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Abstract 
 

The restricted four-body problem consists of an infinitesimal body which is moving under the Newtonian 

gravitational attraction of three finite bodies .,, 321 mmm The three bodies (primaries) lie always at the 

vertices of an equilateral triangle, while each moves in circle about the centre of mass of the system fixed 
at the origin of the coordinate system. The fourth body does not affect the motion of the three bodies. We 

consider that the dominant primary body 1m and smaller primary 2m are respectively triaxial and oblate 

spheroidal bodies. We investigate the existence and locations of the equilibrium points and study their 
linear stability for the case of two equal masses. The result shows that the non-sphericity of the bodies 
plays an important role on the existence and evolution of the equilibrium points and influences in a very 
definitive way their position, as well as, their stability.
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1 Introduction 
 
In celestial mechanics, one amidst various inspiring subject is the restricted three-body problem (R3BP). The 
R3BP consists of two massive bodies (primaries) moving in orbits (circular or elliptic) around their common 
barycenter and a third body of negligible mass being influenced, but not influencing them. The solution to 
this type of problem which has been developed over the centuries [1-5] form the basis of the study of the 
dynamics of celestial bodies, from the computation of the ephemerides to the recent advances in flight 
dynamics. Restricted four-body problem (R4BP) is a modification of the R3BP and a natural generalization 
of it. It describes the motion of a body of infinitesimal mass under the Newtonian gravitational attraction of 
three finite bodies, called primaries, whose trajectory are the solution of the three Newtonian body problems. 
In recent years, several modifications of this classical problem have been introduced in order to make it 
more relevant and applicable to certain systems of Dynamical Astronomy.  In the present paper, we will 
consider the combination of two such modifications in which the variation of the triaxial factor and the 
oblateness of the primaries are considered. 
 
The formulation of the classical R3BP considered all the bodies to be strictly spherical. But in actual sense, 
most celestial bodies are not perfect spheres. Some have the shape of an oblate spheroid while some are 
triaxial in nature. For example, the Earth, Jupiter, Saturn and stars (Archerner, Antares and Altair) have the 
shape of an oblate spheroid while the Moon and several Post Asymptotic Giant Branch stars (Post AGB), 
Haumea (a scalene dwarf planet), are triaxial in shape. The lack of sphericity of the planets causes large 
perturbations from a two-body orbit. This inspires many scientists, among others, [6-10] and references 
therein, to include the shapes of the bodies in their study of R3BP. 
 
In the same vein, the classical R4BP may be generalized to include different types of effects such as 
radiation pressure force, triaxiality and oblateness of the bodies, Poynting-Robertson drag, Coriolis and 
centrifugal forces, etc.   
 
In the general problem of three bodies there is a particular solution in which the bodies lie at the vertices of 
an equilateral triangle, each moving in a Keplerian orbit. This is well known, and was first studied by [1]. He 
found a solution where the three bodies remain at constant distances from each other while they revolved 
around their common center of mass. There has been recently an increased interest for this model 
(Lagrangian configuration) because of some observational evidence; as it is known the Sun, Jupiter and the 
Trojan asteroids formed such a configuration in our Solar system. 
 
