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ABSTRACT 
 

In this study, the influence of four operating parameters (pH, salinity, nitrate concentration and 
immersion time) and their interactions on the microbiologically influenced corrosion (MIC) rate of 
mild steel in simulated crude oil environments were investigated by response surface methodology 
(RSM). 4-level historical data design: pH (A) at 4, 6, 8, 10, salinity (B) at 25, 50, 75 and 100 g/l, 
nitrate (C) at 25, 50, 75 and 100 g/l and immersion time (D) at 168, 336, 504 and 672 h, was 
employed to correlate the factors with the corrosion rate as response. A polynomial regression 
model was developed and validated prior to optimization studies. The result showed that pH has 
the most influential effect on the response and that the predicted data had a reasonable agreement 
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with the experimental data with the values of R2 = 0.9660 and Adj-R2 = 0.9516. The optimum 
conditions of the crude oil environments were observed at: pH (9.37), salinity (94.73 g/l), nitrate 
concentration (37.97 g/l) and immersion time of mild steel (168 h) in order to achieve minimum 
corrosion rate of 0.155196 mpy. The study has revealed that the historical data RSM design is an 
efficient statistical technique for predicting the optimum operating conditions of crude oil 
environments required to minimize mild steel corrosion in oil pipelines by incorporating all factors 
under consideration. 
 

 
Keywords: Crude oil environment; response surface methodology; historical data                       

design; corrosion rate; optimization. 
 

1. INTRODUCTION 
 
Microbiologically influenced Corrosion (MIC) is a 
major problem menacing the petroleum 
industries. It is estimated that 40% of all internal 
pipeline corrosion in the oil industry can be 
attributed to microbial corrosion [1]. Corrosion 
related problems worldwide have been estimated 
to cost as much as 1.8 trillion US dollars with 
microbial influenced corrosion contributing to 
approximately 50% of this total [2]. Throughout 
the world, pipelines play a highly crucial role in 
the transportation of petroleum (crude oil) and its 
allied products at all stages of production ranging 
from down hole to surface and processing 
facilities[3], consuming about 8% of metals found 
in the world accompanied with high rate of 
corrosion [4]. Mild steel is a very important 
material in the oil industry due to its usefulness in 
construction of pipelines as it allows the pipes to 
not only be easily welded in place, but also 
permits bending and avoids cracking and 
breaking under pressure. It is the least expensive 
and most common steel used due to its hardness 
and durability [5].  
 
MIC is the process in which microorganisms 
initiate, enhance, facilitate or aggravate corrosion 
processes of metals [2,6,7]. Microorganisms 
seek irregularities on metal surfaces where they 
can attach themselves and secrete corrosive by-
products such as hydrogen sulphide, sticky 
polymers, enzymatic products and other 
metabolic substances which can deteriorate 
metals [2,8,9]. However, it has been reported 
that microorganisms form biofilms which have 
two major roles in MIC: its acceleration or 
inhibition [10]. The major factors involved in the 
enhancement and inhibition of corrosion (asides 
biofilm formation), are the properties of the metal 
in question and the environment in which it is 
exposed to [9]. 
 
Biofilms are complex microbial communities 
formed from the colonization of different species 

of microorganisms. They contain over 90% 
water, extracellular polymeric substance (EPS) 
and inorganic matter [11-13]. Studies have 
shown that bacteria are the primary formers of 
biofilms [6,7,14]. MIC has been described as an 
interfacial process in that biofilms alter the 
properties such as pH, salinity, oxygen levels 
and nutrients at the interface between the metal 
and the environment [15]. The influence of 
biofilms in corrosion of metals in numerous 
systems such as reservoir, oil pipelines, surface 
equipment and underground structures have 
been well documented [3,4,15]. 
 
The conventional method of performing 
experiments is fast becoming out-dated because 
it involves changing one variable at a time while 
having other factors fixed at specific conditions. 
The other option, which involves carrying out 
experiments with all possible combination of 
variables, is often impracticable due to the large 
number of experimental runs it requires. 
Response Surface Methodology (RSM) is a 
widely used mathematical and statistical 
technique for designing experiments, modelling 
operating parameters, analysing the effects of 
factors and determining the optimum conditions 
for desirable responses in various chemical 
processes [16-24]. It is desirable for conducting 
multi-factor experiments in that it specifies the 
most common interactions between various 
factors for the determination of the most 
favourable or unfavourable conditions of the 
processes [18,19,21-24]. RSM is a very useful 
and robust technique for studying the effect of 
several variables influencing the responses by 
varying them simultaneously and performing only 
a limited number of experiments [17,24]. 
 
