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Abstract

Let A denote the set of non-negative integers. A set of non-negative, n-dimensional integral
vectors, M C N™, is said to be right-closed, if (x € M)A (y > x) A (y € NT)) = (y € M).

In this paper, we present a polynomial time algorithm for testing the convexity of a right-closed set
of integral vectors, when the dimension n is fixed. Right-closed set of integral vectors are infinitely
large, by definition. We compute the convex-hull of an appropriately-defined finite subset of this
infinite-set of vectors. We then check if a stylized Linear Program has a non-zero optimal value
for a special collection of facets of this convex-hull.

This result is to be viewed against the backdrop of the fact that checking the convexity of a
real-valued, geometric set can only be accomplished in an approximate sense; and, the fact
that most algorithms involving sets of real-valued vectors do not apply directly to their integral
counterparts. This observation plays an important role in the efficient synthesis of Supervisory
Policies that avoid Livelocks in Discrete- Event/Discrete-State Systems.
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1 Introduction and Motivation

A set in Euclidean space is called convex if for every pair of points in the set, the line segment
connecting them, lies completely in the set. While a well-established concept, unfortunately checking
this property for an arbitrary geometric set is not easy. For example, consider deleting a single point
from a convex set; determining that the set is non-convex is almost impossible as infinite pairs of
points should be tested [1].

The concept of convexity lends itself to several applications in engineering [2], and it also appears in
the context of supervisory control of Discrete Event/Discrete State (DEDS) systems. Manufacturing
Systems, multicomponent systems with event-driven dynamics such as shipyards, airports, claims
department of insurance offices are examples of DEDS systems. The discrete-states of these systems
have a logical, as opposed to numerical, interpretation. A DEDS system is live [3], if irrespective
of the past activities, every event can be executed, not necessarily immediately, in the future. A
live-locked DEDS system will have at least one event that enters a state of suspended animation
for perpetuity, which is undesirable for various reasons. A live DEDS system does not experience
live-locks.

Petri nets (PNs) are a popular modeling paradigm for DEDS systems. A PN model of a DEDS
system that is not live originally, can be made live by a supervisory policy. This supervisory policy
is characterized by a right-closed set of integral vectors (cf. references [4], [5], [6], [7], and [8] for
additional information), and when this set is convex, the supervisory policy that enforces liveness
can be implemented inexpensively (cf. references [9], [10]). This is the motivation behind testing
the convexity of an arbitrary right-closed set, which is introduced in the remainder of this section.

The notion of convexity in real sets [11] can be extended to the integer sets as well. An integral
set is integer-convex if for every pair of integer points, all the lattice points on the line segment
connecting them also belong to the set. The other definition could be that an integer set is convex
if it is equal to the set of all the lattice points in a real, convex set. These two definitions are not
equivalent in the context of integral sets. This difference makes most of the convexity checking
algorithms ineffective over integral sets. Comparing the number of lattice points in the convex hull
of the integral set with the number of lattice points in the original integral set could be a good
starting point for any convexity testing algorithm. But the complexity of lattice point enumeration
will increase exponentially with the number of integer points inside the hull [12], [13]. Constructing
the convex hull of k£ points in a fixed dimension can be done in polynomial time [14]. As discussed
earlier right-closed set is unbounded, therefore constructing the convex hull of a right-closed integral
set will be computationally infeasible. Instead, we use a finite subset of the original right-closed set
that keeps the characteristics we need to test the convexity of the entire set. Using the convex hull
of this finite subset, we will derive a polynomial time convexity test for an arbitrary right-closed
set of integral vectors.

The remainder of the paper is organized as follows. Preliminary definitions and notations will be
introduced in the next section. The main theorems and results will be presented on Section 3. The
details of the algorithm are provided in section 4. Section 5 concludes the paper.
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2 Notations and definitions

Throughout this paper N (A1) and R will be used to denote the set of non-negative (positive)
integers and reals, respectively. For m,n,k € N7, the set of m x n matrices (k-dimensional
vectors) of non-negative integers is represented as N™*™ (A*). Similarly, R™*"™ and R* denotes
the set of (m x n) real-valued matrices and k-dimensional real-valued vectors, respectively.