In this paper, we study the R4BP in which the primaries are in the Lagrange equilateral triangle 
configuration (see Section 2). In the framework of this model, many works have been done in the last years. 
For example, [11] studied the equilateral R4BP in the case where the three primaries have equal masses. [12] 
investigated the number of the equilibrium points of the problem for any value of the masses, and studied 
numerically their linear stability varying the values of the masses. Besides, they showed the regions of the 
basins of attraction for the equilibrium points for some values of the mass parameters. In [13], the authors 
studied the periodic orbits of the problem for the case of two equal masses approximately at Routh’s critical 
value. Recently, [14] have examined the equilibrium points in the photogravitational R4BP for the case of 
two equal masses. Also, the linear stability of each equilibrium point was examined. [15] also studied the 
periodic solutions in the photogravitational case of the problem; [16] studied the stability regions of the 
equilibrium points of the problem by taking into account the oblateness of the two small primaries. They 
established eight equilibrium points, two collinear and six non-collinear points and further observed that the 
stability regions of the equilibrium points expanded due to the presence of oblateness coefficients and 
various values of Jacobi constant C. In the last year, [17] investigated the out-of-plane equilibrium points in 
the photogravitational R4BP; however, they considered all the primary bodies as radiation sources with two 
of the bodies having the same radiation and mass value. More recently, [18] extended the work of [17] by 
considering the shape of the smaller primaries as oblate spheroids. 
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This model has been used for practical applications by some researchers in the last years. For example, [19] 
investigated the stability of the problem and tested the results in a real Sun-Jupiter- (624) Hektor-spacecraft 
system; [20] studied periodic solutions of the problem in the Sun-Jupiter-Trojan Asteroid-spacecraft system.   
 
This paper has attempted to analyze the motion of an infinitesimal mass in the gravitational field of the three 
primaries in the presence of small perturbations. Here, the dominant primary is modeled as a triaxial rigid 
body and the smaller one as an oblate spheroid. As to our knowledge there is not any similar work by other 
researchers in the international bibliography concerning the effects of the shapes (oblateness and triaxiality) 
of the primaries as applied to this problem. 
 
The structure of the paper is as follows: Section 2 presents the equations of motion and the Jacobi integral of 
the system. Section 3 determines the equilibrium points, while Section 4 investigates their linear stability. 
Section 5 discusses the obtained results and conclusion of the paper. 
 

2 Equations of Motion 
 
Let 1m , 2m and 3m be the masses of three bodies, called hereafter the primaries, with 321 mmm   

moving in circular periodic orbits around their center of mass fixed at the origin of the coordinates. These 

masses always lie at the vertices of equilateral triangle with the dominant body 1m being on the negative x-

axis at the origin of time. A massless particle is moving under the Newtonian gravitational attraction of the 
primaries and does not affect the motion of the three bodies. The motion of the system is referred to axes 
rotating with uniform angular velocity. The mutual distances of the three primaries remain unchanged with 
respect to time.  This system is also dimensionless, i.e., the units of measure of length, mass and time are 
taken so that the sum of the masses, the distance between the primaries and the angular velocity is unity, 

which sets the gravitational constant G = 1. The factors characterizing the triaxiality of the dominant 

primary ( 1m ) and the oblateness coefficient of the smaller primary ( 2m ) are also taken into account.  

 

Let the coordinates of the infinitesimal mass be ( yx, ) and masses 1m , 2m and 3m  are given by the 

relations:    
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We present the equations of motion of the problem following [8,12] in the usual dimensionless rectangular 
rotating coordinate system as: 
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Here   is the force gravitational potential, dots denote time derivatives, )3,2,1( iri are the distances 

between the fourth particle and the primaries, 2A and )2,1( ii are the oblateness and triaxiality factors 

respectively. Then 0  2A 1 and 10 2,1   . Therefore, we take
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 , where   is called the mass parameter of the problem. 

 

The equations of motion admits the first integral ( C  is the Jacobian constant), 
 

Cyx  222                                                                                                                    (5) 

 

2.1 Linear stability of the Lagrange configuration 
 
The linear stability of the Lagrange central configuration is given by the inequality,   
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which was first studied by [21] in his thesis and later by [22] in the case of homogeneous potentials. Then 

using the idea of [14,23], if someone replaces the masses iiii mAm )1)(1(   , 3,2,1i , then we 

believe that it will be produced the necessary condition for the stability of the Lagrange central 
configuration, in the present problem, i.e., 
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where we have abbreviated 
 

)1)(1( 11 Aa   ,       )1)(1( 22 Ab     and     )1)(1( 33 Ac    



 
 
 

Singh and Vincent; BJMCS, 20(1): 1-17, 2017; Article no.BJMCS.30510 
 
 
 

5 
 
 

Now, if we take 0321321  AAA , we obtain inequality (6) of the linear stability of 

the Lagrange configuration [21]. 
 

