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Abstract. In this paper, we find a solution of a new type of Langevin

equation involving Hilfer fractional derivatives with impulsive effect. We
formulate sufficient conditions for the existence and uniqueness of solutions.

Moreover, we present Hyers-Ulam stability results.

Mathematics Subject Classification: 26A33, 34K40, 34K14.

Key words and phrases: Langevin equation; impulsive condition; fixed
point theorem; Ulam stability.

1. Introduction

Fractional differential equation (FDEs) has gained increasing attention because
of their varied applications in applied sciences and engineering, see the mono-
graph [1, 2, 3].The memory and hereditary of various material and process
can be properly described as FDEs. Due to their importance and necessity
of FDEs many researchers focused their work towards existence theory and sta-
bility criteria. In this work, we study existence of solution for FDEs with Hilfer
fractional derivative (HFD) which was initiated by Hilfer [1]. HFD interpolate
both classical Riemann-Liouville (RL) and the Liouville-Caputo (LC) fractional
derivatives. Recently, HFD is studied in many papers for detailed study, see
[4, 5, 6, 7, 8, 9, 10].
In 1908, Langevin introduced a concept of an equation of motion of a Brownian
particle which is named after Langevin equation. Langevin equations have been
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widely used to describe stochastic differential equation [11]. For systems in com-
plex media, standard Langevin equation does not provide the correct description
of the dynamics. As a result, various generalizations of Langevin equations have
been offered to describe dynamical processes in a fractal medium. One such
generalization is the generalized Langevin equation which incorporates the frac-
tal and memory properties with a dissipative memory kernel into the Langevin
equation. These give a rise to the Langevin equation involving fractional order.
In 2007, Fa [12] discussed variance and velocity correlation of Langevin equations
with both RL and LC fractional derivative. In 2011, Existence of solutions is
analysed in [13]. Since them many authors discussed existence of solution with
different conditions, see [14, 15, 16, 17].
Impulsive differential equations have been focused since it serves as an important
tool to characterize the phenomena in which sudden, discontinuous jumps occur
in various fields of science and engineering, and impulsive FDEs have received
many attentions, see [18, 19, 20].
The concept of stability for a functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the equation.
Considerable attention has been given to the study of the Ulam-Hyers (UH) and
Ulam-Hyers-Rassias(UHR) stability. More details from historical point of view
and recent developments of such stabilities are reported in [21, 22, 23, 24, 25, 26].
Consider the following system of Langevin differential equation involving HFD
with impulse effect

Dα1,β(Dα2,β + λ)x(t) = f(t, x(t)), t ∈ J ′ := J \ {t1, t2, ..., tm} ,
J = [a, b], t /∈ tk,
∆I1−γx(t)|t=tk = ψk(x(tk)), t = tk, k = 1, 2, ...,m,

I1−γx(t)|t=a = xa, γ = (α1 + α2)(1− β) + β,

(1)

where Dα1,β , Dα2,β(0 < (α1, α2) < 1, 0 ≤ β ≤ 1) are the GRL fractional
derivative of orders α1, α2 and type β. Here, the function f : J × R → R is
continuous, Ik : R → R, and a ∈ R, a = t0 < t1 < ... < tm < tm+1 = b,
∆I1−γx(t)|t=tk = I1−γx(t+k ) − I1−γx(t−k ), I1−γx(t+k ) = limh→0+ x(tk + h) and

I1−γx(t−k ) = limh→0− x(tk + h) represent the right and left limits of x(t) at
t = tk.
The existence and uniqueness results for the problem (1), some of the following
conditions have to be satisfied;

(H1) Let f : J ×R→ R be a continuous function and there exists a positive
constant Lf > 0, such that

|f(t, x)− f(t, y)| ≤ Lf |x− y| , for all x, y ∈ R.

(H2) Let the functions ψk : R→ R are continuous and there exists a constant
Lψ > 0, such that

|ψk(x)− ψk(y)| ≤ Lψ |x− y| , for all x, y ∈ R, k = 1, 2, ...,m.
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(H3) There exists an increasing finctions ϕ ∈ PC1−γ(J,R) and there exists
λϕ > 0 such that for any t ∈ J

Iαϕ(t) ≤ λϕϕ(t).