The conver combination of a set of integral- or real-valued vectors, xi,X2, -+ ,Xy is defined as
St Aixa, where (1) 0 < A, Az,-+-, A < 1, and (2) 22:1 A: = 1. If the latter condition is
dropped, then the combination is called conic combination and if only the later property holds,
it is an affine combination. The conver hull of these vectors is defined as the set of all possible
convex combinations of the vectors which is the smallest, real-valued, convex set that contains these
vectors, and it is denoted by conv(xi,X2, -+ ,Xk).

A set M C R" is called convex if for every pair of points in M, the line segment connecting the
pair also lies in M. This definition can be extended into two distinct statements for integral sets:

1. The integer set M € N'™ is segmentally convex if all the integral points on the line segment
connecting each pair of points in M also belongs to M.

2. The integer set M € N™ is intersection convex if there is a real convex set C' such that its
set of integer points equals to M.

Although equivalent for real sets, these two notions of convexity are not necessarily similar for an
integral set. The intersection convexity of an integral set implies the segmental convexity of that
set, but the converse is not true. Hence, throughout this paper, we use the term convexity to refer
to the intersection convexity of a set.

An integral set of vectors M C AN™ is said to be right-closed or upward-closed [15] if ((m' €
M)A (m? > m') A (m? € N™)), would imply m? € M. Every right-closed set M contains a finite
set of minimal elements, min(M) C M where

1. Vm' € M, there exists m? € min(M) such that m* < m', and
2. if 3m' € M, 3m? € min(M) such that m? > m' then m' = m?.

A right-closed, real-valued set of vectors, that is closed, is defined analogously. However, unlike an
integral right-closed set, the set of minimal elements of a real-valued right-closed set is not finite.

Fori,j € N, A € R b e R a polyhedron P(A,b) is described as P(A,b) := {x ¢ R"|Ax >
b}. If the entries of A and b are rational numbers, then P(A,b) is a rational polyhedron. The set of
integral points inside the P(A, b) is denoted by Int(P(A,b)). A polytope or a bounded polyhedron
is a convex hull of a finite set of vectors in R™.

A half-space (w,t) is the set {x € R" | wix >t} for w € R™ , t € R. We use the notation
{(ws,t:)}F=1 to denote the intersection of a set of k-many half-spaces.

A half-space (w,t) is a valid inequality for a set S C R™, if S C {x € R™ | wix > t}. Fis
a face of the polyhedron P(A,b), if 7 C P(A,b) and there exists a valid inequality (w,t) for
P(A,b) such that F = {x € P(A,b) | w'x =t}. If F # @, then (w,t) supports the face F, and
F ={x € P(A,b) | w'x = t} is called the supporting hyperplane of F. A supporting hyperplane is
called right-closed supporting hyperplane if both w and t are non-negative. F is called proper-face
if F # P(A,b) and non-trivial if F # @&. A facet of the polyhedron P(A,b), F, is the proper face
of P(A,b) such that it is not strictly contained in any proper or non-trivial face of P(A,b). A
right-closed facet of a polyhedron P(A,b) is a subset of a right-closed supporting hyperplane.

The procedure to compute the convex hull of a set of vectors is foundational to this paper. The
following result shows that this can be done in polynomial time.
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Theorem 2.1. [1/] It is possible to compute the convez hull of m points in n-space deterministically
in O(mlog(m) + m!™/2)

For a right-closed M C N, P(A,b) = conv(M), if and only if A and b are non-negative [9]. The
following lemma identifies a property of the convex hull of min(M) where M C N is an arbitrary
right-closed set.

Lemma 2.2. [9] If M C N™ is an arbitrary right-closed set, then all vertices of the convex hull
of min(M) are minimal elements.