In our present case where the dominant primary body 1m  is a triaxial rigid body and the second smaller 

primary body 2m  is an oblate spheroid, the problem admits inequality of the form 
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In present work, we will consider sets of ( 212 ,,, Ami ) which satisfy the condition (8). So, we assume 

that we have a dominant primary body with mass 97.01 m and two small equal primaries with masses

015.032  mm . 

 

3 Location and Existence of Equilibrium Points  
 
The equilibrium points represent stationary solutions of the R4BP. These solutions are the singularities of 
the manifold of the components of the velocity and the coordinates and are found by setting 
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The solutions are categorized as follows: 
 

3.1 Collinear equilibria 
 
The collinear points are the solutions of (9) and (10) for x  when y = 0. If y = 0, (10) is not fulfilled (since A2 
≠ 0). Thus, the solutions of (9) will not correspond to equilibrium points on the x-axis, called collinear 
equilibrium points. In the present problem, collinear equilibrium points do not exist under the combine 
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effects of triaxiality and oblateness of the dominant and small primaries, respectively. We mention here that 

in the case where 02 A , these points do exist and this may be directly seen from (10).  So in this problem 

there are cases where collinear equilibria do not exist.  
 

3.2 Non-collinear equilibrium points 
 
The solutions of (9) and (10) for x  and y  with 0y  give the location of the non-collinear points of the 

present problem. That is, 
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In Fig. 1, we illustrate the eight non-collinear equilibrium points Li, i =1,…,8 of the problem for 

015.0 , 
12

2
12

1 10141.1,10284.2    and 2A = 0.01, which are found by solving 

numerically (11) and (12). The red curve represents the  yxf ,  and blue curve the  yxg , . We opted to 

name them in the same way as in the work of [14]. One can easily see eight points of intersection of the 
curves (blue and red), which corresponds to eight equilibrium positions of the infinitesimal body m. The 

positions of the primary bodies im  are denoted by large black points while the positions of the equilibrium 

points iL are denoted by small black dots. 

 

In order to investigate the effect of the triaxiality of the dominant primary body 1m  and oblateness of the 

smaller body 2m  on the positions of the equilibrium points, we give the numerical positions of the points for 

varying triaxiality of the dominant primary and oblateness of the smaller one. In Tables 1—3, the positions 
of the equilibrium points of the problem are presented for fixed values of triaxiality and increasing values of 

oblateness parameter. Figs. 2.1 and 2.2 show the evolution of the equilibrium points in ( 2, Ax ) and ( 2, Ay ) 

plane, respectively, as 2A  varies for fixed values of triaxiality factor )2,1( ii . The numbers 1—3 

correspond to the value ( 21 , ) = )10141.1,10284.2( 1212   , (0.025, 0.015), (0.085, 0.065), 

respectively. An investigation of this shows that as the oblateness factor varies for fixed values of triaxial 
factor, the positions of the equilibrium points are significantly affected. 
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where the superscript ‘ 0 ‘ indicates that these derivatives are evaluated at the equilibrium point  ( 00 , yx ). 
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The characteristic equation of the matrix A is given by   
 

024  ba                                                                          (19)  
 

with:  
 

0024 yyxxna   
2000 )( xyyyxxb   
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Fig. 2.1. Frames (a) to (h). The positions of the equilibrium points 8,...,1, iLi  in the ( 2, Ax ) plane 

as the oblateness factor varies for fixed values of triaxial factor: (1) 
12

2
12

1 10141.1,10284.2    , (2) 015.0,025.0 21   and (3) 

