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Abstract: Let S be a dominating set of a graph G. The set S is called a pendant dominating set of G if the
induced subgraph of S contains a minimum of one node of degree one. The minimum cardinality of the
pendant dominating set in G is referred to as the pendant domination number of G, indicated by yp.(G).
This article analyzes the effect of 7,.(G) when an arbitrary node or edge is removed.
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1. Introduction

C onsider a connected graph with a finite number of nodes. Then, the concept of pendant domination was
defined in motivation to the idea of isolated domination in graphs. The parameter pendant domination

lies between dominating and connected sets in a graph since a y— set requires no backup for the nodes. In
contrast, a connected dominating set requires backup for every node in the set. However, in the concept of
pendant domination, at least the node should have a backup. This article analyzes the effect of 7,.(G) when
an arbitrary node or edge is removed.

The analysis of the impact of eliminating a point or an edge on any graph-theoretic variable has a
significant idea in the field of networks. That is, analyzing the removal of a point is more vital as a significant
thought in a network’s topological plan is fault tolerance, which means the performance of the network’s
ability to provide service despite defective components. In the presence of a fault, the activity of the network
can be determined by calculating the impact that eliminating an edge or a point from its underlying graph
G has on the fault-tolerance criterion. For more details of applications on vertex and edge removal, we refer
[1-3]. Hence the changes on y(G) when G is changed by eliminating a point or eliminating or expansion of an
edge were studied by so many researchers.

The analysis of effect of domination parameter is given in Chapter 5 of Haynes et al., [4]. In this article we
begin a similar study corresponding to the pendant domination number of a graph.

Let the graph G be any nontrivial simple graph with n nodes and m edges. The open neighborhood of a
nodes v is indicated by N(v) and is the set having all the nodes incident to v. The closed neighborhood of the
nodes v is indicated by N[v] and is the set having all set nodes incident to the node v along with the node v.
The least degree of a vertex in a graph is indicated by §(G) and highest of the degree of a graph is indicated by
A(G). If 6(G) = A(G), then G is referred as a regular graph. If degree of the node v is 0, then v is referred as an
isolated node of G and the degree of the node u is 1, then u is called a pendant node. For basic terminologies of
graph and domination, see [5,6]. An edge e = uv is contiguous to a node of degree one is referred as a pendant
edge.

The following definition and results are required for our study;

Definition 1. A dominating set S of G is referred as a pendant dominating set if the graph induced by S having
minimum one node of degree one. The least cardinality of a pendant dominating set in G is referred as the
pendant domination number of G, indicated by 7,¢(G) [7].
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Theorem 1. [7] If P, is a path graph with n nodes and n > 2. Then
£+1,  ifn=0(mod3)
Ype(Pn) = 51, if n = 1(mod3);
[51+1, ifn=2(mod3).

Theorem 2. [7]If C, is a cycle graph with n nodes and n > 3. Then

241, ifn=0(mod3);
Ype(Cu) = (51, if n = 1(mod3);
(51 +1, ifn=2(mod3).

2. Vertex removal

We observe that the pendant domination parameter value of a graph G may increase or decrease or remain
same when a point is removal from G. For example, in a complete graph K;, (m > 2) or complete bipartite
graph K, ,, removal of any one point it does not affect the value of 7yy.. In a sunlet graph the removal of a node
of degree one it decreases the value of 7y, by one. In barbell graph v1, v, are the adjacent nodes connected two
copies of complete graphs. The removal of the nodes v; in barbell graph increases the value of vy, by 2. Hence
we can define the point set V(G) of G into three subsets,

Vl(’)e ={v €V :7pe(G—0) = 1e(G) },
Vie ={v € V1 9pe(G —0) < 71pe(G)},

V;g ={v €V :7p(G =) > 7(G)}.

Remark 1. There is a graph such that the sets Vge, Ve and th are nonempty. For example for the graph G
given in Figure 1, we have Vy, = {4}, V,, = {7} and V;, = {3}.

7 1

6 2
3

5 4

Figure 1. A graph for which V;,)e, Ve and th are nonempty.

Theorem 3. If G = P, and n > 3, then we have

(i) If n = 0(mod3) or n = 1(mod3), then

Vﬁf’ ifi=1ormn;

0; €

V+

ve, if i = 2 0r 3(mod3).
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(ii) If n = 2(mod3), then

Vp’e, ifi=1ormn;

vi€q Vi, ifi=0(mod3);
V;?e/ ifi = 2(mod3).

Proof. Case (i) n =0 or1 (mod3).