The paper is organized as follows: In Section 2, we present some necessary
definitions and preliminary results that will be used to prove our main results.
The proofs of our main results are given in Section 3.

2. Preliminaries

In this section, we present some known definition and results that help us in
proving of our main results. Consider the following space

PC(J,R) = {x : J → R : x(t) ∈ C(tk, tk+1], k = 0, ...,m; }

there exists x(t+k ) and x(t−k ). Now we consider the weighted space PCγ(J,R),

PCγ(J,R) =
{
x : (t− tk)γx(t)|t∈[tk,tk+1] ∈ C[tk, tk+1], k = 0, ...,m

}
,

where 0 ≤ γ < 1, which is a Banach space with norm

‖x‖PCγ = sup
t∈(tk,tk+1]

{(t− tk)γx(t)} , k = 0, ...,m.

Definition 2.1. [2] The Riemann-Liouville (RL) fractional integral of order
α > 0 of function f : [0,∞)→ R can be written as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds.

Definition 2.2. [2] The RL fractional derivative of order α > 0 of a continuous
function f : [0,∞)→ R can be written as

Dαf(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)α−n+1f(s)ds,

provided that the right side is pointwise defined on [0,∞).

Definition 2.3. [2] The LC fractional derivative of order α > 0 of a continuous
function f : [0,∞)→ R can be written as

CDαf(t) = Dα

[
f(t)−

n−1∑
k=0

tk

k!
fk(0)

]
, t > 0, n− 1 < α < n.

Definition 2.4. [1] The HFD of order 0 < α < 1 and 0 ≤ β ≤ 1 of function
f(t) is defined by

Dα,βf(t) = (Iβ(1−α)D(I(1−β)(1−α)f))(t).

The HFD is considered as an interpolation between the RL and LC fractional
derivative and the relations are given below.
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Remark 2.5. (i) Operator Dα,β also can be written as

Dα,β = (Iβ(1−α)D(I(1−β)(1−α))) = Iβ(1−α)Dγ , γ = α+ β − αβ.

(ii) If β = 0, then Dα,β = Dα,0 is called RL fractional derivative.
(iii) If β = 1, then Dα,β = I1−αD is called LC fractional derivative.

Lemma 2.6. [10] If α > 0 and β > 0, then there exists[
Iα(t)β−1

]
(x) =

Γ(β)

Γ(β + α)
xβ+α−1,

and [
Dα(t)α−1

]
(x) = 0 , 0 < α < 1.

Lemma 2.7. [10] If α > 0 and β > 0 and f ∈ L1(a, b], then there exists the
following properties

IαIβf(t) = Iα+βf(t),

and

DαIαf(t) = f(t).

Next, we shall give the definitions and the criteria of UH stability and UHR
stability for Langevin differential equations with impulsive effect by GRL frac-
tional derivative. Let ε be a positive number and ϕ : J → R+ be a continuous
function, for every t ∈ J ′ and k = 1, 2, ...,m, we have the following inequalities

{ ∣∣Dα1,β(Dα2,β + λ)z(t)− f(t, z(t))
∣∣ ≤ ε,∣∣∆I1−γz(t)|t=tk − ψk(z(tk))

∣∣ ≤ ε,
(2)

{ ∣∣Dα1,β(Dα2,β + λ)z(t)− f(t, z(t))
∣∣ ≤ εϕ(t),∣∣∆I1−γz(t)|t=tk − ψk(z(tk))

∣∣ ≤ εϕ(t),
(3)

{ ∣∣Dα1,β(Dα2,β + λ)z(t)− f(t, z(t))
∣∣ ≤ ϕ(t),∣∣∆I1−γz(t)|t=tk − ψk(z(tk))

∣∣ ≤ ϕ(t),
(4)

Definition 2.8. The system equations given in (1) is UH stable if there exists
a real number Cf > 0 such that for each ε > 0 and for each solution z ∈
PC1−γ(J,R) of the inequality (2) there exists a solution x ∈ PC1−γ(J,R) of Eq.
(1) with

|z(t)− x(t)| ≤ Cf ε, t ∈ J.