065.0,085.0 21   .The mass distribution is 97.01 m and 015.032  mm  
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Fig. 2.2. Frames (a) to (h). The positions of the equilibrium points 8,...,1, iLi  in the ( 2, Ay ) plane 

as the oblateness factor varies for fixed values of triaxial factor: (1) 
12

2
12

1 10141.1,10284.2    , (2) 015.0,025.0 21   and (3) 

065.0,085.0 21   .The mass distribution is 97.01 m and 015.032  mm



 
 
 

Singh and Vincent; BJMCS, 20(1): 1-17, 2017; Article no.BJMCS.30510 
 
 
 

11 
 
 

Table 1. Numerical computations of non-collinear points for   = 0.015, 
12

2
12

1 10141.1,10284.2     and 0 < 2A <<1 

 

1 =2.284
1210  

2 =1.141
1210   

 
 

   

2A  1L  2L  3L  4L  

0.01  (0.978020, 0.0064824) (-1.00496, -0.000198) (0.699266, 0.417790) (0.682226,-0.407977) 
0.02  (0.972963, 0.0123870) (-1.00014,- 0.000393) (0.698351, 0.417212) (0.671051,-0.401531) 
0.03  (0.967950, 0.0178113) (-0.99541, -0.000585) (0.697428, 0.416628) (0.662572,-0.396652) 
0.04  (0.962986, 0.0228293) (-0.99076, -0.000773) (0.696499, 0.416038) (0.655613,-0.392656) 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 

 (0.958074, 0.0274987) 
 (0.953219, 0.0318658) 
 (0.948422, 0.0359683) 
 (0.943683, 0.0398372) 
 (0.939004, 0.0434985) 
 (0.934384, 0.0469745) 

(-0.98621, -0.000958) 
(-0.98174, -0.001141) 
(-0.97735, -0.001320) 
(-0.97304, -0.001497) 
(-0.96880, -0.001671) 
(-0.96464, -0.001842) 

(0.695563, 0.415442) 
(0.694621, 0.414840) 
(0.693672, 0.414232) 
(0.692717, 0.413618) 
(0.691756, 0.412998) 
(0.690789, 0.412372) 

(0.649646,-0.389236) 
(0.644386,-0.386227) 
(0.639659,-0.383527) 
(0.635349,-0.381070) 
(0.631377,-0.378810) 
(0.627685, -0.376711) 

 
Table 1 continued 
 

5L  6L  7L  8L  

(0.994278, 0.590801) (1.01251, -0.601645) (0.201145, 0.965276) (0.193931,-0.966915) 
(0.992323, 0.589620) (1.02259, -0.607642) (0.202502, 0.959968) (0.188364,-0.963163) 
(0.990429, 0.588477) (1.03003, -0.612078) (0.203843, 0.954752) (0.183048,-0.959431) 
(0.988593, 0.587369) (1.03595, -0.615613) (0.205168, 0.949627) (0.177963,-0.955724) 
(0.986813, 0.586296) 
(0.985087, 0.585256) 
(0.983411, 0.584248) 
(0.981784, 0.583269) 
(0.980204, 0.582319) 
(0.978668, 0.581396) 

(1.04087, -0.618550) 
(1.04506, -0.621060) 
(1.04871, -0.623247) 
(1.05194, -0.625182) 
(1.05482, -0.626913) 
(1.05742, -0.628475) 

(0.206476, 0.944589) 
(0.207769, 0.939636) 
(0.209047, 0.934764) 
(0.210310, 0.929972) 
(0.211559, 0.925256) 
(0.212794, 0.920615) 

(0.173092,-0.952043) 
(0.168419,-0.948392) 
(0.163932,-0.944773) 
(0.159617,-0.941186) 
(0.155463,-0.937634) 
(0.151462, -0.934118) 
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Table 2. Numerical computations of non-collinear points for  = 0.015, 015.0,025.0 21    and 0 < 2A <<1 

 

1 =0.025 

2 =0.015 

 
 

