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ABSTRACT

An implicit four step stormer-cowell-typed method for direct solution of general second order
ordinary differential equations is proposed in this study. In the derivation of the method, a
combination of chebyshev and legendre polynomials was used as basis function to generate system
of interpolation and collocation equations at selected grid points to obtain systems of equation. The
resulting system of equations was solved for the unknown parameters and the values of these
parameters were substituted into the approximate solution of the basis function. The required
method was obtained by evaluating and simplify the resulting equations at the last end grid point of
the step number. The resulting method is zero-stable, consistent and normalized. Numerical results
compared favourably well with the existing methods.

Keywords: General second order; interpolation; collocation; order; zero stability; chebyshev; legendre.

*Corresponding author: E-mail: igeolatunde907@yahoo.com;



Kayode and Ige; AJOPACS, 6(1): 1-10, 2018; Article no.AJOPACS.40400

1. INTRODUCTION

This paper considers a method for the general
second order ordinary differential equations of
the form.

y'=fGyy' )y y@)=azy'(®)
= p, f e c’(a,b)

(1

where f is a given real-valued function which is
continuous within the interval of integration.

It has been noted that an analytical solution to (1)
is of little value because many of such problem
cannot be solved by an analytical approach. In
practice, the problem (1) is reduced to systems
of first-order equations and any methods for first
order equation are used to solve them. Awoyemi
[4], Kayode [7], extensively discussed bulky
dimension of the problem after it has been
reduced to a system of first-order equations,
which wasted a lot of human effort and computer
time. Implicit linear multistep methods which
have better stability condition is generally
adopted in the predictor-corrector method. The
major setback of the method is that the
predictors are in dropping the order of accuracy
hence it has effects on the accuracy of the
method. Later, block scheme was adopted to
cater for the setback of predictor-corrector
methods. This method was revealed to have the
possessions of Runge-Kutta for being self-
started and also gives an autonomous solution
without overlapping. The challenge of block
method is that it involves computational burdens
with the use of more time for computation.
Scholars who have proposed methods from
predictor-corrector method and block method
among them are Kayode and Obarhua [10],
Kayode and Adeyeye [9], Kayode [3], Kayode
and Obarhua [12], Adesanya et al. [1], Yahaya
and Badmus [11], Awoyemi et al. [5], Badmus
and Yahaya [6] to mention but few. In this paper,
we proposed an implicit four step stormer- cowell
type method which is a linear multistep method.
The combination of Chebyshev and legendry
polynomial was used as basis function in
generating the interpolation and collocation
equations for the development of the method for
the solution of (1).

2. DERIVATION OF THE METHOD

The derived implicit four step stormer-cowell type
method with continuous coefficients for the
solution of (1) is of the form

k k
D @) = DB o @)
Jj=0

j=2

where ¢ ;  j; are continuous functions of
Ko Vnej BV (xn+j) ’]:1+j :f(xn-%—j’yn+j’yn+j) ,

k is the step number of the method and / is the
step size of the method.

In the work, we considered the combination of
Chebyshev and Legendre Polynomials in the
form

c+i—1

OEIECRA0)

©)

where 7,(x)is the Chebyshev polynomial of the
first kind and p,(x) is the Legendre polynomial.

Equation (3) is the basis function with a single
variable x |, where x €(a,b) , @' s are real

unknown parameter to be determined and ¢ +i
is the sum of collocation and interpolation points,

C is the number of collocation points and ! is
the number of interpolation points.

The second derivative of (3) is

c+i—1

#9=Selr0s 7

Using equation (4) in (1) to have

c+i—1 c+i—1

y"(x) = ;aj];"(x) ;ajeu(x)
Sy -

Equations (3) and (4) will be respectively
interpolated and collocated to obtain the required
method for step number k.