If n = 3k or n = 3k + 1, for k > 0. Then by Theorem 1, 'ypg(Pn) = k + 1. Here, we can be easily identified
that deleting of any one pendant nodes v;, where i = 1 or i = n in P, the value of . is unalter. If we removal
of any one internal nodes v;, where i = 10r2or3(mod 3), then the path P, splits into two paths Pr, and Py,
such that either 7y = 0(mod 3) and r, = 2(mod 3) or r; = 1(mod 3) and r, = 1(mod3). It can easily verified that
Ype(Pry) + Ype(Pry) = k+2 = Ype(Pn) + 1. Thus ype(Pu — 0) = Ype(Pn) + 1 and therefore v € Vi, Vv € V(Py).
Case (ii) n = 2(mod 3).

If n = 3k + 2 for some k > 0. Then by Theorem 1 7p¢(P,) = k + 2. If we removal of any one pendant nodes
1 OF v, in Py, then the value of y(Py) is decreases by one i.e., Ype(Py — v) = Ype(Pu—1) = k+1 < Ype(Pn).
Thus, v; € Vp‘e.

If we removal of any one internal nodes v; where i = 0(m0d3), then the path spilt into two paths P, 4
and Py, 4, for some positive integers ki and ky such that ky + ko = k. Now Ype(Py — v;) = Ype(Psk,—1) +
Vpe(Psky12) = (k1 +1) + (k2 +2) = Ype(Pn) + 1. Therefore v; € V. If i = 10or2(mod3) then removal of any
one internal nodes in P, the path splits into two paths P3;, and P, 1, where k1, k> > 0 and k1 + ko = k. Now
'Ype(Pn - Ui) = ’Ype(Pﬁékl) + ’YPE(P3k2+1) = (kl + 1) + (kZ + 1) = (k + 2) = '}’pE(Pn)~ Therefore v; € V;(y)r O

Theorem 4. If C,, is a cycle with n > 4 nodes, then

V-

ber if n = 2(mod3);

V(Cy) €
Ve, otherwise.
Proof. If n = 3k 4 2 for some K > 0. Then by Theorem 2 q/pe(Cn) = k + 2. If we removal of a nodes in C,;,
then pe(Cy — v) = Ype(Pagy1) = k+1 < k+2 = 9pe(Cy). Therefore, V = Vpe- Now, if n = 3k, then again by
Theorem 2, yp.(Cy) = k + 1 and for any nodes v in Cy, Ype(Cp — v) = Ype(P3k—1) = k+1 = 7,(Cy) and so,
V = V},. In a same method we can directly verified that V' = Vj, whenn =3k +1. [

3. Edge removal

In this section, we analyze the impact of edge removal in the p.(G) domination number of the graph G.
As in the previous scenario of nodes removal, we can observe that the pendant domination number 7, (G) of
a graph G may increment or diminish or stay same when an edge is deleting from G. Hence we can segment

the edge set E(G) of G into 3 subsets E;;e, E,. and Ege as below,

Ep, = {(1,0) € E: 7¢(G — u0) < 7(G)},
52e ={(1,v) € E: pe(G —uv) = 1pe(G) },
E]je = {(u,v) € E: 7pe(G — uv) > 7pe(G)}.
Theorem 5. Let P, be a path graph with n > 3 nodes, then we have
(i) If n = 0 (mod 3), then
E;je, ifi=n—1,

(vi,vi41) €S Ej,

per ifi = 0(mod3);

E}e, ifi=1(mod3).
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(ii) If n =1 (mod3), then

EY., ifi=2(mod3)ori="1orn—1;
(vi,vis1) €
Ej., ifi=0or1(mod3).
(ii) If n = 2(mod3), then
Ep, ifi=lorn—1
(vi,viy1) €

Ege, otherwise.
Proof. Case (i) n = 0(mod 3)

If n is a non-negative integer, then n = 3k. Then by Theorem 1, v¢(P,) = k + 1. Here, we can easily
confirmed that removal of an edge e = (v;,v;11), where i = 1 ori = n — 1 then the value of -y, is decreased
by one. Therefore ¢ € E,,. Now removal of an edge ¢ € (v;,v;;1), where i = 0(mod3) then, the path splits
in to two paths Ps, 1 and Py, ., for some positive integers ki and k; such that ky + ko = k. Now ype(Py —
e) = Ype(Pag,—1) + Ype(P3t,12) = (k1 +1) + (ko +2) = 7pe + 2. Therefore e € Ej,. If we remove the edge
e € (v, vi41), where i = 1(mod3) then, the path splits into two paths Py, and Py, 1 for some ki, k > 0 such
that ky 4 ko = k — 1. Therefore ype(Py — €) = Ype(Psk,) + Vpe(Pakyr1) = (ki +1) + (k2 +1) = k+1 = ype(Pn).
Thus e € Ej,.