   

2A  1L  2L  3L  4L  

0.01  (0.977607, 0.0068880) (-1.00576, -0.000079) (0.705040, 0.414677) (0.688095,-0.404665) 
0.02  (0.972963, 0.0131368) (-1.00132,- 0.000156) (0.704256, 0.414027) (0.677183,-0.398085) 
0.03  (0.968350, 0.0188596) (-0.99696, -0.000232) (0.703467, 0.413369) (0.668948,-0.393108) 
0.04  (0.963774, 0.0241411) (-0.99269, -0.000306) (0.702674, 0.412703) (0.662214,-0.389029) 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 

 (0.959242, 0.0290467) 
 (0.954755, 0.0336282) 
 (0.950317, 0.0379272) 
 (0.945929, 0.0419779) 
 (0.941591, 0.0458089) 
 (0.937305, 0.0494441) 

(-0.98849, -0.000378) 
(-0.98436, -0.000450) 
(-0.98031, -0.000520) 
(-0.97632, -0.000588) 
(-0.97241, -0.000656) 
(-0.96856, -0.000722) 

(0.701877, 0.412029) 
(0.701077, 0.411346) 
(0.700273, 0.410654) 
(0.699466, 0.409955) 
(0.698657, 0.409246) 
(0.697844, 0.408529) 

(0.656457,-0.385535) 
(0.651394,-0.382457) 
(0.646854,-0.379693) 
(0.642724,-0.377175) 
(0.638925,-0.374855) 
(0.635399, -0.372699) 

 
Table 2 continued 
 

5L  6L  7L  8L  

(0.991173, 0.585944) (1.00976, -0.597093) (0.130471, 0.964410) (0.126167,-0.965073) 
(0.989334, 0.584926) (1.02000, -0.603323) (0.131161, 0.959719) (0.122698,-0.961015) 
(0.987550, 0.583938) (1.02753, -0.607926) (0.131838, 0.955112) (0.119352,-0.957015) 
(0.985819, 0.582979) (1.03351, -0.611595) (0.132502, 0.950588) (0.116123,-0.953072) 
(0.984139, 0.582047) 
(0.982507, 0.581142) 
(0.980922, 0.580261) 
(0.979382, 0.579405) 
(0.977884, 0.578572) 
(0.976426, 0.577761) 

(1.03848, -0.614649) 
(1.04272, -0.617262) 
(1.04641, -0.619544) 
(1.04967, -0.621565) 
(1.05259, -0.623376) 
(1.05522, -0.625015) 

(0.133153, 0.946142) 
(0.133791, 0.941773) 
(0.134418, 0.937479) 
(0.135032, 0.933258) 
(0.135635, 0.929106) 
(0.136226, 0.925023) 

(0.113005,-0.949185) 
(0.109991,-0.945353) 
(0.107076,-0.941575) 
(0.104256,-0.937850) 
(0.101526,-0.934177) 
(0.098881, -0.930556) 
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Table 3. Numerical computations of non-collinear points for  = 0.015, 065.0,085.0 21    and 0 < 2A <<1 

 

1 =0.085 

2 =0.065 

 
 

   

2A  1L  2L  3L  4L  

0.01  (0.976961, 0.0073252) (-1.00702, -0.000048) (0.713264, 0.415278) (0.696153,-0.405055) 
0.02  (0.972969, 0.0139393) (-1.00319,- 0.000096) (0.712627, 0.414649) (0.685487,-0.398495) 
0.03  (0.968991, 0.0199748) (-0.99942, -0.000143) (0.711989, 0.414012) (0.677514,-0.393568) 
0.04  (0.965034, 0.0255291) (-0.99572, -0.000189) (0.711349, 0.413368) (0.671031,-0.389547) 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 

 (0.961104, 0.0306764) 
 (0.957207, 0.0354745) 
 (0.953344, 0.0399697) 
 (0.949518, 0.0441997) 
 (0.945730, 0.0481956) 
 (0.941982,0.0519833) 