Collocated (4) at x,, ;,/=0(1)4 and interpolated
(3) atx,, ;,/=2,3 resulted in the following set of
equations
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The system of equation (6) is solved by Gaussian elimination method to obtain the value of the
unknown parameters ¢, ,(j= 0,1,2,3,4,5,6) as follows

2 3 13 9
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They a ;s are substituted back into (3) and simplifying to give a continuous method of the type

Ve (X) = Z_:ajyn+j(x) + A’ Zﬂ] (x)fnﬂ'

j=k-2

X=X

Applying the transformation in Kayode & Obarhua (2015), ¢ = ++k-1 and gt = }lz_dh , (8)

becomes
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The coefficients are given as follows
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The first derivative of (10) are as follows
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Evaluating (10) and (11) at ¢ =1which implies that x = x,, , gives discrete scheme

2

yn+4 = 2yn+3 _yn+2 +%(19fn+4 +2O4fn+3 +14fn+2 +4fn+l - n) (12)

The first derivative

y'”+4 = %(yn-%—fa _yn+2 )+12lm(481fn+4 +1764fn+3 _198fn+2 +140fn+1 _27fn) (13)

The Predictor

2

yn+4 = 2yn+3 _yn+2 + h_(140f;1+3 + 197fn+2 - 156fn+l + 59fn)

240 (14)
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with its first derivative as

y"’*“ = %(_ywz +yn+3)+h7(922f'n+3 _771f;1+2 +516f;:+1 _127fn)

360

(15)

Other explicit schemes were generated to evaluate the remaining values using Taylor series.

yn+j:yn+(jh)yn'+ 3

And
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3. ANALYSIS OF BASIC PROPERTIES

3.1 Order and Error Constant of the
Method

Let the linear differences operator L associated
with the continuous multistep method 2 be
defined as:

where y(x)is an arbitrary function, continuously

o) s 1] = 3t )= 1,y (s )]

differentiable in the interval (a, b)

Expanding y(x” +Jh) and Y (x" +]h) as
Taylor series about X and collecting terms

lb/(x); h] =G, y(x) +Chy (x) +C I ym +.4+CH’ y(" ) (x)

where the 7 are constants, Lambert [13]. The
difference operator L and the associated
continuous linear multistep method (2) are said
to be of order P if in (2)

C,=C =C,=..=Cp,,=0and Cp,#0

The term Cpir is called the error constant and
it implies that the local truncation error is given

by Cral™30(x,)

For our method

1
G=G=6G=G=C=0C =C6=0,C7:_ﬁ)’

+f,

o, }+O(h3)

5)/ n
Therefore the derived scheme is of order 5

4. THE CONSISTENCY OF THE METHOD

Definition: The method is said to be consistent if
it has an order of at least one. If we define the
first and second characteristic polynomial

0 (16)
k
O'(X)IZ a;z’
/=0 (17)
where z is the principal root,

a,#0 and a," +B," #0

Definition: The linear multistep method (2) is
said to be consistent, if it satisfies the following
condition, Lambert [13]

(i) the order pzl

Z a, =0
(i)
(iii) p()=p (1)=0
(iv) p()=2"1a(l)

For our method

Condition (i) is satisfied since the scheme is of
order 5

Condition (ii) is satisfied since

o, +a, +o, +oy +o, =0, 0+0+1-2+1=0
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Condition (iii) is satisfied since
p(r)=r*=2r +r’and p'(r)=4r —6r° +2r
where r=1; p(r)=p'(r)=0

Condition (iv) is satisfied since

P () =122 =12 +2 and ofr)= 019r“+2043+14r2+4r—1)

1
E(
where r =1;

o‘(l):zl X [Eﬁ,&‘ﬁ,ﬂﬁ,i,i} 2

_o x 240
240 240 240 240 240

X =2x1=2
240

Therefore p'(r)=2 lo(r)=2

Hence the four condition are satisfied, the
method is consistent

5. ZERO STABILITY

Definition: A linear multistep method is said to be
zero-stable, if no root of the first characteristics
polynomial p(»)has a modulus greater than one
and if every root of modulus one has multiplicity
not greater than two. The scheme is zero stable
when no root of the first characteristics
polynomial has a modulus greater than one that
is.
. . k
A method is zero stable |fp ()= a, =0

j=0

. - k
J
where are the coefficients of 2 &V

j=0

k
D a =0y +0;+0y +05 +, =0+0+0+1-2+1=0

Jj=0

p(r)=r4 —2r’+r* =0

(r’=2r+1)=0
(r—=r)(r-1)=0
r=1 twice

Thus, the method is zero stable.
6. STABILITY INTERNAL

The Equation (11) is said to be stable if for a
given /4 all the roots z, of the characteristics

