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Abstract

A heuristic approach for collisionless perpendicular diffusion of energetic particles is presented. Analytic forms for
the corresponding diffusion coefficient are derived. The heuristic approach presented here explains the parameter
a2 used in previous theories in order to achieve agreement with simulations and its relation to collisionless
Rechester & Rosenbluth diffusion. The obtained results are highly relevant for applications because previously
used formulas are altered significantly in certain situations.
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1. Introduction

A problem of the utmost importance is the interaction
between electrically charged particles and magnetized plasmas.
It plays a significant role in a variety of physical systems
ranging from fusion devices, over the solar wind, to the shock
fronts of supernova explosions. In all of those scenarios
energetic particles experience scattering due to complicated
interactions with turbulent magnetic fields. Some early work
was done based on perturbation theory also known as quasi-
linear theory (see, e.g., Jokipii 1966), but in general this
approach fails. Some more heuristic arguments but also
systematic theories have been developed focusing on electron
heat transport in fusion plasmas where collisions are assumed
to play a significant role (see, e.g., Rechester & Rosen-
bluth 1978; Kadomtsev & Pogutse 1979; Krommes et al.
1983). In space plasmas such as the solar wind or the
interstellar medium, on the other hand, collisions are absent
and, thus, it was concluded that the aforementioned approaches
are not applicable. The assumption of exponential field line
separation was also questioned (see, e.g., Matthaeus et al.
2003). In the context of astrophysical plasmas, however, one
still finds perpendicular diffusion in most cases as shown via
test-particle simulations (see, e.g., Giacalone & Jokipii 1999;
Qin et al. 2002), but it remained unclear what the mechanisms
behind this type of transport are. Progress has been achieved
due to the development of the nonlinear guiding center theory
(Matthaeus et al. 2003), the unified nonlinear transport (UNLT)
theory of Shalchi (2010), as well as its time-dependent
generalization (Shalchi 2017). Within diffusive UNLT theory
the perpendicular diffusion coefficient is given by
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2 ). The solution of this
equation depends on the spectral tensor Pnm describing the
magnetic fluctuations, the parallel mean free path λP=3κP/v,
the particle speed v, and the mean field B0. Asymptotic
solutions of Equation (1) and the importance of the Kubo
number (Kubo 1963) defined via K=(ℓPδBx)/(ℓ⊥B0), depend-
ing on the parallel and perpendicular bendover scales ℓP and ℓ⊥

as well as the turbulent magnetic field δBx, have been discussed
in Shalchi (2015). Equation (1) shows good agreement with

most test-particle simulations, in particular with those
performed for three-dimensional turbulence with small and
intermediate Kubo numbers. Furthermore, Equation (1) con-
tains quasi-linear theory as well as the nonlinear theory of field
line random walk (FLRW) developed by Matthaeus et al.
(1995). In Shalchi (2017) time-dependent UNLT theory has
been derived, which is represented by

( ) ( ) ( ) ( )( )
ò xá D ñ = - á D ñ ^k

d

dt
x

a

B
d k P t k t e

2
, , , 2xx

x k
2

2
2

2

0
2

3 1
2

2 2

with the parallel correlation function given by
( ) ( )( ) ( )x w w w w= - -w w

+ - + -+ -k t v e e, 3 t t2 where

( ) [ ( ) ]  w l l= -  - v v v k2 2 32 2 2 2 1 2. Equation (1) can
be derived from Equation (2) by employing a diffusion
approximation. Furthermore, the theory explains why diffusion
is restored and this is entirely due to transverse complexity
becoming important. Due to the exponential factor in
Equation (2), this means that diffusion is obtained if
( )á D ñ ^x ℓ22 2. However, there are at least two remaining
problems in the theory of perpendicular diffusion. First, there is
a discrepancy between theory and simulations in the large
Kubo number regime that was previously balanced out by
using the factor a2 (see Equations (1) and (2)) and by setting
a2=1/3 (see Matthaeus et al. 2003). Furthermore, the
question remains what the physics behind collisionless
perpendicular diffusion is. This Letter provides an answer to
both questions.

2. The Three Rules of Perpendicular Diffusion

We now formulate rules allowing us to derive formulas for
the perpendicular diffusion coefficient without employing
systematic theories. Those rules are:

1. Perpendicular transport is only controlled by three effects,
namely, parallel transport, the random walk of magnetic
field lines, as well as transverse complexity. The last of
these three effects leads to the particles getting scattered
away from the original magnetic field lines they were
tied to.