(-0.99208, -0.000234) 
(-0.98850, -0.000278) 
(-0.98498, -0.000322) 
(-0.98151, -0.000364) 
(-0.97810, -0.000406) 
(-0.97474, -0.000448) 

(0.710707, 0.412715) 
(0.710063, 0.412054) 
(0.709417, 0.411385) 
(0.708771, 0.410708) 
(0.708122, 0.410022) 
(0.707473, 0.409328) 

(0.665513,-0.366112) 
(0.660677,-0.383093) 
(0.656353,-0.380385) 
(0.652430,-0.377922) 
(0.648828,-0.375655) 
(0.645493, -0.373551) 

 
Table 3 continued 
 

5L  6L  7L  8L  

(0.984905, 0.580134) (1.00405, -0.591669) (0.102717, 0.957580) (0.099857,-0.957944) 
(0.983289, 0.579302) (1.01455, -0.598130) (0.103052, 0.953583) (0.097417,-0.954296) 
(0.981718, 0.578491) (1.02224, -0.602887) (0.103377, 0.949653) (0.095050,-0.950702) 
(0.980189, 0.577701) (1.02834, -0.606677) (0.103695, 0.945788) (0.092753,-0.947161) 
(0.978701, 0.576930) 
(0.977253, 0.576179) 
(0.975843, 0.575447) 
(0.974470, 0.574732) 
(0.973131, 0.574034) 
(0.971827, 0.573354) 

(1.03340, -0.609836) 
(1.03773, -0.612543) 
(1.04149, -0.614911) 
(1.04483, -0.617013) 
(1.04782, -0.618902) 
(1.05052, -0.620613) 

(0.104004, 0.941987) 
(0.104305, 0.938248) 
(0.104598, 0.934568) 
(0.104884, 0.930948) 
(0.105162, 0.927384) 
(0.105433, 0.923875) 

(0.090522,-0.943670) 
(0.088356,-0.940230) 
(0.086251,-0.936839) 
(0.084204,-0.933496) 
(0.082214,-0.930199) 
(0.080278, -0.926948) 
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The stability of the non-collinear equilibrium points under the joint effects of triaxiality of the first primary 
and oblateness of the second primary are determined by the roots of the characteristic equation (19). Stability 

occurs when all roots of the characteristic equation for  are purely imaginary. Therefore, for stability the 
following three conditions must be fulfilled simultaneously: 
 

 (4n2 – Ωo
xx – Ωo

yy) > 0,                                                                 
             
 (Ωo

xxΩ
o

yy – (Ωo
xy)

2) > 0,                                                                                                                  (20) 
 

 (4n2 – Ωo
xx - Ω

o
yy)

2 – 4 (Ωo
xxΩ

o
yy – (Ωo

xy)
2) > 0                   

                                        
The eigenvalues of (19) determine the stability or instability of the equilibrium points. Studying the stability 
of the non-collinear equilibrium points of the problem as the oblateness and triaxial factors varies for the 

numerical examples given in Tables 1, 2 and 3, we found that point 1L  is unstable as seen in Tables 4, 5 and 

6 since for 1L , the characteristic equation has four eigenvalues of the form iba 4,3,2,1  while points 

65432 ,,,, LLLLL  are unstable since for 6,,2, iLi , the characteristic equation has two real 

eigenvalues a2,1  and two imaginary eigenvalues ib4,3 . However, points 7L and 8L are 

affected from the involved parameters as one found that for values near the gravitational case (Table 4), the 

equilibrium points are stable, since it has pure imaginary roots of the form ai2,1 , ib4,3  
; while 

unstable for the specific numerical example given in Tables 5 and 6 since it has four eigenvalues of the form  

iba 4,3,2,1 . 