RSM has a plethora of design types such as 
Box–Behnken, central-composite, one-factor, 
optimal and historical-data [24]. The advantage 
of historical-data RSM design is that it affords the 
user the opportunity to define the design points 
using all or some of the available experimental 
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data [18]. In contrast to other types of designs in 
RSM, there is no limitation to the number of 
design factors that can be supplied in historical-
data design. In fact, factor settings and 
responses of an existing data set can be directly 
imported to a blank design layout [20]. 
 

Abalos et al. [16] utilized 2
4
 full factorial central 

composite RSM design at five levels to optimize 
the culture media for the production of 
rhamnolipids by Pseudomonas aeruginosa AT10. 
Central composite design (CCD) has been 
applied for the optimization of textile dye 
degradation by wet air oxidation [17], as well as 
the optimization of the experimental variables 
influencing corrosion rate of aluminium in HCl 
solution [21]. Jeirani et al. [20] applied historical-
data RSM design to predict the optimum 
aqueous phase composition of a triglyceride 
micro-emulsion for enhanced oil recovery. 
Asmara and Ismail [22] experimented on the use 
of CCD of RSM with three variables to predict 
CO2 corrosion model empirically. Salam et al. 
[18] employed Box Behnken design of RSM to 
optimize operating parameters for paraffin-wax 
deposition in pipelines. 
 
Going by literature, very limited number of 
studies employed the experimental design and 
optimization modelling approach of RSM for 
microbiologically influenced corrosion; hence the 
need for this study. In line with our previous 
experimental studies, the optimum condition of 
crude oil environments can be predicted 
statistically using design of experiments (DOE), 
reason being that it has been employed 
successfully in estimating the optimum conditions 
required for such processes as minimum CO2 

corrosion [22] and wax deposition in oil pipelines 
[18]. The objective of this paper is to estimate the 
optimum conditions of crude oil environments in 
contact with mild steel pipelines needed to 
minimize corrosion using an improved statistical 
model of DOE. 
 

2. METHODOLOGY 
 

2.1 Experimental Design 
 

In this paper, Design Expert software version 
6.0.8 (Stat-Ease Inc., Minneapolis, USA) was 
used for RSM. It has the profound ability to 
optimize the response function and predict future 
responses after it has developed a regression 
model statistically from appropriate experimental 
data. 
 

It has been widely reported that pH, salinity, 
nitrate and immersion time are significant factors 
affecting corrosion of metals in the petroleum 
industries [9,25]. RSM was used in this study to 
evaluate the simultaneous effects of the four 
independent variables (pH, salinity, nitrate and 
immersion time) on the corrosion rate of mild 
steel in simulated crude oil environments as 
previously studied experimentally. The RSM was 
based on historical-data design. Four levels of 
each variable were chosen namely: pH (A) at 4, 
6, 8 and 10, salinity (B) at 25, 50, 75 and 100 g/l, 
nitrate (C) at 25, 50, 75 and 100 g/l and 
immersion time (D) at 168, 336, 504 and 672 h. 
Forty-eight (48) combinations of two (2) variables 
(with immersion time chosen in all cases) were 
performed. 
 
2.2 Third-order Regression Model 
 
RSM has been applied for developing the 
mathematical models in the form of multiple 
regression equations for the MIC process. The 
main and interaction effects of all possible factor 
combinations have be estimated. For the 
development of regression equations related to 
the corrosion process, a third-order polynomial 
equation was used to fit the experimental data 
seen in Equation (1). 
 

� =  �� + ��� + ��� + ��� + ��� +
 ����� + ����� +  ����� + ����� + ����� +
����� +  ����� + ����� + ����� +
 ����� +  ������ +  ������ + ������ +
 ������ + ������� + ������� + ������� +
 ������� + ������� + ������� + �������  +
���� ��� + ������� +  ���� ��� + ������� +
������� +  ������� + ������� +
������� + ������� +
�������                                                                     (1) 

 
Where 
 

�� = offset term,   
��, ��, ��, �� = linear effect terms,  
���, ���, ���, ���= squared effects  
���, ���, ���, ���, ���,���,
����, ����, ����, ����, ����, ����,����, ����= 
interaction 
����,����,����,����,����,����,����,����,���� 
effects 
����,����, ����, ����=  cubed effects 
�=  fitted response 
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2.3 Variable Coding 
 
The results were analysed by applying the 
response plots and Analysis of Variance 
(ANOVA). All experimental data sets of the 48 
runs were used as the design points for 
modelling (Table 1 presents the design 
summary). The four factors pH, salinity, nitrate 
and immersion time indicate the conditions of the 
simulated crude oil environment with their low 
and high values set according to the range of the 
experimental data sets. The operational 
parameters, their designated symbols, response 
and experimental range are tabulated in Table 1. 
 

