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Abstract 
 

This paper attempts to effectively model the effects of variable viscosity and thermal conductivity on the 
unsteady hydromagnetic boundary layer flow past a semi-infinite plate when the oncoming free-stream is 
perturbed by an arbitrary function of time and applied magnetic field is far from and parallel to the plate. 
The two dimensional boundary layer equations are separated into those representing steady and unsteady 
parts of the flow. For, steady flow equation and unsteady flow equation, viscosity and thermal 
conductivity are considered as inverse linear functions of temperature. The basic steady flow governing 
partial differential equations are transformed into ordinary differential equations by means of similarity 
transformation which are solved numerically using shooting method and the resulting approximate 
solution have been used in the subsequent study of the unsteady flow. The unsteady flow equations are 
subject to the Laplace Transformation technique. In this case, solution for large time is obtained assuming 
velocity, temperature and Magnetic field as asymptotic expansion. The relevant flow and heat transfer 
characteristics that is the skin-friction coefficient, the plate temperature and the tangential magnetic field 
at the plate are derived and discussed numerically. 
 

 

Keywords: MHD; variable viscosity; variable thermal conductivity. 
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1 Introduction 
 
The boundary layer flow of an electrically conducting fluid in the presence of magnetic field has wide 
applications in many engineering problems such as MHD generator, plasma studies, nuclear reactors, 
geothermal energy extraction, and oil exploration [1]. The problem of the boundary layer flow of a 
Newtonian fluid past a semi-infinite flat plate was first considered by Blasius [2]. Falkner and Skan [3] 
studied some approximate solution of the boundary layer flow problem past a semi-infinite plate. Again 
unsteady flows, such as start-up process and periodic fluid motion, are very much important in engineering 
practices [1]. Lighthill [4] had initiated the study of unsteady two dimensional boundary layer equations 
when the external flow fluctuates about a steady mean. 
 
The study of hydromagnetic flow has stimulated considerable interest due to its important applications in 
cosmic-fluid dynamics, meteorology and solar physics and in the motion of the earth’s core. Carrier and 
Greenspan [5] had studied the unsteady hydromagnetic boundary layer equations by using Osseen technique, 
when a semi-infinite plate moves impulsively in its own plane. Das [6] studied the unsteady hydomagnetic 
boundary layer flow past a semi infinite flat plate when the oncoming free-stream is perturbed by an arbitrary 
function of time and the applied magnetic field is parallel to the plate far away from it. Meksyn [7] 
considered the problem of flow of viscous electrically conducting fluid past a semi-infinite plate in the 
presence of an aligned magnetic field. Ingham [8] investigated the solution of the motion of a viscous 
electrically conducting fluid past a semi-infinite flat plate, which is started impulsively from rest with a 
constant velocity parallel to itself, in the presence of an applied magnetic field which is parallel to the plate at 
infinity. Very recently, Animasaun et al. [9,10] studied stagnation flow of nanofluid and unequal diffusivities 
case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced 
magnetic-field. 
 
Most of the existing analytical studies for this problem are based on the constant physical properties of the 
ambient fluid. However, it is known that these properties may change with temperature [11]. To accurately 
predict the flow and heat transfer rates it is necessary to take into account this variation of viscosity and 
thermal conductivity. A number of authors analysed the influence of variable thermo-physical properties on the 
flow structure and heat transfer. Mukhopadhyay [12] studied the effects of variable viscosity on the MHD 
boundary layer flow over a heated stretching surface. Sarma and Hazarika [13] studied on the effects of 
variable viscosity and thermal conductivity on heat and mass transfer flow along a vertical plate in the 
presence of a magnetic field. Salem [14] investigated variable viscosity and thermal conductivity effects on 
MHD flow and heat transfer in viscoelastic fluid over a stretching sheet. Seddeek et al. [15] studied the 
effects of variable viscosity and thermal conductivity on an unsteady two-dimensional laminar flow of a 
viscous incompressible conducting fluid past a semi-infinite vertical porous moving plate taking into account 
the effect of a magnetic field in the presence of variable suction. Odda and Farhan [16] have considered the 
effects of variable viscosity and variable thermal conductivity on heat transfer from a stretching sheet. The 
fluid viscosity and the thermal conductivity are assumed to vary as inverse linear functions of temperature. 
Pantokratoras [17] presented a theoretical study of the effects of variable fluid properties on the classical 
Blasius and Sakiadis flow. It is found that the variation of fluid properties and especially viscosity have a 
strong influence on the results.  
 