This observation follows directly from the fact that every vector in conv(min(M)) is a convex
combination of the finite set of vectors in min(M). We turn our attention to the problem of
checking integer convexity of a right-closed set in the next section.

3 Main Results

As theorem 2.1 states, computing the convex hull of finite points in a finite dimension has a
polynomial-time complexity with respect to number of points for a fixed dimension. We will utilize
this theorem as a basis for our proposed algorithm presented in the next section. As the right-
closed set of integral vectors is an infinite set by definition, constructing its convex hull will be
computationally infeasible. To overcome this issue, we propose a finite subset of the original right-
closed set that keeps the characteristics that can attest to the convexity of the original right-closed
set.

Let V C M be a finite collection of vectors as defined below:

V = min(M) U { }{mp + 1q}} (3.1)

U
pe{l,,k},qe{l, - ,n
where min(M) = {m;,my, .- ,m;} and {14}5_; is the set of n-many unit-vectors. In general,
min(M) C min(Int(conv(V))). From Lemma II1.4 of reference [9], we note that for a non-convex
right-closed set M C N, min(Int(conv(V))) — M # 0.

The finite set V is a strict subset of M, hence we can infer that the set of supporting hyperplanes
defining conv(M) is a strict subset of supporting hyperplanes defining conv(V). On the other
hand, conv(M) is a right-closed set which means all its supporting hyperplanes are right-closed
hyperplanes. The following theorem shows that if a supporting hyperplane of conv(V) is not a
supporting hyperplane of conv(M), then it is not right-closed.

Theorem 3.1. The set of right-closed supporting hyperplanes defining conv(V) are the only supporting
hyperplanes defining conv(M).

Proof. Since M C N™ is right-closed, conv(M) C R™ is also right-closed. From reference [9],
3l € N,3A € R™™,3b € R, such that conv(M) = P(A,b). As conv(V) C conv(M), extra
constraints should be added to the mentioned polyhedron in order to construct conv(V). Let
cI'x >d;fori=1,---, K, be the K additional constraints. For any vector p € conv(M) —conv(V),
we obtain

cp<di,Vi=1,--- K
Additionally, for any y > 0, p + y also does not belong to conv(V) either. Therefore,

ciTp—l—czTy<di,Vi:1,~- , K.

Comparing these two expressions, suggests that c; for i = 1,--- |, K has to have at least one negative
component, regardless of the sign of d;. Hence, the additional constraints in the form of ¢/ x > d;
cannot be right-closed hyperplanes (I
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For 1 <i <, let ; denote the maximum value of the i-th component of each member of V. That
is, v; := max{x; | x € V)}. We define P C R" as the polytope that is defined as:

conv(M) N {(=1s, —7i) tima (3:2)

That is, each of the left-closed half-spaces ensures the i-th component is less than or equal to ;.
Therefore P consists of either right-closed or left-closed hyperplanes.

Theorem 3.2. The set of right-closed supporting hyperplanes defining conv(V) are the only right-
closed supporting hyperplanes defining conv(M) and P

Proof. We first show that conv(V) C P. Notice that conv(V) C conv(M). Also all the points in
conv (V) satisfy the previously mentioned left-closed hyperplanes that are added to conv(V) in order
to construct the P. Hence, every point in conv(V) also belongs to P.

Now we show that conv(V) is constructed from P by adding only non-right closed hyperplanes. Let
cz > d be the constraint added to P in order to construct the conv(V). For every v € conv(V) we
have cv > d. Define Vmaz = (71, ,¥n). If ¢ and d are to be non-negative, therefore cymaz > d as
Ymaz > V. But Ymaz & conv(V) by its definition although maz € P. Therefore CYmax < d. This
contradicts the assumption that both ¢, d are non-negative. Hence, the additional constraints to P
cannot be right-closed. |

Therefore, the (half-space) description of P can be obtained by adding additional half-spaces
{(=1,7:)}i=; to the set of right-closed facets of V. This presents an computational procedure for
constructing the polytope P. It is straightforward to show that min(Int(conv(M))) = min(Int(P)).