The experimental design of the operational 
parameters with the observed values for the 
response is depicted in Table 2. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Regression Model Fitting for 

Corrosion Rate 
 
A regression model was obtained for the 
response of corrosion rate from the application of 
historical data design of RSM which 
recommended a third-order polynomial model to 
be fitted to the response data. Model treatment 
was done since the model contained many 
insignificant terms [20]. The model is a modified 
cubic model obtained by manual reduction and 
simplification of the model which involved 
excluding larger insignificant terms to give the 
final empirical model in terms of actual factors as 
shown in Equation 2. 
 

� =  +1.80 −  1.37 ∗ � −  0.36 ∗ � −  0.32 ∗

� +  0.14 ∗ � +     0.51 ∗ �2 +  0.13 ∗ �2 −

 0.64 ∗ �2 +  0.095 ∗ � ∗ � +  0.068 ∗ � ∗ � +

 0.55 ∗ �3 + 0.23 ∗ �3 − 0.031 ∗ � ∗ �� −

 0.22 ∗ � ∗ �2 +  0.13 ∗ �2 ∗ � −  0.22 ∗ � ∗

�2                                                                                   (2) 

Multiple regression analysis technique included 
in the historical data RSM design was employed 
in obtaining the coefficients of the empirical 
model. The model coefficients with positive sign 
represent synergistic effect, while negative sign 
represents antagonistic effect. The coefficients of 
model factors D, A2, B2, BD, CD, A3, B3,  and B2D 
positively contribute to the model equation while 
A, B, C, D2, AC2, AD2 and BD2 have negative 
impact on the developed model[18]. The most 
influential model parameter was A as it had the 
highest coefficient and F-value [18,24]. 

3.2 Analysis of Variance (ANOVA) and 
Statistical Significance of the Model  

 
ANOVA was another statistical parameter used 
to analyse the adequacy of the model [23]. The 
ANOVA results for the model in Equation (2) are 
tabulated in Table 3. The F-value of 67.02, as 
well as the p-value (or Prob> F) of < 0.0001 for 
the model shows that the model is significant. As 
can be observed in Table 3, ten (10) of the 
fourteen (14) p-values of the model are less than 
0.05, signifying that about 71.4% of the model 
parameters are significant. As earlier stated, 
majority of the insignificant terms were 
deliberately excluded to improve model 
performance [18].  

 

3.3 Model Validation 

 
Fig. 1 shows the predicted corrosion rate against 
the actual corrosion rate (obtained from 
experiments). 

 

The regression line gave R
2
 of 0.9660 and 

adjusted-R2 of 0.9516 which are approximately 
close to 1; thus indicating a relatively good 
correlation between the predicted and 
experimental values of the corrosion rates. Also, 
residual values of ±20%  were obtained for 
majority of the predicted and actual values of the 
response showing relatively small discrepancies 
between them. The adequate precision was 
another statistical parameter which was analysed 
for the model.  It measures the ratio of signal to 
noise and it is suitable to have its value to be 
greater than 4 [17,19-21]. The adequate 
precision for the model in Equation (2) was 
33.695 indicating an adequate signal (high value 
of adequate precision indicates an adequate 
signal). The degree of freedom for lack of fit was 
evaluated at 36, though most of the design points 
were proximal and equally spaced around the 
line of fit. 

 

Fig. 2 shows the graphical analysis of the model 
as carried out by normal plot of the residuals. 
Apparently, the residuals portray a normal 
distribution because virtually all the points follow 
a straight line curve.  Also, the residuals show 
that no further improvement can be done to the 
model by making changes to the response 
because the data points are scattered and do not 
exhibit a ‘‘S-shaped’’ curve [20]. Therefore, these 
figures and graphs illustrate that the model in 
Equation (2) can be regarded as the best 
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possible model of the historical data RSM design 
of mild steel corrosion in crude oil environment. 

