688688239 1.87822380e− 08 2.64474E − 05
0.8 -1.225540928492468 -1.225540905693596 2.27988702e− 08 3.72222E − 05
0.9 -1.459603111156950 -1.459603082898740 2.82582100e− 08 5.06788E − 05
1.0 -1.718281828459045 -1.718275773210793 3.55473540e− 08 6.72615E − 05

Table 2. Result of problem 3

X-value y-exact y- computed Error in the Error in [12]
new method

0.10 0.3678794411714423 0.3678794504846674 8.1951512e− 09 1.157e-7
0.20 0.3328710836980796 0.3328710939166178 9.3132251e− 09 3.658e-7
0.30 0.3011942119122021 0.3011942232819327 1.02185382e− 08 6.051e-7
0.40 0.2725317930340126 0.2725318050644373 1.20304247e− 08 8.502e-7
0.50 0.2465969639416065 0.2465969772327199 1.32911134e− 08 1.104e-6
0.60 0.2231301601484298 0.2231301746281558 1.44797260e− 08 1.369e-6
0.70 0.2018965179946554 0.2018965339041756 1.59095202e− 08 1.450e-6
0.80 0.1826835240527347 0.1826835411462089 1.70934742e− 08 1.597e-6
0.90 0.1652988882215865 0.1652989069915710 1.87699845e− 08 1.763e-6
1.00 0.1495686192226351 0.1495686397195046 2.04968695e− 08 1.946e-6

Table 3. Computed Results and error of Problem 3

t exact solution Computed solution Error

0.01 0.099404629653415691 0.099404631194783169 1.541367e− 09
0.02 0.097958005773976925 0.097958008750775830 2.976799e− 09
0.03 0.095207162458893865 0.095207163562179453 1.032860e− 09
0.04 0.091970827382988077 0.091970829830720871 2.447733e− 09
0.05 0.087961427477332363 0.087961431546444119 4.069112e− 09
0.06 0.082363909854646533 0.082363923228371022 1.337372e− 08
0.07 0.076833743309093400 0.075850410853356878 1.711910e− 08
0.08 0.069604876901833215 0.069604890787124438 1.388529e− 08
0.09 0.062811758617177721 0.062811776948016179 1.833084e− 08
0.10 0.055536073981512724 0.055536116843483072 4.286197e− 08

5 DISCUSSION

In this paper, we have considered three
numerical examples to test the efficiency of our
method. First problem was solved by [11] while
the second problem was solved by [12], the
third problem is Engineering problem. The new

method gave better approximation because the
proposed method require starting value and does
not require self-starting.
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6 CONCLUSION

In this paper, we have proposed a Predictor-
Corrector method for the solution of second
order ordinary differential equations. Our
method was found to be zero stable, consistent
and converges. The numerical examples show
that our method gave better accuracy than the
existing methods.
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