Theorem 3.3. Vz € min(Int(P)), there is at least one right-closed facet of P, F, such that ax € F
for some 0 < a < 1.

Proof. The P is bounded (by definition) and therefore a compact space. Let P(A,b) be the

polyhedral representation of P, which is the intersection of right- and left-closed half-spaces.
Therefore, for Vx € P,

o = min {a | ax € P}
0<a<l1

is defined uniquely. Let right-closed rows of the P(A,b) (non-negative rows) be represented by
(A, b), then for any x € P , o can be defined uniquely as following:

o = max =
Ai,.X

where :&z and b; are the i—th row of the matrix A and vector b respectively.

This selection of a* will guarantee that (a*x) will satisfy at least one of the right-closed hyperplanes
equation and also be in the feasible region defined by other right- and left-closed hyperplanes.
Hence, for the aforementioned o, the (a*x) satisfies all the constraints (rows) of P(A,b), so

(a"x) € P(A,b) = ﬁ, which suggests that there exist at least one right-closed facet of P, F, such
that a*x € F. O

Now we are ready to prove the main result of the paper.

Theorem 3.4. A right-closed set M is convex if and only if V& € F;, where F; is a member of set
of right-closed facets defining the P, [x] € M.

Proof. (Only if) Suppose 3x € F; (= x € P) and [x] ¢ M . There are two different scenarios:
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1. either [x] is a member of P and as [x] ¢ M, M is not convex, or

2. there is another minimal element of ]3, m, which is smaller than [x]. m cannot belong to
M either, because its membership to M implies [z] € M; Therefore M is not convex.

(If) Suppose M is not convex, then from the fact that min(Int(conv(M))) = min(Int(P)), and

Lemma II1.4 of reference [9], 3x € min(P) such that x ¢ M. From theorem 3.3, 3a™ such that
0 < a" <1, 3 a facet F; that is on a right-closed hyperplane of P, such that a*x € F;. Since
a*x < x, x ¢ M, and M is right-closed, it follows that a*x ¢ M as well; since [a*x] < a™x,
[a"x] ¢ M O
Essentially theorem 3.4 notes that

(V right-closed facets F;i of P,Vx € F;, [x] € M) & (M is convex). (3.3)

This leads to a polynomial time algorithm for verifying the convexity of a right-closed set of integral
vectors, which is presented in the next section.

4 Algorithm

Each right-closed facet F; is essentially defined by a collection of vertices. Each facet-defining vertex
is either some m; € min(M); or some m; > m;, for some m; € min(M). Let

T (F;) := {m; € min(M) | Either m;, or some m; > m; is a vertex that defines F;}. (4.1)
The following result uses the set Y (F;) in the test identified in theorem 3.4.
Theorem 4.1.
(V right-closed facets Fi of P,¥X € conv(Y(F;)),[X] € M) &
(V right-closed facets F; of P,Yx € Fi, [x] € M).
Proof. (= Part) Suppose 3 a right-closed facet F; of ﬁ7 and Ix € F;, such that [x] ¢ M. x € F;
can be written as the convex combination of the vertices for the given facet. By definition of the F;

in theorem 3.2, we can infer that a vertex of F; is either a minimal elements of original right-closed
set, or a vector v; of the form: v; = m; +y,, for some y; € N™ such that y; 2 0. Hence,

[x] = ’VZ Aim; + Zﬂjvj—‘ = {Z Aim; + Z,uj(mj +y;)

where 35, i+ 0 =1 X =37, Aimi +3°, p;my, then X € conv(Y(F)), X < x(= [x] < [x]),
and since M is right-closed, [X] ¢ M.