Hence, they shall be employed in finding the 
optimum composition of crude oil environments. 
 

Table 1. Design summary 
 

Operational parameters Symbols Ranges Low coded High coded 
pH A 4 – 10 -1 +1 
Salinity (g/l) B 25 - 100 -1 +1 
Nitrate (g/l) C 25 - 100 -1 +1 
Immersion time (h) D 168 - 672 -1 +1 
Response Symbol Analysis Minimum Maximum 
Corrosion rate (mpy) Y Polynomial 0.152 3.916 

 
Table 2. Historical data experimental design of the independent variables with the 

observed values for the response, (Yi) 
 

Std Run Factor 
1 A: pH 

Factor 2     
 B: salinity 
(g/l) 

Factor 3 
C: nitrate (g/l) 

Factor 4  D: 
time (h) 

Response: corrosion 
rate (mpy) 

18 1 4.00 0.00 0.00 168.00 1.445 
37 2 4.00 0.00 0.00 336.00 1.369 
8 3 4.00 0.00 0.00 504.00 1.293 
14 4 4.00 0.00 0.00 672.00 0.913 
12 5 6.00 0.00 0.00 168.00 1.293 
32 6 6.00 0.00 0.00 336.00 1.267 
42 7 6.00 0.00 0.00 504.00 1.255 
28 8 6.00 0.00 0.00 672.00 0.76 
7 9 8.00 0.00 0.00 168.00 1.217 
26 10 8.00 0.00 0.00 336.00 1.217 
9 11 8.00 0.00 0.00 504.00 1.255 
38 12 8.00 0.00 0.00 672.00 0.913 
15 13 10.00 0.00 0.00 168.00 0.837 
36 14 10.00 0.00 0.00 336.00 1.166 
11 15 10.00 0.00 0.00 504.00 1.749 
29 16 10.00 0.00 0.00 672.00 0.913 
19 17 0.00 25.00 0.00 168.00 0.76 
33 18 0.00 25.00 0.00 336.00 0.913 
13 19 0.00 25.00 0.00 504.00 1.331 
25 20 0.00 25.00 0.00 672.00 0.152 
1 21 0.00 50.00 0.00 168.00 0.608 
24 22 0.00 50.00 0.00 336.00 0.76 
23 23 0.00 50.00 0.00 504.00 1.103 
34 24 0.00 50.00 0.00 672.00 0.304 
44 25 0.00 75.00 0.00 168.00 0.38 
21 26 0.00 75.00 0.00 336.00 0.456 
35 27 0.00 75.00 0.00 504.00 1.179 
6 28 0.00 75.00 0.00 672.00 1.445 
16 29 0.00 100.00 0.00 168.00 1.369 
48 30 0.00 100.00 0.00 336.00 1.293 
22 31 0.00 100.00 0.00 504.00 0.913 
39 32 0.00 100.00 0.00 672.00 1.293 
5 33 0.00 0.00 25.00 168.00 1.267 
17 34 0.00 0.00 25.00 336.00 1.255 
45 35 0.00 0.00 25.00 504.00 0.76 
46 36 0.00 0.00 25.00 672.00 1.217 
4 37 0.00 0.00 50.00 168.00 1.217 
47 38 0.00 0.00 50.00 336.00 1.255 
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Std Run Factor 
1 A: pH 

Factor 2     
 B: salinity 
(g/l) 

Factor 3 
C: nitrate (g/l) 

Factor 4  D: 
time (h) 

Response: corrosion 
rate (mpy) 

43 39 0.00 0.00 50.00 504.00 0.913 
41 40 0.00 0.00 50.00 672.00 0.837 
27 41 0.00 0.00 75.00 168.00 1.166 
20 42 0.00 0.00 75.00 336.00 1.749 
10 43 0.00 0.00 75.00 504.00 0.913 
40 44 0.00 0.00 75.00 672.00 0.76 
3 45 0.00 0.00 100.00 168.00 0.913 
2 46 0.00 0.00 100.00 336.00 1.331 
31 47 0.00 0.00 100.00 504.00 0.152 
30 48 0.00 0.00 100.00 672.00 0.608 

