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An online self-adaptive RBF network algorithm based on 
the Levenberg-Marquardt algorithm
ZhaoZhao Zhang, Yue Liu, YingQin Zhu, and XiaoFei Zhao

Institute of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an, China

ABSTRACT
Aiming at the problem that the Levenberg-Marquardt (LM) 
algorithm can not train online radial basis function (RBF) neural 
network and the deficiency in the RBF network structure design 
methods, this paper proposes an online self-adaptive algorithm 
for constructing RBF neural network (OSA-RBFNN) based on LM 
algorithm. Thus, the ideas of the sliding window method and 
online structure optimization methods are adopted to solve the 
proposed problems. On the one hand, the sliding window 
method enables the RBF network to be trained online by the 
LM algorithm making the RBF network more robust to the 
changes in the learning parameters and faster convergence 
compared with the other investigated algorithms. On the 
other hand, online structure optimization can adjust the struc
ture of the RBF network based on the information of training 
errors and hidden nodes to track the non-linear time-varying 
systems, which helps to maintain a compact network and satis
factory generalization ability. Finally, verified by simulation ana
lysis, it is demonstrated that OSA-RBFNN exhibits a compact RBF 
network.
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Introduction

RBF neural network has been extensively applied to industrial control, pattern 
classification, signal processing, modeling of non-linear systems and other 
areas, as it has the ability of strong non-linear fitting, faster convergence, 
strong robustness, and is not easy to lead to local minima (Gao 2022; La 
Rosa Centeno et al. 2018; Zhang et al. 2020; Zhou, Oh, and Qiu 2022). 
Structure constructing methods and parameters tuning algorithms are the 
keys to construct RBF neural networks (Gu, Tok, and Yu 2018). Structural 
constructing is the strategy used to determine the number of hidden nodes in 
the RBF network; Parameter tuning is how to adjust three parameters in this 
network (Kadakadiyavar, Ramrao, and Singh 2020).

In recent years, considerable advancement has been proposed in the struc
tural construction of the RBF network. The first algorithm dynamically adapts 
the weights of the participating kernels using the gradient descent method 
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thereby alleviating the need for predetermined weights (Khan et al. 2017). 
The second method realizes online modeling by combing the advantages of the 
sliding window strategy and clustering algorithm (Jia, Li, and Qiao 2022). The 
novel algorithm provides better performance such as faster convergence rate, 
better local minima, and resilience against leading to poor local minima. It is 
a multi-kernel radial basis function neural network in which every base kernel 
has its weight (Atif et al. 2022).

Regarding architectural optimization for RBF neural networks, the most 
classic online algorithms are resource-allocating network (RAN), minimal 
resource allocating network (MRAN), and generalized growing and pruning 
radial basis function (GGAP-RBF). The principles mentioned above of algo
rithms both design the network online to meet the accuracy requirements, 
maintain a compact structure, and improve its generalization performance 
(Meng, Zhang, and Qiao 2021). Therefore, it is important to design an online 
neural network. However, these algorithms have deficiencies in networks.

John Platt (Platt 1991) presented RAN to test each training sample con
tinuously. When the new training sample meets the ”‘novelty’,” a new node is 
allocated to the training sample. However, once the hidden nodes are added, 
they will not be pruned in the algorithm. Therefore, redundant hidden nodes 
will inevitably appear in this network for complex online learning tasks, 
affecting the network’s generalization performance.

To address the mentioned problems, Lu Y W et al. (Lu, Sundararajan, and 
Saratchandran 1997) proposed that MRAN is improved by RAN. On the one 
hand, if the deviation of the current network for multiple consecutive training 
samples is too large, add a hidden node; if several consecutive training samples 
cannot activate a hidden node, prune the node (Jia, Li, and Qiao 2022). To 
a certain extent, MRAN can obtain a compact network model. On the other 
hand, it also has blindness with adding nodes, because the center of the kernel 
function is determined randomly. Thereby it results in the poor robustness 
and generalization performance of the algorithms (Arif, Ray Chaudhuri, and 
Ray et al. 2009).