Definition 2.9. The system equations given in (1) is generalized UH stable
if there exist ϕ ∈ PC1−γ(J,R+), ϕf (0) = 0 such that for each solution z ∈
PC1−γ(J,R) of the inequality (2) there exists a solution x ∈ PC1−γ(J,R) of Eq.
(1) with

|z(t)− x(t)| ≤ ϕf ε, t ∈ J.
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Definition 2.10. The system equations given in (1) is UHR stable with re-
spect to ϕ ∈ PC1−γ(J,R+) if there exists a real number Cf > 0 such that
for each solution z ∈ PC1−γ(J,R) of the inequality (3) there exists a solution
x ∈ PC1−γ(J,R) of Eq. (1) with

|z(t)− x(t)| ≤ Cf εϕ(t), t ∈ J.
Definition 2.11. The system equations given in (1) is generalized UHR sta-
ble with respect to ϕ ∈ PC1−γ+(J,R) if there exists a real number Cf,ϕ > 0
such that for each solution z ∈ PC1−γ(J,R) of the inequality (4) there exists a
solution x ∈ PC1−γ(J,R) of Eq. (1) with

|z(t)− x(t)| ≤ Cf,ϕϕ(t), t ∈ J.
Remark 2.12. A function z ∈ PC1−γ(J,R) is a solution of the inequality∣∣Dα1,β(Dα2,β + λ)z(t)− f(t, z(t))

∣∣ ≤ ε,
if and only if there exist a function g ∈ PC1−γ(J,R) and a sequence gk, k =
1, 2, ...,m (which depend on z) such that

(i) |g(t)| ≤ ε, |gk| < ε.
(ii) Dα1,β(Dα2,β + λ)z(t) = f(t, z(t)) + g(t).

(iii) ∆I1−γz(t)|tk = ψk(z(tk)) + gk.

Lemma 2.13. [27] Let a(t) be a nonnegative function locally integrable on a ≤
t < b for some b ≤ ∞, and let g(t) be a nonnegative, nondecreasing continuous
function defined on a ≤ t < b, such that g(t) ≤ K for some constant K. Further
let x(t) be a nonnegative locally integrable on a ≤ t < b function satisfying

|x(t)| ≤ a(t) + g(t)

∫ t

a

(t− s)α−1x(s)ds, t ∈ [a, b)

with some α > 0. Then

|x(t)| ≤ a(t) +

∫ t

a

[ ∞∑
n=1

(g(t)Γ(α))n

Γ(nα)
(t− s)nα−1

]
a(s)ds, a ≤ t < b.

Remark 2.14. Under the hypethesis of Lemma 2.13 let a(t) be a nondecreasing
function on [0, T ). Then y(t) ≤ a(t)Eα(g(t)Γ(α)tα), where Eα is the Mittag-
Leffler function defined by

Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, z ∈ C, Re(α) > 0.

Lemma 2.15. [26] Let x ∈ PC1−γ(J,R) satisfies the following inequality

|x(t)| ≤ c1 + c2

∫ t

0

(t− s)α−1 |x(t)| ds+
∑

0<tk<t

ψk |x(tk)| ,

where c1 is a nonnegative, continuous and nondecreasing function and c2, ψi are
constants. Then

|x(t)| ≤ c1
(
1 + ψEα(c2Γ(α)tα)kEα(c2Γ(α)tα

)
for t ∈ (tk.tk+1],
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where ψ = sup {ψk : k = 1, 2, 3, ...,m}.

Theorem 2.16. [28](Schauder Fixed Point Theorem) Let E be a Banach space
and Q be a nonempty bounded convex and closed subset of E and N : Q→ Q is
compact, and continuous map. Then N has at least one fixed point in Q.

Theorem 2.17. [28](Banach Fixed Point Theorem) Suppose Q be a nonempty
closed subset of a Banach space E. Then any contraction mapping N from Q
into itself has a unique fixed point.

3. Main results

In this section, we study the main results on the existence of solution for Equa-
tion (1). We need the following Lemma to establish our main results.