The aim of this study is to investigate the effects of variable viscosity and thermal conductivity on the 
unsteady hydromagnetic boundary layer flow past a semi-infinite plate when the oncoming free-stream is 
perturbed by an arbitrary function of time and applied magnetic field is far from and parallel to the plate. The 
two dimensional boundary layer equations are separated into those representing steady and unsteady parts of 
the flow. For, steady flow equation and unsteady flow equation, viscosity and thermal conductivity are 
considered as inverse linear functions of temperature. The basic steady flow governing partial differential 
equations are transformed into ordinary differential equations by means of similarity transformation which 
are solved numerically using shooting method and the  resulting approximate solution have been used in the 
subsequent study of the unsteady flow. The unsteady flow equations are subject to the Laplace 
Transformation technique. In this case, solution for large time is obtained assuming velocity, temperature 
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and Magnetic field as asymptotic expansion. The relevant flow and heat transfer characteristics that is the 
skin-friction coefficient, the plate temperature and the tangential magnetic field at the plate are derived and 
discussed numerically. 
 

2 Formulation of the Problem 
 
Consider the unsteady flow of an incompressible electrically conducting fluid past a semi-infinite plate due 
to a steady magnetic field and an unsteady free-stream velocity both being parallel to the plate. The fluid 
properties are assumed to be isotropic and constant except for the fluid viscosity and thermal conductivity.  
 
Let x and y be the distances measured along and perpendicular to the plate, (u,v) and (H1, H2) be the  
corresponding velocity and magnetic field components, U and H are the velocity and magnetic field at large 
distances from the plate and parallel to the plate. Both are assumed to be uniform. 
 
The corresponding equations for the unsteady flow by making the usual boundary layer approximations 
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where  ρ∞  is the density of the fluid at infinity,  μ is the viscosity of the fluid, k is the thermal conductivity, Ez 

is the z-component of electric field strength, 

eσμ
η

1
1  is the magnetic diffusivity. 

 

Also it is assumed that both the viscous Reynold number 




xU
Ra

0  and the magnetic Reynold number  

0
1

0 U   ,
η

xU
R m  being typical u velocity, are large compared with unity where 




 




 ,   being 

the viscosity of the fluid at infinity.  

 
The normal component of the magnetic field is assumed to vanish at the wall while the parallel component 
approaches its given value at the edge of the boundary layer. Again since the fluid is finitely conducting and 
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the plate is non-conducting there should be no surface current sheet and hence the tangential component of 

the magnetic field is continuous across the interface. The condition is expressed by the equation  01 




y

H  at  

y =0.   
 
Hence the boundary conditions are 
 

               u = 0 = v, 01 




y

H
,  H2 = 0,  T = Tw  at  y = 0                        

          u→ U(t),   H1= H,    T → T∞   as   y→ ∞                                                                                        (2.6) 
 
The fluid viscosity is assumed to be an inverse linear function of temperature [18],  
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a and  Tr   are constants and their values depend  on the reference state and thermal property of the fluid. In 
general a > 0 for liquids and a < 0 for gases. γ is  a constant based on thermal property of the fluid. For γ 
→0, μ = μ∞ (constant).  
 
The thermal conductivity is also assumed to be an inverse linear function of temperature [19],  
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Where c and Tk  are constants and their values depend on the reference state and thermal property of the fluid. 
ξ is a constant based on thermal property of the fluid. c>0 for liquids and c<0 for gases. 
 