Polynomial o (z,7)= p(z)+ho(z)=0 satisfies

|ZS <1, s=12.... . where hi=Ah

We take on the boundary locus method to
determine the stability interval. Substituting the

test equation » =—Ay into Equation (11)
provides h(r,h):&, r=e"? After
o(r)
simplification, the stability interval gives

(—4.528 , 0) after evaluating 7(r,h) the interval
(0°, 180°).

7. IMPLEMENTATION OF THE METHOD
Problem 1

We consider a linear second order ordinary
differential equation

¥ y(0) = 0, »y(0)=-1, h=0.1

Exact solution . y(x) = l—exp(x)

y" =

Problem 2

We consider a linear second order ordinary
differential equation

y' = 100y
y(0) =1,

Exact solution . y(x) = e

¥ (0)=-10, h=0.01
10x
Problem 3

We consider a non-linear second order ordinary
differential equation

vy =x(»)? =0

y(0) =1, »'(0)==, h=0.003125

N | =

. _ 1. (2+x
Exact solution . y(x) = 1+ 5 [n( . xj
7.1 Shown in the Tables 1-3 are
Numerical Results to Problems 1-3

The computational error of our method
tested on problems 1-3 compared to other
researchers. Problem 1 was compared with
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Table 1. Table for problem 1

X Error in Kayode and Adeyeye [9] Error in new Method
0.4 8.17176E-07 8.025651E-9
0.5 3.10356E-06 1.662684E-8
0.6 6.56957E-06 2.073986E-8
0.7 1.14380E-05 3.421021E-8
0.8 1.79656E-05 4.332165E-8
0.9 2.64474E-05 6.285674E-8
1.0 3.72222E-05 7.628358E-8
1.1 5.06786E-05 1.053582E-7
1.2 6.72615E-05 1.273987E-7

Table 2.Table for problem 2

X Error in Awari [2] Error in new Method
0.1 1.353E-7 3.674E-10
0.2 3.658E-7 1.287E-10
0.3 6.051E-7 2.364E-9
04 8.502E-7 2.957E-9
0.5 1.104E-7 2.900E-9
0.6 1.369E-6 3.405E-9
0.7 1.450E-6 4.176E-9
0.8 1.597E-6 4.493E-9
0.9 1.763E-6 4.416E-9
1.0 1.946E-6 4.756E-9
11 2.099E-6 5.165E-9
1.2 2.374E-6 5.454E-9

Table 3. Table for problem 3

X Error in Kayode and Adeyeye [8]

Error in Awoyemi et al. [5]

Error in new method

0.1 4.831380E-11 1.0264E-11 0.000000E+00
0.2 3.382836E-09 7.9716E-11 1.638689E-13
0.3 1.580320E-08 2.6111E-10 3.179679E-13
0.4 4.333951E-08 6.5442E-10 8.195666E-13
0.5 9.391426E-08 1.3893E-09 1.321387E-12

Kayode and Adeyeye [9]. Problem 2 was
compared with Awari [2], while the result of
Problem 3 was compared with Kayode and
Adeyeye [8] and Awoyemi et al. [5].

4. CONCLUSIONS

In this paper, we have derived, investigated
and implemented an implicit four step stormer-
cowell type method for the solution of general
second order ordinary differential equations by
adopting a combination of Chebyshev and
Legendre polynomials as the basis function.
Collocation and interpolation approach is
adopted for the derivation of the method. It has
also been shown that the method is consistent,
zero stable hence convergent. In Table 1, our
method performs better than Kayode and

Adeyeye [9], Table 2; showed improved accuracy
than Awari [2] , also Table 3; showed that our
method perform better than Kayode and
Adeyeye [8], Awoyemi et al [5]. Hence, our
method compared favorably with the existing
methods.
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