Based on the poor performance of the MRAN network. In (Li, Chen, and 
Huang 2006), GGAP-RBF neural network links the required learning accuracy 
to the significance of neurons in the learning algorithm to realize a compact 
RBF network. But the neural network needs to initialize the network para
meters based on all samples, thus it is difficult to realize an optimal online 
algorithm for the RBF network.

The RAN, MRAN, and GGAP-RBF algorithms use the gradient descent 
method for the parameters learning algorithm. The gradient descent method is 
the first-order algorithm. The main problem of the first-order algorithm is 
slow convergence, and it is easy to lead to the local minimum of the curved 
error surface. In these situations, second-order algorithms are superior. The 
Levenberg-Marquardt (LM) algorithm (Houcine Bergou, Diouane, and 
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Kungurtsev 2020) is a second-order algorithm, which is a mix of the Steepest 
Gradient Method and Gauss–Newton method. When the gradient of the error 
surface is small, the LM algorithm is similar to the Steepest Gradient Method. 
When the gradient of the error surface is large, the LM algorithm is similar to 
the Gauss–Newton method. LM can estimate the learning rate of each gradient 
under the curved error surface according to the Hessian matrix. The LM 
algorithm is efficient for training neural networks compared to the first- 
order algorithm (Wilamowski and Yu 2010).

The error correction (ErrCor) algorithm (Hao et al. 2014) applies the LM 
algorithm to train the RBF network, and after each iteration, it turns out that 
a much better learning ability of the RBF network can be obtained when 
adding a new RBF node at the location of the highest error peak or lowest 
error valley. This algorithm has strong robustness and can design a compact 
network (Xi et al. 2018). However, it is an offline design and difficult to apply 
to non-linear time-varying systems.

Based on previous research, according to the above-mentioned problems, 
we propose an online self-adaptive algorithm for the RBF network based on 
the LM algorithm. The algorithm builds a sliding window and uses the LM 
algorithm to train the RBF network. During the training process, it can add, 
prune or merge hidden nodes according to the training error information and 
the relevant information of each hidden node, which makes the RBF network 
structure compact in the learning process, and then ensures the generalization 
performance of the RBF network. Using the sliding window method can 
achieve the online application of the LM algorithm and make the RBF network 
more robust to changes in learning parameters and easier to converge. Finally, 
the performance of OSA-RBFNN is verified by simulation experiments.

The remainder of this paper is organized as follows. Section 1 introduces 
RBF network briefly. In Section 2, an online self-adaptive optimal algorithm 
for the RBF network is proposed in detail. Section 3 evaluates OSA-RBFNN 
through simulation analysis. Finally, the study is concluded in Section 4.

Materials and Methods

RBF Network

The RBF network comprises three feedforward network layers: the input layer, 
the hidden layer, and the output layer. The weight connection from the input 
layer to the hidden layer is fixed at 1. Without loss of generality, set the RBF 
network structure is I-H-1, that is I input nodes, H hidden nodes, and one 
output node. The structure is given in Figure 1.

Set xp ¼ ½xp;1; xp:2; . . . ; xp;I� is the pth I dimensional sample in the RBF 
network, the output of the hth hidden node is as Equation (1): 
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ϕpðxpÞ ¼ exp �
k xp � ch k

2

σh

� �

(1) 

Where ch and σh are the center vector of the hth RBF node and its width, 
respectively, k � k denotes Euclidean distance.

The output of the network for the pth sample is as Equation (2): 

Op ¼
XH

h¼1
whϕp xp

� �
þ w0 (2) 

where wh denotes the weight connecting between the hth hidden node and the 
output node,w0is bias.

LM Algorithm

The LM algorithm is a second-order algorithm successfully applied to the back 
propagation (BP) network. In terms of the LM algorithm training RBF net
work, the paper (Wilamowski and Yu 2010) improved the LM algorithm. On 
this basis, the paper (Hao et al. 2014) proposed an error correction (ErrCor) 
algorithm to construct the RBF network structure based on the peak of error 
training. This algorithm belongs to the growth algorithm and can design 
a compact RBF network structure.

When the LM algorithm trains the RBF network, the parameter update rule 
is as Equation (3). 

Δkþ1 ¼ Δk � Qk þ μkI
� �� 1gk (3) 

Figure 1. Structure of RBF networks.
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Where Δ denotes tuning parameter in RBF network (including centers c, 
widths σ, and the output weights w); Q denotes Quasi-Hessian matrix; I is the 
identity matrix; μis the learning coefficient; g is the gradient vector.