Lemma 3.1. Let f : J × R → R be continuous. A function x is a solution of
the fractional integral equation

x(t) =



xa
Γ(γ) (t− a)γ−1 − λIα2

a x(t) + Iα1+α2
a f(t, x(t)) if t ∈ [a, t1],

(t−tk)γ−1

Γ(γ)

[
xa +

∑
0<tk<t

ψk(x(tk))−
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

x(tk)

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

f(tk, x(tk))

]
− λIα2

tk
x(t)

+Iα1+α2
tk

f(t, x(t)) if t ∈ (tk, tk+1],
(5)

where k = 1, ...,m, if and only if x is a solution of the fractional initial value
problem

Dα1,β(Dα2,β + λ)x(t) = f(t, x(t)),

∆I1−γx(t)|t=tk = ψk(x(tk)),

I1−γx(a) = xa.

Theorem 3.2. Assume that [H1] and [H2] are fulfilled. If

ρ =

[
1

Γ(γ)

(
mLψ(b− a)γ−1 +

mλB(γ, (1− α1)(1− β) + α2β)

Γ((1− α1)(1− β) + α2β)
(b− a)1+α2

+
mLfB(γ, 1 + β(α1 + α2 − 1))

Γ(1 + β(α1 + α2 − 1))
(b− a)α1+α2

)
+
λB(γ, α2)

Γ(α2)
(b− a)α2

+
B(γ, α1 + α2)

Γ(α1 + α2)
(b− a)α1+α2

]
< 1,

then the Equation (1) has a unique solution.

Proof. The proof is based on the Banach fixed point theorem. Define the op-
erator N : PC1−γ(J,R) → PC1−γ(J,R). The equivalent integral equation (5)
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which can be written in the operator form as follows

Nx(t) =



(t−tk)γ−1

Γ(γ)

[
xa +

∑
0<tk<t

ψk(x(tk))−
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

x(tk)

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

f(tk, x(tk))

]
− λIα2

tk
x(t)

+Iα1+α2
tk

f(t, x(t))
(6)

First, we show that N maps Br into Br. It is clear that N is well defined on
PC1−γ(J,R). Moreover for any x ∈ Br, we have∣∣Nx(t)(t− tk)1−γ∣∣
≤ 1

Γ(γ)

[
xa +

∑
0<tk<t

|ψk(x(tk))|+
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

|x(tk)|

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

|f(tk, x(tk))|

]
+ λIα2

tk
|x(t)|+ Iα1+α2

tk
|f(t, x(t))|

≤ 1

Γ(γ)

[
xa +

∑
0<tk<t

|ψk(x(tk))− ψk(0)|+
∑

0<tk<t

|ψk(0)|

+
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

|x(tk)|

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

|f(tk, x(tk))− f(tk, 0)|

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

|f(tk, 0)|

]
+ (t− tk)1−γλIα2

tk
|x(t)|+ (t− tk)1−γIα1+α2

tk
|f(t, x(t))− f(t, 0)|

+ (t− tk)1−γIα1+α2
tk

|f(t, 0)|

≤ 1

Γ(γ)

[
xa +mLψ(b− a)γ−1 ‖x‖PC1−γ

+mL2

+
mλB(γ, (1− α1)(1− β) + α2β)

Γ((1− α1)(1− β) + α2β)
(b− a)1+α2 ‖x‖PC1−γ

+
mLfB(γ, 1 + β(α1 + α2 − 1))

Γ(1 + β(α1 + α2 − 1))
(b− a)α1+α2 ‖x‖PC1−γ

+
ml1

Γ(2 + (α1 + α2 − 1)β)
(b− a)1+(α1+α2−1)β

]
+
λB(γ, α2)

Γ(α2)
(b− a)α2 ‖x‖PC1−γ

+
B(γ, α1 + α2)

Γ(α1 + α2)
(b− a)α1+α2 ‖x‖PC1−γ
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+
l1

Γ(α1 + α2 + 1)
(b− a)α1+α2−γ+1

≤ r.