 

Table 4. The characteristic roots of the non-collinear points 8,...,1, iLi  as a function of oblateness 

parameter 2A for 
12

2
12

1 10141.1,10284.2,015.0   
 

 

2A  ][ 12,1 L  ][ 14,3 L  2,1  [ 2L ] 4,3  

0.01  0.595382 0.879906 i  0.595382 0.879906 i   0.255090,     1.028063 i  

0.04 0.642216 0.911113 i  0.642216 0.911113 i   0.262958,     1.050947 i  

0.07 0.680983 0.939182 i  0.680983 0.939182 i   0.270578,     1.073338 i  

0.10 0.714443 0.964994 i  0.714443 0.964994 i   0.278278,     1.095317 i  

2A  
2,1  [ 3L ] 4,3  2,1  [ 4L ] 4,3  2,1  [ 5L ] 4,3  

0.01  2.914077,  2.320718 i   3.313719,  2.331891 i   2.160432,  1.864816 i  

0.04  2.837039,  2.282654 i   3.618663,  2.357304 i   2.289597,  1.953605 i  

0.07  2.761955,  2.246380 i   3.724328,  2.377436 i   2.418734,  2.042584 i  

0.10  2.688882,  2.211915 i   3.779053,  2.393337 i   2.547760,  2.131677 i  

2A  
2,1  [ 6L ] 4,3  2,1  [ 7L ] 4,3  2,1  [ 8L ] 4,3  

0.01  2.389957,  1.789116 i   0.850721 i ,  0.526694 i   0.846737 i ,  0.531837 i  

0.04  2.704491,  1.786679 i   0.862591 i ,  0.548655 i   0.846373 i ,  0.568939 i  

0.07  2.883090,  1.816587 i   0.873704 i ,  0.570656 i   0.844167 i ,  0.606538 i  

0.10  3.024419,  1.853565 i   0.884058 i ,  0.592739 i   0.838925 i ,  0.646028 i  
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Table 5. The characteristic roots of the non-collinear points 8,...,1, iLi  as a function of oblateness 

parameter 2A for 015.0,025.0,015.0 21    
 

2A  ][ 12,1 L  ][ 14,3 L  2,1  [ 2L ] 4,3  

0.01  0.605828 0.881990 i  0.605828 0.881990 i   0.407940,     1.062459 i  
0.04 0.653451 0.913142 i  0.653451 0.913142 i   0.421008,     1.085160 i  
0.07 0.692714 0.940941 i  0.692714 0.940941 i   0.433975,     1.107432 i  
0.10 0.726624 0.966395 i  0.726624 0.966395 i   0.446830,     1.129297 i  

2A  2,1  [ 3L ] 4,3  2,1  [ 4L ] 4,3  2,1  [ 5L ] 4,3  

0.01  3.029502,  2.392471 i   3.458523,  2.409353 i   2.266850,  1.939158 i  
0.04  2.954834,  2.354766 i   3.791779,  2.444376 i   2.394479,  2.027103 i  
0.07  2.882023,  2.318691 i   3.912530,  2.470314 i   2.522064,  2.115203 i  
0.10  2.811156,  2.284280 i   3.978634,  2.490611 i   2.649498,  2.203371 i  

2A  2,1  [ 6L ] 4,3  2,1  [ 7L ] 4,3  [ 7L ] 

0.01  2.511320,  1.857737 i    0.089891  0.526694 i  0.089891 0.715421 i  
0.04  2.825062,  1.849965 i    0.104136  0.731460 i  0.104136 0.731460 i  
0.07  2.999071,  1.876805 i    0.116817  0.747146 i  0.116817 0.747146 i  
0.10  3.136478,  1.911573 i    0.128402  0.762506 i  0.128402 0.762506 i  

2A  2,1  [ 8L ] 4,3  [ 8L ]  

0.01      0.099283  0.716291 i  0.099283 0.716291 i   

0.04      0.133676  0.734814 i  0.133676 0.734814 i   

0.07      0.160801  0.752848 i  0.160801 0.752848 i   

0.10      0.183963  0.770438 i  0.183963 0.770438 i   

 