2. We assume that the bendover scales ℓP and ℓ⊥, the
integral scales LP and L⊥, the ultra-scale LU, as well as the
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Kolmogorov scale LK are finite and nonzero. Further-
more, the parallel motion is assumed to be ballistic at
early times and thereafter turns into a diffusive motion
described by the parallel diffusion coefficient κP. The
FLRW is initially ballistic and becomes diffusive for
larger distances. In this case it is described by the field
line diffusion coefficient κFL which depends on some of
the aforementioned scales.

3. In order to obtain normal diffusion, the particles need to
leave the original magnetic field lines they followed. This
happens as soon as transverse complexity becomes
significant corresponding to1

( ) ( )á D ñ ^x ℓ2 . 32 2

What the perpendicular diffusion coefficient is depends
solely on the state of parallel and field line transport at the
time particles start to satisfy condition (3).

3. The Perpendicular Diffusion Coefficient

In the following we construct the perpendicular diffusion
coefficient κ⊥ based on the three rules formulated above. We
shall derive eight cases that are summarized in Table 1. As
demonstrated, there are four different routes to perpendicular
diffusion as listed in Table 2.

3.1. The Field Line Random Walk Limit

First, we assume that the random walk of magnetic field lines
is diffusive in the scenario of interest2

( ) ∣ ∣ ( )ká D ñ =x z2 . 42
FL

If we assume that there are no collisions and no pitch-angle
scattering, we can set z=vμt where we used the pitch-angle
cosine μ. Combining this with Equation (4) and averaging over
μ yields ( ) ká D ñ =x v t2

FL , and thus
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corresponding to the FLRW limit. This limit is stable because if
condition (3) is met, it does not alter the transport. This case is
highly relevant in the limit of long parallel mean free paths
corresponding to high particle energies (see Figures 1 and 2).

Table 1
The Eight Cases of Perpendicular Transport

Case Parallel Motion Field Lines ( )á D ñ ^x ℓ22 2 Perpendicular Transport Diffusion Coefficient Described by UNLT Theory

1 Ballistic Ballistic No Ballistic ( ) = dd̂ t tv B

B3
x

2 2

0
2

Yes

2 Ballistic Ballistic Yes Double-ballistic diffusion k = d
^ ^vℓ B

B

2

3
x

0
Yes

3 Ballistic Diffusive No FLRW Limit k k=^
v

2 FL Yes

4 Ballistic Diffusive Yes FLRW Limit k k=^
v

2 FL Yes

5 Diffusive Ballistic No Fluid Limit k k= d
^

B

B
x
2

0
2

Yes

6 Diffusive Ballistic Yes Fluid Limit k k= d
^

B

B
x
2

0
2

Yes

7 Diffusive Diffusive No Compound Subdiffusion ( ) k=
k

d̂ t
tFL 2

Only for small Kubo numbers

8 Diffusive Diffusive Yes CLRR Limit ( ) k k= k
^ ℓ̂

2
FL Only for small Kubo numbers

Note.The results are compared with limits contained in time-dependent UNLT theory represented by Equation (2).

Table 2
The Four Routes to Perpendicular Diffusion

Route Final State Diffusion Coefficient

1 2 Double-ballistic diffusion k = d
^ ^vℓ B

B

2

3
x

0

 1 3 4 FLRW Limit k k=^
v

2 FL

 1 5 6 Fluid Limit k k= d
^

B

B
x
2

0
2

 1 7 8 CLRR Limit ( ) k k= k
^ ℓ̂

2
FL

Note.In the first three cases perpendicular transport starts as ballistic motion
that then turns into a diffusive motion. In the fourth case the ballistic motion is
followed by a subdiffusive regime and thereafter diffusion is restored.

Figure 1. Results for a spectral tensor based on the critical balance condition of
Goldreich & Sridhar (1995). For δB/B0=1 the field line diffusion coefficient
is in this case κFL=0.38ℓ. Shown are the simulations (dots) of Jokipii (2011),
the result of diffusive UNLT theory for a2=1 (solid line), the CLRR limit
(dashed line) as given by Equation (9), the FLRW limit (dotted line) as given
by Equation (5), and the composite formula (gray line) as given by
Equation (20).

1 It is assumed here that ℓ⊥ is the scale at which transverse complexity
becomes significant. In principle, this could be a different scale such as the
integral scale L⊥. The use of the bendover scale, however, is motivated by
time-dependent UNLT theory (see Section 1).
2 Note that the diffusion coefficient κFL has length units.
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3.2. Compound Subdiffusion

If there is strong pitch-angle scattering the parallel motion is
diffusive meaning that

( ) ( )ká D ñ =z t2 . 62

Assuming that field lines are diffusive and particles follow field
lines, we can combine Equations (4) and (6) to find

( ) ( )k ká D ñ »x t2 2 . 72
FL

The running perpendicular diffusion coefficient is then
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corresponding to subdiffusive transport. However, diffusion
will be restored as soon as condition (3) is satisfied as discussed
in the next paragraph. For slab turbulence, on the other hand,
this condition is never satisfied due to = ¥ℓ̂ , and thus we
find compound subdiffusion as the final state of perpendicular
transport.