Consequently N maps Br into itself. Let x, y ∈ PC1−γ(J,R) and t ∈ J , then we
have∣∣(Nx(t)−Ny(t)) (t− tk)1−γ∣∣
≤ 1

Γ(γ)

[ ∑
0<tk<t

|ψk(x(tk))− ψk(y(tk))|+
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

|x(tk)− y(tk)|

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

|f(tk, x(tk))− f(tk, y(tk))|

]
+ (t− tk)1−γλIα2

tk
|x(t)− y(t)|

+ (t− tk)1−γIα1+α2
tk

|f(t, x(t))− f(t, y(t))|

≤ 1

Γ(γ)

[ ∑
0<tk<t

Lψ |(x(tk))− (y(tk))|+
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

|x(tk)− y(tk)|

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

Lf |x(tk)− y(tk)|

]
+ (t− tk)1−γλIα2

tk
|x(t)− y(t)|

+ (t− tk)1−γIα1+α2
tk

Lf |x(t)− y(t)| .

Thus

‖Nx−Ny‖PC1−γ

≤
[

1

Γ(γ)

(
mLψ(b− a)γ−1 +

mλB(γ, (1− α1)(1− β) + α2β)

Γ((1− α1)(1− β) + α2β)
(b− a)1+α2

+
mLfB(γ, 1 + β(α1 + α2 − 1))

Γ(1 + β(α1 + α2 − 1))
(b− a)α1+α2

)
+
λB(γ, α2)

Γ(α2)
(b− a)α2

+
B(γ, α1 + α2)

Γ(α1 + α2)
(b− a)α1+α2

]
‖x− y‖PC1−γ

= ρ ‖x− y‖PC1−γ
.

This yields that N has unique fixed point which is solution of Equation (1).
�

Theorem 3.3. Assume that [H1] and [H2] are satisfied. Then, Equation (1)
has at least one solution.

Proof. Let us denote f(t, 0) = l1, ψk(0) = l2. Consider,

Br =
{
x ∈ PC1−γ(J,R) : ‖x‖PC1−γ

≤ r
}
.
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The operator form is given in Theorem 3.2. The proof is based on the Theorem
2.16. The proof is given in the following steps:
Step 1: The operator N : Br → Br is continuous.

Let xn be a sequence such that xn → x in Br. Then for each t ∈ J , we have∣∣(Nxn)(t)(t− tk)1−γ − (Nx)(t)(t− tk)1−γ∣∣
≤ 1

Γ(γ)

[ ∑
0<tk<t

|ψk(xn(tk))− ψk(x(tk))|

+
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

|xn(tk)− x(tk)|

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

|f(tk, xn(tk))− f(tk, x(tk))|

]
+ (t− tk)1−γλIα2

tk
|xn(t)− x(t)|

+ (t− tk)1−γIα1+α2
tk

|f(t, xn(t))− f(t, x(t))| .

Since f is continuous, then by the Lebesgue Dominated Convergence Theorem
which implies

‖(Nxn)(t)− (Nx)(t)‖PC1−γ
→ 0 as n→∞.

Step 2:The operator N is uniformly bounded.
By Thoerem 3.2, N(Br) is uniformly bounded. It is clear that N(Br) ⊂ Br is
bounded.
Step 3:The operator N is equicontinuous. Let t1, t2 ∈ J, t1 > t2. Then,∣∣(Nx)(t1)(t1 − tk)1−γ − (Nx)(t2)(t2 − tk)1−γ∣∣
≤ 1

Γ(γ)

[ ∑
0<tk<t1−t2

|ψk(x(tk))|+
∑

0<tk<t1−t2

λI
(1−α1)(1−β)+α2β
tk−1

|x(tk)|

+
∑

0<tk<t1−t2

I
1+β(α1+α2−1)
tk−1

|f(tk, x(tk))|

]
− (t1 − tk)1−γλIα2

tk
|x(t1)|

+ (t2 − tk)1−γλIα2
tk
|x(t2)|

+ (t1 − tk)1−γIα1+α2
tk

|f(t1, x(t1))| − (t2 − tk)1−γIα1+α2
tk

|f(t2, x(t2))| .