 
Table 3. ANOVA for response surface reduced cubic model 

 
Source Sum of 

squares 
Degrees of 
freedom 

Mean 
square 

F-value Prob> F Remark 

Model 33.33 14 2.38 67.02 < 0.0001 Significant 
A 7.64 1 7.64 215.08 < 0.0001 Significant 
B 0.31 1 0.31 8.70 0.0058 Significant 
C 0.91 1 0.91 25.61 < 0.0001 Significant 
D 0.055 1 0.055 1.55 0.2216 Insignificant 
A

2
 0.85 1 0.85 24.04 < 0.0001 Significant 

B2 0.057 1 0.057 1.61 0.2133 Insignificant 
D

2
 0.60 1 0.60 16.97 0.0002 Significant 

BD 0.053 1 0.053 1.49 0.2314 Insignificant 
CD 0.080 1 0.080 2.27 0.1418 Insignificant 
A

3
 4.09 1 4.09 115.22 < 0.0001 Significant 

B3 0.25 1 0.25 6.95 0.0127 Significant 
AD

2
 0.55 1 0.55 15.35 0.0004 Significant 

B2D 0.15 1 0.15 4.16 0.0496 Significant 
BD

2
 0.30 1 0.30 8.54 0.0062 Significant 

Residual 1.17 33 0.036    
Cor total 34.50 47     

 

 
 Fig. 1. Cross plot between the experimental and predicted values 
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Fig. 2. Normal plot of residuals for the model in equation (2) 
 

From the model, all the operational parameters 
have been identified as significant terms and as 
such influence the response. Therefore, it is 
proven statistically that the MIC rate of mild steel 
is dependent on the operational parameters in 
the following order: immersion time >salinity > pH 
> nitrate concentration of crude oil environment 
based on the frequency of occurrence of each 
parameter in the model. On factor interaction, 
corrosion was dependent on the operational 
parameters in the following order: pH > nitrate 
concentration > salinity > time as can be 
observed in the values of sum of squares in 
Table 3. 
 

3.4 One Factor Plots 
 
The behaviour of the effect of each of the four 
variables considered individually on corrosion 
rate is presented in Fig. 3 (i-iv). Fig. 3 (i) shows 
the effect of pH (A) on corrosion rate at constant 
salinity (B) of 62.5 g/l, nitrate concentration (C) of 
62.5g/l and time (D) of 420 h. There was a 
decrease in corrosion rate from 3.13 to 1.20 mpy 
when A was increased from 4 to 8. However, 
from pH 8.5 to 10, the corrosion rate slightly 
increased to 1.49 mpy.  
 
Fig. 3(ii) shows that the relationship between the 
corrosion rate and salinity has an inverse 
relationship with constant values of pH of 7, 
nitrate concentration of 62.5 g/l and immersion 
time of 420 h. The corrosion rate decreased from 
2.07 to 1.65 mpy when the salinity was increased 
from 25 g/l to 81.25 g/l and a slight increase in 

corrosion rate was observed when the salinity 
was greater than 81.25 g/l, leading to a final 
corrosion rate of 1.79 mpy at salinity of 100 g/l. 
Illustrated in Fig. 3(iii) is the effect of increase in 
nitrate concentration from 25 to 100 g/l at pH of 
7, salinity of 62.5 g/l and immersion time of 420 
h. The corrosion rate decreased linearly from 
2.12 to 1.48 mpy when the nitrate concentration 
was increased from 25 g/l to 100 g/l. Fig. 3 (iv) 
shows the effect of increasing time of exposure 
from 168 to 672 h at constant pH value of 7, 
salinity of 62.5 g/l and nitrate concentration of 
62.5 g/l on corrosion rate. Corrosion rate 
increased from 0.86 to 1.50 mpy when 
immersion time was increased from 168 to 420 h 
and decreased with further increase in immersion 
time to a final value of 1.14 mpy at the end of 
672 h. 
 

3.5 3D Response Surface Plot 
 
The surface behaviour of combination of 
variables on corrosion rate was described in Fig. 
4 (i-iii). Fig. 4 (i) describes the behaviour of pH 
and immersion time at constant salinity and 
nitrate concentration. From the plot, corrosion 
rate decreased from 2.56 to 0.246 mpy when the 
pH was increased from 4 to 8.5 for low 
immersion time of 168 h and increased to 0.48 
mpy on increasing pH value 10. At high 
immersion time, there was a similar trend to 
behaviour at low concentration only that the 
corrosion rate was 2.85 mpy at pH of 4 and 0.77 
mpy at pH of 10. 
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Fig. 4 (ii) shows the behaviour of salinity and 
immersion time at constant pH and nitrate 
concentration. It is apparent from the plot that 
corrosion rate decreased from 1.46 to 0.56 mpy 
with increase in salinity from 25 to 100 g/l at low 
immersion time of 168 h. When immersion time 
increased to 672 h, the corrosion rate increased 
from 1.46 to 1.82 mpy at salinity of 25 g/l and 
also increased from 0.56 to 1.30 mpy at salinity 
of 100 g/l. At high immersion time of 672 h, the 
corrosion rate decreased from 1.82 to 1.20 
mpyon increasing salinity from 25 g/l to 81.25 g/l, 
and increased to 1.30 mpy at salinity of 100 g/l. 