3.3. The Collisionless Rechester & Rosenbluth Regime

We now assume that diffusion is restored as soon as the
particles scatter away from their original field lines. This
happens as soon as the condition (3) is satisfied. We also
assume that this happens after the particles travel the distance
LK in the parallel direction leading to

( ) ( )k k = á D ñ á D ñ =^ ^x z ℓ LK
2 2 2 2 . In order to eliminate LK

we use the field line diffusion coefficient
( ) ( ∣ ∣)k = á D ñ = ^x z ℓ L2 KFL
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in agreement with Equation(8) of Rechester & Rosenbluth
(1978) as well as Equation(4) of Krommes et al. (1983). The

quantity LK is either called the Kolmogorov–Lyapunov length
or just the Kolmogorov length (see, e.g., Krommes et al. 1983).
However, here LK is not an exponentiation length but a
characteristic distance along the mean field at which transverse
complexity becomes significant. Furthermore, Equations (9)
and (10) were obtained without assuming collisions, and thus
we call this result the collisionless Rechester & Rosenbluth
(CLRR) limit. One can also obtain this by using a slightly
different derivation. We assume that we find compound
subdiffusion until the particles satisfy condition (3), which
happens at the diffusion time td so that Equations (7) and (8)
become k k=ℓ̂ t2 2 2 d

2
FL as well as ( )k k k=^ t2 dFL .

Combining the latter two equations in order to eliminate td
yields again Equation (9). In order to evaluate this further, we
consider two subcases, namely, small and large values of the
Kubo number, respectively. For small Kubo numbers the field
line diffusion coefficient is given by the quasi-linear limit
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in agreement with the scaling obtained from the diffusive
UNLT theory in Shalchi (2015). Furthermore, we find
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For large Kubo numbers, on the other hand, we have
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x
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with the ultra-scale LU. Equation (14) is either called the
nonlinear or Bohmian limit and is similar compared to the field
line diffusion coefficient obtained by Kadomtsev & Pogutse
(1979). Therewith, Equation (9) becomes
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and the Kolmogorov scale is ( ) ( )d= ^L ℓ B L BK U x
2

0 .

3.4. The Fluid Limit

Let us now assume that parallel transport is diffusive but
magnetic field lines are still ballistic when the particles start to
satisfy condition (3). Then we can derive
( ) ( ) d k dá D ñ = á D ñ =x z B B t B B2x x

2 2 2
0
2 2

0
2, and thus

( )k
d

k=^
B

B
, 16x

2

0
2

which Krommes et al. (1983) called the fluid limit.

Figure 2. Results for a spectral tensor based on the NRMHD model of Ruffolo
& Matthaeus (2013). For δB/B0=1 the field line diffusion coefficient is in this
case κFL=0.23ℓ⊥. Shown are the simulations (dots) of Shalchi & Hussein
(2014), the results of diffusive UNLT theory for a2=1/3 and a2=1 (solid
lines), the CLRR limit (dashed line) as given by Equation (9), the FLRW limit
(dotted line) as given by Equation (5), and the composite formula (gray line) as
given by Equation (20).
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3.5. The Initial Free-streaming Regime

The simplest case is obtained for the early times when
parallel and field line transport are ballistic. In this case
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2

2
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2
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B
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3
18x

2 2

0
2

corresponding to ballistic perpendicular transport. However,
this is not a stable regime since we only find this type of
transport before condition (3) is met.

3.6. Double-ballistic Diffusion

We now consider a scenario where the transport is still
ballistic when the particles start to satisfy condition (3).
Therefore, we use Equations (17) and (18) to derive

( )d=ℓ̂ v B t B2 3x d
2 2 2 2

0
2 as well as ( )k d=^ v B t B3x d

2 2
0
2 . Com-

bining the latter two equations leads to

( )k
d

=^ ^vℓ
B

B

2

3
. 19x

0

A similar result can be derived from Equation (2) by assuming
a ballistic perpendicular motion.