Case (ii) n = 1(mod 3)

If n = 3k + 1 for non negative integer k. Then by Theorem 1, 'ypg(Pn) = k+ 1. Now, removal of an
edge e € (v;,v;41) where i = 0or 1(mod3) then the path splits into two paths Ps;, 1 or Ps, and Psy, or Psy, 4
for some positive integer ki and ky such that k; + ka2 = k. Now Ype(Py — ) = Ype(Par;—1) + Ype(Pak,) =
(k1 +1) + (k2 +1) = vpe(Pn) + 1. Thus e € E,. If we removal the edge e € (v;,v;11), wherei =lori=n—1
or i = 2(mod3) then, the value of 7, (P;) is unaltered. Therefore e € Ege.

Case (iii) n = 2(mod 3)

Let n = 3k + 2 for non negative integer k. Then by Theorem 1, yp(Py) = k + 2. Now, removal of an edge
e € (v;,vi41), where i = 1 ori = n — 1 then it is simple to verify that the value of . is decreased by one.
Thereforee € E,,,. If we remove the edge e € (v}, vj 1) where j = 0 (mod3) or j = 1 (mod3) or j = 2 (mod3) then
the path splits into two paths P, and P, such that either [y = —1(mod3) and I = 1(mod3) or Iy = 0 (mod3)
and I, = 0(mod3). It can be easily verified that e (P, ) + Ype(Pl,) = Ype(Pn). Thus vpe(Py —€) = ype(Py) and
therefore e € Ege.

O

Theorem 6. Let C;, be a cycle with n > 4 nodes, then we have

Ege, if n = 1(mod3);
E(Cy) =

E-

pes  Otherwise.

Proof. If n = 3k + 1, then by Theorem 2, ,¢(Cy;) = k + 1 and consequently y,¢(Cy —€) = ype(Par—1) = k+ 1.
Soe € Ege. Now, suppose n = 3k then by Theorem 2, 7,(Cy;) = k +1 and for any edge ¢ in C, then
Ype(Cn — €) = Ype(P3x—2) = k. So e € E,,. Now similar way we can directly verify if n = 3k +2. [

Theorem 7. If G is a graph having exactly one node of degree zero and x € V;; and y € Vp,, then there is no edge
between x and y.

Proof. Assume thatx € V,},,y € V,, and (xy) € E(G). Now let S’ be a pendant dominating set of G —y. If &’
contains x, then ' is a pendant dominating set of G which contradicts the cardinality of ,.(G). On the other
hand, if S’ does not having the node x, then S’ U {y} will be a pendant dominating set but does not contain x.
This is an inconsistency to the condition (ii) of Theorem 3 and hence the required result follows. [

Theorem 8. If G is a graph without a node of degree zero, vpe(G) # Ype(G — v), for each node v in V(G), then
V=V,
pe
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Proof. Suppose 7pe(G) # Ype(G —v) Vo € V. Then, clearly V;, = @. Now let us claim that V; = @. Assume
v is a node in V;;. As a result of the condition (i) of Theorem 3, that v is in each 7yp.— set S of G. Let u be the
neighbor of v in V — S. As the node u does not belong to the set S, again by condition (i) of Theorem 3, we
have u ¢ VpJg. Also since 1 and v are incident nodes, by Theorem 3, u ¢ V,,,. Since (v e Vrj;). Hence u ¢ Vge.
This contradiction completes the proof. [

4. Edge addition

When an arbitrary edge is added then the pendant domination number remains unchanged. For an
example in complete graph if we add an arbitrary edge to any one nodes of complete graph then the value of
Ype does not alter.

Theorem 9. Let G be graphand G € UEA iff V,, = ©.

Proof. Let G € UEA and suppose a node x in G belongs to the set V.. Thus, 7pe(G — x) < 7pe(G). Let Sbe a
Ype— set of G — x. Then adding edge xy for any y € S gives 7,.(G + xy) < 7.(G). This is a contradiction to
the condition G € UEA.

Conversely, suppose G has no nodes in V,, and Ype(G +uv) = 7pe(G) — 1 for some couple of nonadjacent
nodes # and v. Then any minimum pendant dominating set S of G + uv should contain either u or v, say v.
Hence S dominates G — u. Thus u € VF;, a contradiction. [

5. Conclusion

Nowadays, the study of domination-related parameters is an important area in graph theory, and many
scholars are working in this area. Moreover, the theory of pendant domination is a required graph theory field
with many practical applications. In this article, we investigated the impact of the evacuation of a node or an
edge on any graph.
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