Fig. 4 (iii) depicts the behaviour of nitrate 
concentration and immersion time at constant pH 
and salinity. The plot indicated that corrosion rate 
decreased from 1.40 to 0.63 mpy with increase in 
nitrate concentration from 25 to 100 g/l at low 
immersion time of 168 h. When immersion time 
increased to 672 h, corrosion rate increased from 
1.40 to 1.55 mpy at nitrate concentration of 25 g/l 
and also increased from 0.63 to 1.05 mpy at 100 
g/l. At high immersion time of 672 h, the 
corrosion rate decreased from 1.55 to 1.05 mpy 
on increasing salinity from 25 g/l to 100 g/l. 

 

 

 
 

 
Fig. 3. One factor plots 
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Fig. 4. 3D Response surface plots of factor interactions 
 

3.6 Model Optimization 
 

Numerical optimization of the model in Equation 
(2) was done using the Design Expert software to 
determine the pH, salinity, nitrate concentration 
and immersion time at which the corrosion rate of 
mild steel was at minimum. The  following  steps  
were  taken  prior  to  the  optimization  in order  
to  identify  the  criteria  of  the  numerical  
optimization. First, the goal factors for pH, 
salinity, nitrate and immersion time were set to 
‘‘is in range’’ while that of corrosion rate was set 
to “minimum”. Table 4illustrates the summary of 
the corrosion rate modelling. 
 

The predicted optimum composition of the crude 
oil environment was estimated to be pH (9.37), 
salinity (94.73 g/l), nitrate concentration (37.97 
g/l) and immersion time of mild steel (168 h). At 
these optimum conditions, the corresponding 
predicted corrosion rate was found to be 
0.155196 mpy. Experimentally, 75 g/l nitrate 
concentration and 168 h immersion time was the 
condition of the crude oil environment at 
minimum corrosion rate (0.152 mpy) without 
considering its pH and salinity. 
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Table 4. Summary of corrosion rate modelling 
 

Operational parameter Goal Lower limit Upper limit Optimized condition 
pH Is in range 4 10 9.37 
Salinity (g/l) Is in range 25 100 94.73 
Nitrate (g/l) Is in range 25 100 37.97 
Immersion Time (h) Is in range 168 672 168 
Corrosion Rate (mpy) Minimize 0.152 3.916 0.155196 

 

4. CONCLUSION 
 
In this study, historical-data RSM was used to 
model MIC rate of mild steel as a function of the 
operating conditions pH, salinity, nitrate 
concentration and immersion time in crude oil 
environment. After the ANOVA test on the 
complete modified cubic model, majority of the 
insignificant effects were excluded in order to 
improve the predictive performance of the model. 
The resulting response surface model, obtained 
as a function of virtually significant effects, was 
statistically proven to be realistic. The result of 
the ANOVA demonstrated that the model was 
highly significant and that immersion time was 
the most significant factor affecting the corrosion 
of mild steel. High values of R2 (0.9660) and 
adjusted-R

2
 (0.9516) indicated a good correlation 

between the predicted and experimental values. 
The two factor interactions were revealed with 
3D response surface plots. In minimizing 
corrosion rate, the optimum operating conditions 
of the crude oil environments were obtained at 
pH (9.37), salinity (94.73 g/l), nitrate 
concentration (37.97 g/l) and immersion time of 
mild steel (168 h).   
 
Therefore, it is apparent that RSM not only gives 
valuable insight on interactions between the 
factors, but also helps in the recognition of 
possible optimum values of the same. It  is  
concluded  that  historical-data  RSM  is  a  
promising statistical  technique  that  could be 
used confidently in predicting the optimum 
operating conditions of crude oil environments 
that would minimize corrosion rate of metals 
used in the oil industry. 
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