(< Part) Suppose 3 a right-closed facet F; of P, and 3X € F;, such that [X] ¢ M. Since M
is right closed, the set of integral vectors in conv(M) is also right closed (cf. Lemma IIL5, [9]).
Additionally, X € conv(M), x < [X|(= [X] € conv(M)), and since [X] ¢ M, it follows that M is
not convex. From theorem 3.4, 3 a right-closed facet F; of P, and 3x € F;, such that [x] ¢ M. O
As a consequence of theorem 4.1, equation 3.3 can be written equivalently as

(V right-closed facets F; of P,VX € conv(Y(F;)), [X] € M) < (M is convex). (4.2)
This observation leads to the following corollary.

Corollary 4.2. If M C N™ is a right-closed set such that min(M) C {0,1}", then M is convez.

We present an efficient procedure that checks the condition (VX € conv(Y(F;)),[ X | € M) in the
next subsection.
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4.1 On testing the condition of Theorem 4.1

The above mentioned test condition requires us to find the ceiling function for the convex combination
of the members of Y(F;). Instead of going through all the points inside the convex hull of T(F;),
one approach can be to create a “box” of integral points that are proximal to each right-closed
facet. This is followed by verifying if each of these proximal vectors can be represented as a ceiling
of convex combination of members of Y (F;), using the feasibility LP described in theorem 4.3. Fig.
1 illustrates this approach for a right-closed set M C N® where

min(M) = {(142)",351)",(513)7}.

The polytope Phasa right-closed facet F1 identified by the supporting hyperplane x+3y+52z = 23,
where T(F1) = {(513)T,(3 5 1)T,(1 4 2)T}. The number of integral points in this box are
determined by the components of vectors that constitute the Y (Fi)-set. When the dimension is
fixed, this number is polynomially related to its defining elements. As a result, the feasibility LP is
executed a polynomial number of times, which in turn results in a polynomial time algorithm for
testing the convexity of a right-closed set. This informal description is formalized in the remainder
of this section.

(a) Creating the “box” (View 1) (b) Creating the “box” (View 2)

Fig. 1. Illustration of LP-based algorithm 1 on a right-closed set
M C N3 where min(M) = {(1 4 2)T,(3 5 1)T,(5 1 3)T}. This figure shows
the “box” of integral points that are proximal to the right-closed facet

Fi defined by the hyperplane = + 3y + 5z = 23. Vector
(33 3)T =[(3 2.5 2.5)T], shown above, is the only integral vector that is
proximal to the right-closed facet identified above. Since (3 3 3)T ¢ M,
we conclude that M is not convex.

Under the test condition, we are required to find the ceiling function for the convex combination of
the members of Y(F;). The following theorem establishes the polynomial time solvability of a key
membership question that is used to test the condition of theorem 4.1.

Theorem 4.3. Let Y(F;) = {mi.ma, ..., mi} for a right-closed facet F; of ﬁ, and m € N™ be an
integral vector. Then, m = [Zf Ximi] for a set {\i}y such that Vi € {1,...,k},0 < \; <1 and
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Zle Ai =1, if and only if the Linear Program (LP) returns an optimal value o™ # 0.

LP(m) : max(«)

subject to
A1
A2
(m1 me ... mk) . 2(771,—1)+(a>< 1)

Ak
A1
A2

(mi my ... my)| . | <m

Ak

SE M=1LVie{l,...,k},0< )\ <1, and 0 < q,
where 1 € N is the vector of all ones.

Proof. (Only If) Suppose m = [>¥ \;m;] for a set {\;}F_; such that Vi € {1,...,k},0 < \; <1
and Zle X; = 1. Then it follows that m — 1 < Zf Aim; < m. It follows that

k
" > min (Z )\imi> —(m; —1) >0,

J

where (e); denotes the j-th component of a vector argument.
(If) From the constraints of LP, it follows that a* < 1. If &* > 0 with a corresponding set —
{X\:}F_, — that is feasible for LP, we can infer that

k k

=1 =1

For each facet F; of 13, let us define

L(F;) :={xeN" |3y € F; where x = [y]}.