3.7. Timescale Arguments

In order to determine which case is valid for which scenario,
one needs to explore at which time a certain process takes
place. In the parallel direction particles need to travel a parallel
mean free path in order to get diffusive, and thus
tP=λP/v=3κP/v

2. In the following we focus on the case
of short λP. For small Kubo numbers the field lines become
diffusive for ∣ ∣ »z ℓ and the corresponding time is

( ) k»t ℓ 2FL
2 . Then, on the other hand, if we assume that

condition (3) is satisfied while the field lines are still ballistic,
we have k d=ℓ̂ t B B2 2 x

2
Fluid

2
0
2. For  < <t t tFluid FL the final

state is the fluid limit because then we find that parallel
transport becomes diffusive first and then we meet condition
(3). If, on the other hand,  < <t t tFL Fluid the field lines become
diffusive before condition (3) is met. This means that we find
compound subdiffusion first. At even later times condition (3)
is eventually met and diffusion is restored. The corresponding
diffusion coefficient is then the CLRR limit. Using the
formulas for the times discussed above, this means that we
find CLRR diffusion for    l ℓ ℓ LK

2 2 where the Kolmo-
gorov length LK is given by Equation (13). Thus, for λP=ℓP
we either find the fluid limit or CLRR diffusion. If additionally
ℓP?LK we find the fluid limit, but for ℓP=LK we get CLRR
diffusion. It follows from Equation (13) that LK/ℓP≈K−2?1
meaning that for small Kubo numbers we always find CLRR
diffusion. For large Kubo numbers similar considerations can
be made.

3.8. A Composite Formula

A problem of the heuristic approach is that the obtained
formulas are only valid in asymptotic limits. Since the two
most important cases are CLRR and FLRW limits, we propose
for the perpendicular mean free path defined via λ⊥=3κ⊥/v

the formula

⎡
⎣
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3
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Equation (20) was chosen so that for l  0 we obtain
Equation (9) and for l  ¥ we get Equation (5). Note that
Equation (20) does not contain the fluid limit given by
Equation (16), and thus it has some limitations.

3.9. Further Comments

The results obtained here are sometimes not comparable to
previous results. First of all there are cases such as slab or two-
dimensional (2D) turbulence. In the former case condition (3) is
never satisfied leading to compound subdiffusion as the final
state. In the 2D case parallel transport is not diffusive (see, e.g.,
Arendt & Shalchi 2018) violating the second rule. In some
work (see, e.g., Matthaeus et al. 2003; Shalchi et al. 2004) a flat
spectrum at large scales was used for the 2D modes. For this
type of spectrum the ultra-scale is not finite, also violating the
second rule. In order to determine the form of κFL, we have
used the Kubo number. However, in some turbulence models
(see, e.g., Goldreich & Sridhar 1995) there is only one scale,
and thus the Kubo number becomes K=δBx/B0, often called
the Alfvénic Mach number. The arguments presented above are
still valid.

4. Comparison between Theory and Simulations

As a first example we consider two-component turbulence
with dominant 2D modes. For a well-behaving spectrum,
Shalchi & Weinhorst (2009) have derived

( )=
-
-

^L
s

q
ℓ

1

1
21U

requiring q>1 for the energy range spectral index and
1<s<2 for the inertial range spectral index. With the
parameter a2 included, nonlinear theories provide in the limit of
short parallel mean free paths and 2D turbulence (see, e.g.,
Shalchi et al. 2004 and Zank et al. 2004)

( )k
d

k=^ a
B

B
. 22x2

2

0
2

According to the heuristic approach we expect CLRR diffusion
in the considered parameter regime. Comparing Equations (22)
and (15) yields a=LU/ℓ⊥ and using Equation (21) for the
ultra-scale gives us a2=(s− 1)/(q− 1). Previously it was
often assumed that s=5/3 and q=3 (see, for instance,
Arendt & Shalchi 2018) leading to a2=1/3. Although it was
already stated in Matthaeus et al. (2003) that a2=1/3 is
needed to achieve agreement between theory and simulations,
in the current Letter we found for the first time an explanation
for this value. It has to be noted that this result was obtained for
a specific form of the spectrum. Alternative spectra and the
associated turbulence scales have been discussed in Matthaeus
et al. (2007). For some of those spectra one obtains an ultra-
scale larger than the bendover scale. In such cases, however,
one would expect that the diffusion coefficient is close to the
fluid limit, and thus a2≈1.
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Two further examples are shown in Figures 1 and 2,
respectively. A spectral tensor based on the critical balance
condition of Goldreich & Sridhar (1995) was used in the
simulations of Sun & Jokipii (2011). Figure 1 compares
diffusive UNLT theory and the heuristic approach presented in
the current paper with those simulations. As shown, the FLRW
and CLRR limits have to be understood as asymptotic limits.
Figure 2 visualizes the comparison for a spectral tensor based
on the noisy reduced MHD (NRMHD) model of Ruffolo &
Matthaeus (2013) showing very good agreement.

The heuristic arguments presented in this Letter cannot
substitute systematic theories due to the lack of accuracy in the
general case. The remaining step is to further improve UNLT
theory so that the factor a2 is no longer needed. This should
lead to a complete systematic theory for perpendicular transport
in space plasmas.
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