Following Lighthill [8], we have 
 
              u = uo(x, y) + ε u1 (x, y, t) 
               
              v = vo(x, y) + ε v1 (x, y, t) 
 
             U (t) =Uo +ε U1 (t) 
 
             H1 = Hxo (x, y) + ε Hx1 (x, y, t)                                                                                                          (2.9)          
               

             H2 = Hyo (x, y) + ε Hy1 (x, y, t 
  

             H = Ho 
                 

             T = To (x, y) + ε T1 (x, y, t) 

 

where the o subscript quantities denote the steady motion, and 1 subscript quantities denote the unsteady 
motion, ε being a small reference parameter. 
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Substituting (2.7) in equations (2.1) - (2.5) and equating coefficient of 0(ε), equations for the steady state,  
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The corresponding boundary conditions are  
 

              wy TT  H  
y
xH

  v  u ooo
o

oo ,0,0,00 



 ,  at   y=0  

               TT  ,HH  ,Uu x ooooo        as  y →∞                                                                        (2.15) 

 
The equations for unsteady state 
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The corresponding boundary conditions are  
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3 Steady State Solution 
 
Equations (2.10) - (2.14) together with boundary conditions (2.15) are the magnetohydrodynamic boundary 
layer equations for a steady flow of an electrically conducting fluid past a semi-infinite non-conducting plate. 
Using the non-dimensional transformations 
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with the boundary conditions   
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The physical quantities of interest are the local Skin-friction coefficient Cf , surface magnetic field  Hxo  and 
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is the tangential shear stress. 
 
The tangential component of the magnetic field at the plate is given by 
 

   00o o gHxH                                                                                                                            (3.7)  

 
The Nusselt number at the plate is given by 
                       

 

   0
1

2
1

0

0
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




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

a

k

k

w

w

R

TTk
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                                                                                                       (3.8) 

 

 where 

0

0
















y
w

y

T
kq is the heat flux at the wall. 
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4 Unsteady State Solutions 
 

Substituting 0,1  c  ctt and multiplying equations (2.16) - (2.20) by 1ste and integrating with 

respect to t1 from 0 to ∞ (i.e. applying Laplace transformation) [5], we have  
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                                      (4.1) 
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                                                             (4.2) 
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∂
+
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∂
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H yx                                                                                                                          (4.4)     
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                                       (4.5) 

 

where 



0

111
1 dteuu st ,    Rl  (s) > 0,   etc. 

 
Also we assumed that  
 

              
   t  eU   ,eu stst  

111   as00 11 , 

              u1=0,   U1=0 at    t1=0, 

             01
1 steH x   as 1t , 

             1xH = 0 at 01 t , 
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             01
1 steT  as 1t , 

and        1T =0       at    01 t . 

 

The transformed boundary conditions are  
 

              0,0,0,0 1
1

1
11 











y

T
   H   

y

H
   vu y

x     at   y=0 

                 TT   H    sUU)sUu xM  11011 ,0,)(( as y                                                     (4.6) 

 

)(sUM being the transformation of )(tU M . 

 

4.1 Solution for large time  
 
In the s-plane large time will correspond to small values of s. The assumption )()( 01 tUUtU M

 
in the 

boundary conditions (2.21) implies that the main stream has been perturbed only in magnitude but not in 
direction. To solve equations (4.1) - (4.5) we expand  

11111 ,,,, T  H   H  v   u yx
 in series of ascending powers of 

s as follows (Das [6]), 
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                                                                                                   (4.7) 
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n

nn
Mw 




 

0
01

 

 

Substituting for u0, v0 , Hx0 , Hy0 , T0  from (3.1) and for  T H H v u yx 11111 ,,,,  from (4.7) in equations (4.1) - 

(4.5), the equations of continuity for velocity and magnetic field are satisfied automatically and from the 
remaining three equations after comparing the coefficients of   sn  we have, for  n=0 
 

  00000
00

00
0

00

0 














GgGgRfFfF

θθ

Fθ
F

θθ

θ
H

rr

r2                                               (4.8)  
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Choudhury and Hazarika; BJMCS, 20(1): 1-16, 2017; Article no.BJMCS.30673 
 
