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ABSTRACT 
 
An implicit four step stormer-cowell-typed method for direct solution of general second order 
ordinary differential equations is proposed in this study. In the derivation of the method, a 
combination of chebyshev and legendre polynomials was used as basis function to generate system 
of interpolation and collocation equations at selected grid points to obtain systems of equation. The 
resulting system of equations was solved for the unknown parameters and the values of these 
parameters were substituted into the approximate solution of the basis function. The required 
method was obtained by evaluating and simplify the resulting equations at the last end grid point of 
the step number. The resulting method is zero-stable, consistent and normalized. Numerical results  
compared favourably well with the existing methods. 
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1. INTRODUCTION  
 
This paper considers a method for the general 
second order ordinary differential equations of 
the form.  
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where f  is a given real-valued function which is 

continuous within the interval of integration.  
 
It has been noted that an analytical solution to (1) 
is of little value because many of such problem 
cannot be solved by an analytical approach. In 
practice, the problem (1) is reduced to systems 
of first-order equations and any methods for first 
order equation are used to solve them.  Awoyemi 
[4], Kayode [7], extensively discussed bulky 
dimension of the problem after it has been 
reduced to a system of first-order equations, 
which wasted a lot of human effort and computer 
time. Implicit linear multistep methods which 
have better stability condition is generally 
adopted in the predictor-corrector method. The 
major setback of the method is that the 
predictors are in dropping the order of accuracy 
hence it has effects on the accuracy of the 
method. Later, block scheme was adopted to 
cater for the setback of predictor-corrector 
methods. This method was revealed to have the 
possessions of Runge-Kutta for being self-
started and also gives an autonomous solution 
without overlapping. The challenge of block 
method is that it involves computational burdens 
with the use of more time for computation. 
Scholars who have proposed methods from 
predictor-corrector method and block method 
among them are Kayode and Obarhua [10], 
Kayode and Adeyeye [9], Kayode [3], Kayode 
and Obarhua [12], Adesanya et al. [1], Yahaya 
and Badmus [11], Awoyemi et al. [5], Badmus 
and Yahaya [6]  to mention but few. In this paper, 
we proposed an implicit four step stormer- cowell 
type method which is a linear multistep method. 
The combination of Chebyshev and legendry 
polynomial was used as basis function in 
generating the interpolation and collocation 
equations for the development of the method for 
the solution of (1). 
 

2. DERIVATION OF THE METHOD  
 

The derived implicit four step stormer-cowell type 
method with continuous coefficients for the 
solution of (1) is of the form 
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where ,j j  are continuous functions of 
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k  is the step number of the method and h  is the 
step size of the method. 
 
In the work, we considered the combination of 
Chebyshev and Legendre Polynomials in the 
form 
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where  jT x is the Chebyshev polynomial of the 

first kind and  jP x is the Legendre polynomial.                                                  

Equation (3) is the basis function with a single 

variable x , where ( , )x a b , a' s are real 

unknown parameter to be determined and c i

is the sum of collocation and interpolation points, 
c  is the number of collocation points and i  is 
the number of interpolation points. 
 
The second derivative of (3) is 
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Using equation (4) in (1) to have 
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Equations (3) and (4) will be respectively 
interpolated and collocated to obtain the required 
method for step number k. 

 
Collocated (4) at , 0(1)4n jx j  and interpolated 

(3) at , 2,3n jx j   resulted in the following set of 

equations 
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The system of equation (6) is solved by Gaussian elimination method to obtain the value of the 

unknown parameters ja ,(j= 0,1,2,3,4,5,6) as follows 
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The first derivative of (10) are as follows 
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Evaluating (10) and (11) at 1t  which implies that 4nx x  gives discrete scheme 

 
 
                                    (12) 

 
 

The first derivative 
 

 
                  (13) 
 
 

The Predictor 
 

 nnnnnnn ffff
h

yyy 59156197140
240

2 123

2

234  

                                            (14) 
 

 nnnnnnnn fffff
h

yyy   1234

2

234 41420419
240

2

   nnnnnnnn fffff
h

yy
h

y 271401981764481
1440

1
1234234

'  



 
 
 
 

Kayode and Ige; AJOPACS, 6(1): 1-10, 2018; Article no.AJOPACS.40400 
 
 

 
7 
 

with its first derivative as 
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Other explicit schemes were generated to evaluate the remaining values using Taylor series.  
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. 