From Step 1- Lemma 3 combined with Arzela-Ascoli theorem, we conclude that
N is continuous and compact. From the application of Theorem 2.16, we deduce
that N has a fixed point x which is a solution of the problem Equation (1). �

Remark 3.4. Let z is solution of the inequality (2), then z is a solution of the
following integral inequality∣∣∣∣∣z(t)− (t− tk)γ−1

Γ(γ)

[
xa +

∑
0<tk<t

ψk(z(tk))−
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

z(tk)
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+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

f(tk, z(tk))

]
+ λIα2

tk
z(t)− Iα1+α2

tk
f(t, z(t))

∣∣∣∣∣
≤ ε

[
m(b− a)γ−1

Γ(γ)
+

m(b− a)α1+α2

Γ(γ)Γ(2 + β(α1 + α2 − 1))
+

(b− a)α1+α2

Γ(α1 + α2 + 1)

]
.

Theorem 3.5. The assumptions [H1], [H2] and [H3] holds. Then Equation (1)
is generalized UHR stable.

Proof. Let z be solution of (4) and by Theorem 3.2 there x is unique solution
of the problem

Dα1,β(Dα2,β + λ)x(t) = f(t, x(t)), t ∈ J = [0, T ],

∆I1−γx(t)|t=tk = ψk(x(tk)), k = 1, 2, ...,m,

I1−γx(a) = I1−γz(a) = xa.

Then we have

x(t) =



(t−tk)γ−1

Γ(γ)

[
xa +

∑
0<tk<t

ψk(x(tk))−
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

x(tk)

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

f(tk, x(tk))

]
− λIα2

tk
x(t)

+Iα1+α2
tk

f(t, x(t)).

By differentiating inequality (4), for each t ∈ (tk, tk+1], we have∣∣∣∣∣z(t)− (t− tk)γ−1

Γ(γ)

[
xa +

∑
0<tk<t

ψk(z(tk))−
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

z(tk)

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

f(tk, z(tk))

]
+ λIα2

tk
z(t)− Iα1+α2

tk
f(t, z(t))

∣∣∣∣∣
≤ (t− tk)γ−1

Γ(γ)

[ ∑
0<tk<t

gk +
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

ϕ(tk)

]
+ Iα1+α2

tk
ϕ(t)

≤
[
λϕ

(
m(b− a)γ−1

Γ(γ)
+ 1

)
+
m(b− a)γ−1

Γ(γ)

]
ϕ(t).

Hence for each t ∈ (tk, tk+1], it follows

|z(t)− x(t)|

≤

∣∣∣∣∣z(t)− (t− tk)γ−1

Γ(γ)

[
xa +

∑
0<tk<t

ψk(x(tk))−
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

x(tk)

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

f(tk, x(tk))

]
+ λIα2

tk
x(t)− Iα1+α2

tk
f(t, x(t))

∣∣∣∣∣
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≤

∣∣∣∣∣z(t)− (t− tk)γ−1

Γ(γ)

[
xa +

∑
0<tk<t

ψk(z(tk))−
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

z(tk)

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

f(tk, z(tk))

]
+ λIα2

tk
z(t)− Iα1+α2

tk
f(t, z(t))

∣∣∣∣∣
+

(t− tk)γ−1

Γ(γ)

( ∑
0<tk<t

|ψk(x(tk))− ψk(z(tk))|

+
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

|x(tk)− z(tk)|

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

|f(tk, x(tk))− f(tk, z(tk))|

)
+ λIα2

tk
|x(t)− z(t)|+ Iα1+α2

tk
|f(t, x(t))− f(t, z(t))|

≤
[
λϕ

(
m(b− a)γ−1

Γ(γ)
+ 1

)
+
m(b− a)γ−1

Γ(γ)

]
ϕ(t)

+
(t− tk)γ−1

Γ(γ)

( ∑
0<tk<t

Lψ |(x(tk))− (z(tk))|

+
∑

0<tk<t

λI
(1−α1)(1−β)+α2β
tk−1

|x(tk)− z(tk)|

+
∑

0<tk<t

I
1+β(α1+α2−1)
tk−1

Lf |x(tk)− z(tk)|

)
+ λIα2

tk
|x(t)− z(t)|+ Iα1+α2

tk
Lf |x(t)− z(t)|

By Lemma 2.15, there exists a constant κ > 0 independent of λϕϕ(t) such that

|z(t)− x(t)| ≤ κϕ(t).

Thus, Equation (1) is generalized UHR stable. �
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