 
 

10 
 
 

The boundary conditions are  
 

              0η  ; 00 0 FF   ,   00 0 GG    ,  00   

              η ; 
0F =1, 00 G ,   00                                                                                          (4.11) 

 
For n=1, 
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The boundary conditions are  
 

              0η ;   11 0 FF  ,   11 0 GG  ,  01    

              η ; 11 F ,  01 G ,   01                                                                                          (4.15) 

 
Followind Das [6], let  
 

   sUsyxuu M,,21                                                                                                              (4.16) 
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Inverting (4.16) [6],   
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And inverting (4.17) term by term  
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 where  1t  is the delta function. 

 
Therefore from (4.18)    
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similarly                
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and                       
 

   
n
M

n

n
n

n
w

dt

Ud
xTTTT

10
01 




                                                                                   (4.21) 

 
The equations (4.19), (4.20) and (4.21) give the unsteady part of velocity field, magnetic field and 
temperature field for large time. 
 
The unsteady part of the Skin-friction C1f , the surface magnetic field at the plate Hx1 and the plate 
temperature T1 are given by 
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is the shear stress at the wall. 
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    and       
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n
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n
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5 Results and Discussion 
 
The transformed dimensionless coupled non-linear equations (3.2)-(3.4) together with boundary conditions 
(3.5) for steady state and equations (4.8) - (4.11) and (4.12) - (4.15) for unsteady state are solved using 
shooting method for various combination of parameters viz. viscosity variation parameter θr, thermal 
conductivity variation parameter θk,  magnetic pressure number  RH,  magnetic Prandtl number Pm  for Eckert 
number Ec=0.01, electric field parameter Re=-1 and Reynolds number Ra=2 for fluid with Prandtl number 
Pr=0.7. The corresponding non-dimensional skin-friction coefficient f''(0), the magnetic field at the plate 
g'(0) and  the heat transfer rate at the surface θ'(0) for steady state and the unsteady part of the Skin-friction 
Fn''(0), the surface magnetic field at the plate  Gn'(0) and the plate temperature  Ψn(0) for  n=0 and n=1 are 
evaluated and tabulated. 
 
Table 1 contains numerical result for the skin-friction parameter f''(0), Fo''(0), F1''(0)  at the plate for Pr=0.7,  
θk=-10,  Re=-1,  Ec=0.01,  RH=0.5,  Pm =0.5,  Ra=2 for different values of θr varying from -10 to -1. The result 
show that f''(0), Fo''(0), increases but F1''(0)  decreases when θr increases. This effects on g'(0) and θ'(0) are  
less significant. The numerical values for the heat transfer rate at the surface θ'(0) for steady state are shown 
in Table 2. It is clear from this Table that the heat transfer rate at the surface for steady state decreases with 
the increasing values of thermal conductivity variation parameter θk. Same is the case with the unsteady part 
of plate temperature Ψo(0) and Ψ1(0). These effects on Fo''(0), Go'(0) are not significant. It is seen from 
Tables 3, 4 and 5 that the surface magnetic field g'(0), Go'(0), G1'(0) increases as magnetic Prandtl number Pm 

decreases. Ψ1(0) decrease and Fo''(0), F1''(0) increases with the increasing values of Pm. This is because as Pm 

decreases, the magnetic diffusivity 

eσμ
η

1
1 

becomes larger resulting in greater horizontal component g'(0) 

of the magnetic field near the wall. Again f''(0) increases as Pm  decreases because the conductivity σ is 
reduced and the boundary layer velocity begins to lose control over the magnetic lines of force. 
Consequently the induced normal component of the magnetic field decreases and along with it the ponder 

motive force (the HJe   force, J  being current) which resist the fluid motion parallel to the plate is 

reduced. This tends to increase the skin-friction. 
 
Fig. 1 depicts the influence of viscosity variation parameter θr on the flow field. The velocity boundary layer 
increases with increasing θr. Fig. 2 shows that the thermal boundary layer decreases for increasing values of 
thermal conductivity variation parameter θk. 