From theorem 4.1 the right-closed set M C N™ is convex if and only if £(F;) — M = 0. For each
member m of L(F;), theorem 4.3 yields a polynomial time algorithm that decides if m € M. Now,
we address the issue of estimating an upper bound on the size of L(F;).

Let:
€ = maz(mi,, my,,...,myg,) —min(m;,,my,,...,my,),

and ¢ = max;(e;), then it follows that card(L(F;)) < ¢". The quantity c¢ can be interpreted as
a measure-of-variation among the individual components of the members of Y(F;). For a fixed
dimension (i.e. n is fixed), it follows that the size of £(F;) is polynomial in the measure-of-variation
c. We argue that the set £L(F;) can be constructed in polynomial time.

Let 8; = min(my,,...,my, ), and

S(.FZ) = {X eN”" |VZ S {1,...,71},)(2' € [57,,,81 +C]} (43)
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S(F;) is the superset of L(F;), where card(S(F;)) = ¢". Hence,
vx € S(F;) if LP(x) > 0= x € L(F)
As a consequence of the polynomial time solvability of LPs, this condition can be checked in

polynomial time.

4.2 Convexity Testing Algorithm

Algorithm 1 tests the convexity of a right-closed set M C N™. Its correctness follows directly from
the results in this paper.

Algorithm 1 Testing Convexity Algorithm

1: Compute P (cf. equation 3.2 and theorem 3.2).
2: for Each right-closed facet F; of P do
3: Compute Y(F;) = {m;,my,...,my} (cf. equation 4.1)

4: for Each i € {1,2,...,n} do

5: Compute ¢; =: maz(m;,, my,, ..., my,) —min(my,, my,, ..., mg,).
6: c= maxi(ei).

7: Compute S(F;) (cf. equation 4.3)

8: L(F) =92

9: for Every element x € S(F;) do

10: if (LP(x) >0) A (x #m), V m € L(F;) then
11: L(F;) = L(F;) U {X}

12: for Every m € £L(F;) do

13: if m ¢ M then

14: Not convex; Exit.

15: Convex; Exit.

The first step in the algorithm 1 is computing P. From the discussion following theorem 3.2,
this can be accomplished in polynomial time. By theorem 2.1, such a procedure for m points in
n-dimension, can be done deterministically in O(mlog(m) + m!™/); when n is fixed, this is a
polynomial time operation. It is worth mentioning that we assume card(min(M)) = m . Next
step calculates the superset S(F;), which can be done in O(m) time. For each x € S(F;), we need
to compute LP(x), which can be accomplished in polynomial time as well. This procedure has
to be done card(S(F;)) = ¢" times, where ¢ = max;(¢;) is a fixed number. Therefore, calculating
L(F3), also can be done in polynomial time. Note that £(F;), contains only the minimal elements of
L(F;), which can reduce the computational time further. The last step, verifying the membership of
elements in £(F;) to M will take O(m) time. Since the number of facets for P is bounded above by
O(mL"/2J ), algorithm 1 will only execute polynomial number of operations, giving us a polynomial
time algorithm in m and c for testing the convexity of a right-closed set, when n is fixed.

5 Conclusion

In this paper we discussed the problem of verifying the convexity for a set of integral-vectors that is
right-closed. We showed that this problem is a decidable problem, unlike the similar problem over
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a set of real-valued vectors. For fixed dimension, we also showed that the convexity of the right-
closed integer set can be done in polynomial time. This is main contribution, additional illustrative
examples can be found in reference [16].

As a future direction of research, we note that there is room to improve the efficiency of the
algorithm. Convexity tests that do not rely on the computation of the convex hull could possibly
yield faster algorithms. If a probabilistic solution to testing convexity is satisfactory, randomized
algorithms for convexity testing can be explored. This procedure finds use in the efficient synthesis
of Supervisory policies that avoid livelocks in DEDS systems [8], [4].
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