3. ANALYSIS OF BASIC PROPERTIES 
 

3.1 Order and Error Constant of the 
Method 

 
Let the linear differences operator L associated  
with the continuous multistep method 2 be 
defined as: 

where 
)(xy
is an arbitrary function, continuously 

differentiable in the interval (a, b) 
 

Expanding 
 jhxy n  and 

 jhxy n 
''

as 

Taylor series about x  and collecting terms  
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where the pC are constants, Lambert [13].  The 
difference operator L and the associated 
continuous linear multistep method (2) are said 
to be of order P if in (2)  
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The term  2PC  is called the error constant and 
it implies that the local truncation error is given 

by 
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For our method 
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Therefore the derived scheme is of order 5 
 
 

4. THE CONSISTENCY OF THE METHOD 
 

Definition: The method is said to be consistent if 
it has an order of at least one. If we define the 
first and second characteristic polynomial 
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Definition: The linear multistep method (2) is 
said to be consistent, if it satisfies the following 
condition, Lambert [13] 
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For our method 
 

Condition (i) is satisfied since the scheme is of 
order 5 
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Condition (iii) is satisfied since  
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Hence the four condition are satisfied, the 
method is consistent 
 

5. ZERO STABILITY 
 

Definition: A linear multistep method is said to be 
zero-stable, if no root of the first characteristics 
polynomial ( )r has a modulus greater than one 

and if every root of modulus one has multiplicity 
not greater than two. The scheme is zero stable 
when no root of the first characteristics 
polynomial has a modulus greater than one that 
is. 
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Thus, the method is zero stable.  

 
6. STABILITY INTERNAL 

 
The Equation (11) is said to be stable if for a 
given h  all the roots nz  of the characteristics  

Polynomial  , ( ) ( ) 0z z h z     satisfies   
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We take on the boundary locus method to 
determine the stability interval. Substituting the 

test equation 
,y y into Equation (11) 
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simplification, the stability interval gives 
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7. IMPLEMENTATION OF THE METHOD 
    
Problem 1 
 
We consider a linear second order ordinary 
differential equation 
 
" 'y y    '0 0, 0 1, 0.1y y h     
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Problem 2     
 
We consider a linear second order ordinary 
differential equation 
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   '0 1, 0 10, 0.01y y h     
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Problem 3 
 
We consider a non-linear second order ordinary 
differential equation 
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7.1 Shown in the Tables 1-3 are 

Numerical Results to Problems 1-3 
 

The computational error of our method                 
tested on problems 1-3 compared to other             
researchers. Problem 1 was compared with
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Table 1. Table for problem 1 

 
X Error in Kayode and Adeyeye [9] Error in new Method  
0.4 8.17176E-07 8.025651E-9 
0.5 3.10356E-06 1.662684E-8 
0.6 6.56957E-06 2.073986E-8 
0.7 1.14380E-05 3.421021E-8 
0.8 1.79656E-05 4.332165E-8 
0.9 2.64474E-05 6.285674E-8 
1.0 3.72222E-05 7.628358E-8 
1.1 5.06786E-05 1.053582E-7 
1.2 6.72615E-05 1.273987E-7 

 
Table 2.Table for problem 2 

 
X Error in Awari [2] Error in new Method  
0.1 1.353E-7 3.674E-10 
0.2 3.658E-7 1.287E-10 
0.3 6.051E-7 2.364E-9 
0.4 8.502E-7 2.957E-9 
0.5 1.104E-7 2.900E-9 
0.6 1.369E-6 3.405E-9 
0.7 1.450E-6 4.176E-9 
0.8 1.597E-6 4.493E-9  
0.9 1.763E-6 4.416E-9 
1.0 1.946E-6 4.756E-9 
1.1 2.099E-6 5.165E-9  
1.2 2.374E-6 5.454E-9 

 
Table 3. Table for problem 3 

 
X Error in Kayode and Adeyeye [8]       Error in Awoyemi et al. [5]           Error in new method 
0.1 4.831380E-11 1.0264E-11 0.000000E+00 
0.2 3.382836E-09 7.9716E-11 1.638689E-13 
0.3  1.580320E-08 2.6111E-10 3.179679E-13 
0.4  4.333951E-08  6.5442E-10 8.195666E-13 
0.5    9.391426E-08   1.3893E-09 1.321387E-12 

 
Kayode and Adeyeye [9]. Problem 2 was 
compared with Awari [2], while the result of 
Problem 3 was compared with Kayode and 
Adeyeye [8] and Awoyemi et al. [5]. 
 

4. CONCLUSIONS 
 

In this paper, we have derived, investigated                
and implemented an implicit four step stormer-
cowell type method for the solution of general 
second order ordinary differential equations by 
adopting a combination of Chebyshev and 
Legendre polynomials as the basis function. 
Collocation and interpolation approach is 
adopted for the derivation of the method. It has 
also been shown that the method is consistent, 
zero stable hence convergent. In Table 1, our 
method performs better than Kayode and 

Adeyeye [9], Table 2; showed improved accuracy 
than Awari [2] , also Table 3; showed that our 
method perform better than Kayode and 
Adeyeye [8], Awoyemi et al [5]. Hence, our 
method compared favorably with the existing 
methods. 
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