 
Table 1. Values of Skin-friction f''(0), Fo''(0) and F1''(0) for different values of θr and for Pr=0.7, θk=-

10, Re=-1, Ec=0.01, RH=0.5, Pm=0.5, Ra=2. 
 

θr f''(0) Fo''(0) F1''(0) 

-10 0.729577 0.464715 -0.44653 

-8 0.737904 0.469192 -0.4545 

-6 0.751394 0.476366 -0.46771 

-4 0.777012 0.489708 -0.49384 

-3 0.800973 0.501831 -0.51963 

-1 0.949221 0.522924 -0.71849 
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Table 2. Values of the heat transfer θ'(0), Ψ0(0) and Ψ1(0) for different values of θk and for Pr=0.7, θr=-
10, Re=-1, Ec=0.01, RH=0.5, Pm=0.5, Ra=2. 

 

θk θ'(0) Ψo(0) Ψ1(0) 
-10 -0.71101 -0.07142 0.04392 
-8 -0.7189 -0.07694 0.043204 
-6 -0.73179 -0.0856 0.041991 
-4 -0.75666 -0.10117 0.039509 
-2 -0.82493 -0.13758 0.031887 
-1 -0.94015 -0.18386 0.017105 

 

Table 3. Values of Skin-friction f''(0) and the magnetic field at the plate g'(0) for different values of Pm, 

and for θr=-10, θk=-10, Re=-1, Ec=0.01, RH=0.2, Pr=0.7, Ra=2. 
 

Pm f''(0) g'(0) 
0.2 0.41396 0.899385 
0.4 0.4115 0.821799 
0.6 0.409834 0.760043 
0.8 0.408662 0.709682 
1 0.407814 0.66781 
2 0.405813 0.532778 
3 0.405148 0.459104 
4 0.404857 0.412324 

 

Table 4. Values of Skin-friction Fo''(0), the magnetic field at the plate Go'(0) and plate temperature 
Ψo(0) for different values of Pm. for θk=-10,  θr=-10,  Re=-1,  Ec=0.01,  RH=0.5,  Pr=0.7,  Ra=2 

 

Pm Fo''(0) Go'(0) Ψo(0) 
0.01 0.441083 0.994712 -0.07068 
0.04 0.443116 0.979174 -0.07075 
0.07 0.44505 0.96411 -0.07082 
0.1 0.446891 0.9495 -0.07088 
0.3 0.457152 0.862442 -0.07121 
0.5 0.464715 0.790322 -0.07142 
1 0.486049 0.498313 -0.07167 
2 0.489234 0.412218 -0.07152 

 

 
 

Fig. 1. Variation of velocity profiles for θr 
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Fig. 2. Variation of temperature profiles for θk 
 

Table 5. Values of Skin-friction F1''(0), the magnetic field at the plate G1'(0) and plate temperature 
Ψ1(0) for different values of Pm. for θk=-10, θr=-10, Re=-1, Ec=0.01, RH =0.5,  Ra=2, Pr =0.7 

 
Pm F1''(0) G1'(0) Ψ1(0) 
0.01 -0.57628 -0.00888 0.054951 
0.04 -0.56516 -0.03497 0.05399 
0.07 -0.55457 -0.06022 0.053076 
0.1 -0.54446 -0.08468 0.052206 
0.3 -0.48797 -0.22976 0.047388 
0.5 -0.44653 -0.34888 0.04392 
1 -0.385 -0.5674 0.038997 
2 -0.34826 -0.81341 0.036681 

 

6 Conclusions 
 
Under the assumption of temperature dependent viscosity and thermal conductivity the unsteady 
hydromagnetic boundary layer flow past a semi-infinite plate when the oncoming free-stream is perturbed by 
an arbitrary function of time is studied. The result pertaining to the present study indicate that the 
temperature dependent fluid viscosity and thermal conductivity play an important role in skin friction factor, 
surface magnetic field and plate temperature. The effects of magnetic parameters on the flow field are 
apparent. 
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