Table 6. The characteristic roots of the non-collinear points 8,...,1, iLi  as a function of oblateness 

parameter 2A for 065.0,085.0,015.0 21  
 

 

2A  ][ 12,1 L  ][ 14,3 L  2,1  [ 2L ] 4,3  

0.01 0.641492 0.888810 i  0.641492 0.888810 i   0.548567,     1.083498 i  
0.04 0.690965 0.920756 i  0.690965 0.913142 i   0.564761,     1.104195 i  
0.07 0.729684 0.947327 i  0.729684 0.947327 i   0.580687,     1.124489 i  
0.10 0.764261 0.972284 i  0.764261 0.972284 i   0.596536,     1.144454 i  

2A  2,1  [ 3L ] 4,3  2,1  [ 4L ] 4,3  2,1  [ 5L ] 4,3  

0.01  3.286931,  2.392471 i   3.780243,  2.409353 i   2.459780,  2.072539 i  
0.04  3.215585,  2.354766 i   4.165707,  2.620513 i   2.584186,  2.158668 i  
0.07  3.145905,  2.469826 i   4.312432,  2.655187 i   2.708590,  2.244935 i  
0.10  3.077951,  2.434648 i   4.397541,  2.681879 i   2.832847,  2.331237 i  

2A  2,1  [ 6L ] 4,3  2,1  [ 7L ] 4,3  [ 7L ] 

0.01  2.733096,  1.981541 i    0.303005  0.748753 i  0.303005 0.748753 i  
0.04  3.046338,  1.965046 i    0.314708  0.763648 i  0.314708 0.763648 i  
0.07  3.213509,  1.987150 i    0.326186  0.778245 i  0.326186 0.778245 i  
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0.10  3.343910,  2.018032 i    0.337460  0.792565 i  0.337460 0.792565 i  

2A  2,1  [ 8L ] 4,3  [ 8L ]  

0.01      0.306023  0.749640 i  0.306023 0.749640 i   

0.04      0.326196  0.767125 i  0.326196 0.767125 i   

0.07      0.345394  0.784212 i  0.345394 0.784212 i   

0.10      0.363779  0.800929 i  0.363779 0.800929 i   

 

5 Discussion and Conclusion 
 
In this contribution, we have studied the restricted four-body problem when the primary bodies m1, m2 and 
m3 

are always at the vertices of an equilateral triangle (Lagrange equilateral triangle configuration) in the 
special case of two primaries with equal masses. The fourth particle in this system has negligible mass m 

with respect to the primaries, and its motion is perturbed by a triaxial rigid body ( 2,1, ii ) and 

oblateness coefficient 2A  from the primaries m1 and m2, respectively. We studied the existence, location and 

stability of the equilibrium points as the involved parameters varies. It has been found that, collinear 

equilibrium points do not exist and there are eight non-collinear points, named 8,...,1, iLi . In Tables 1—

3 we present these positions as the parameters varies. These are shown graphically in Figs. 2.1 and 2.2.  It is 
observed that there is a visible left (right) shift in the positions of the equilibrium points due to the involved 
parameters. Finally, the linear stability investigation has been achieved by determining the roots of the 
characteristic equation.  It is noticed that the non-sphericity of the bodies does not affect the nature of the 

stability of the equilibrium points 6,,1, iLi  since they remain unstable (Tables 4—6) in the Lyapunov 

sense for the specific numerical examples given here, while the stability of the points L7 and 8L  are seen to 

be affected for large deviations of its value from the gravitational case (Tables 5 and 6). It is remarkable to 
note that, equations of motion are unlike those obtained by [14,16] and references therein. Also, when these 
terms are neglected in the present problem, we get the same terms as in the classical restricted four-body 
problem (Lagrangian configuration).  
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