The training errorepis calculated as the desired outputyp and actual out
putop, it is shown in Equation (4). 

ep ¼ yp � op: (4) 

The elementjp;nof the nth row of the Jacobian matrix can be calculated by 
Equation (5). 

jp;n ¼
@ep

@Δn
; (5) 

Where n is three tuning parameters in this RBF network.
The gradient vector g is calculated through the sum of sub-vector ηpin 

Equation (6). 

g ¼
XP

p¼1
ηp (6) 

and sub-vector ηp is calculated as Equation (7). 

ηp ¼ jT
p ep (7) 

Where jp is the row of Jacobian matrix and ep is calculated as Equation (4).
The calculation of quasi-Hessian matrix Q is transformed to the sum of sub- 

matrices in Equation (8). 

Q ¼
XP

p¼1
qp; qp ¼ jT

p jp (8) 

For a given p training sample, and considering the tuning parameterwh; ch;i, 
andσhunder the RBF network, the Jacobian row elements is calculated by 
Equation (9). 

jp ¼

@ep
@ω0

;
@ep
@ω1

. . .
@ep
@ωh

. . .
@ep
@ωH

;
@ep
@c1;1

. . .
@ep
@c1;i

. . .
@ep
@c1;I

. . .
@ep
@ch;1

. . .

@ep
@ch;i

. . .
@ep
@cH;1

. . .
@ep
@cH;i

. . .
@ep
@cH;I

;
@ep
@σ1

. . .
@ep
@σh

. . .
@ep
@σH

2

4

3

5: (9) 

Integrating Equations (1), (2), and (4), with the differential chain rule, the 
Jacobian row of the pth training sample in (6) can be rewritten as Equations 
(10)~(12). 

@ep

@ωh
¼ � φh Xp

� �
;
@ep

@ω0
¼ � 1; (10) 
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@ep

@ch;i
¼ �

2ωhφh Xp
� �

xp;i � ch;i
� �

σh
; (11) 

@ep

@σh
¼ �

ωhφh Xp
� �

k Xp � chk
2

σ2
h

: (12) 

Integrating Equations (10)~(12), all the elements of Jacobian row of the jth can 
be calculated. For all input samples, all elements of the Jacobian matrix can be 
calculated. Quasi-Jacobian matrix Q and gradient vector g are obtained by 
Equations (6)~(8). To apply the update Equation (3) for parameter 
adjustment.

Online Self-Adaptive Optimal Algorithm for RBF Network(OSA-RBFNN)

Although the LM algorithm is a effective algorithm for training neural net
works at present, the LM algorithm can only be used in batch processing when 
training the RBF network. Hence, the ErrCor algorithm is an offline algorithm 
for designing the RBF network structure and cannot be performed online, it is 
not easy to apply to non-linear time-varying systems. In addition, since the 
RAN, MRAN, and GGAP-RBF online algorithms all use the latest single 
sample to train the RBF network, it leads to a poor local optimum, and if it 
has a sample noise impact on learning, it will result in the poor accuracy of 
learning. For online modeling, the reasonable method is to use the latest 
multiple samples to dynamically adjust the network parameters during the 
learning process (Arif, Ray Chaudhuri, and Ray et al. 2009).

The mentioned problems can be worked out by the using sliding window 
method in this paper (Pedro and Ruano 2009). The sliding window is a “FIFO” 
(First In First Out) queue of a fixed length. The elements of the queue are the 
online input sample by the entry window in chronological order. Sets online 
input sample is xn; ynð Þ, thus the elements in the sliding window of the length 
of L denotes xi; yið Þ; xiþ1; yiþ1ð Þ; . . . ; xiþL� 1; yiþl� 1ð Þ½ �:When a new sample 
arrives, the sample in this window are updated by including the latest sample 
and eliminating the oldest. All the samples in the sliding window are the RBF 
network training sample.

As above, when using the sliding window method, and applying the LM 
algorithm to training the RBF network, the target function of RBF network 
learning is as Equation (13). 

eL ¼
XL

i¼1
βi yi � oið Þ

2
: (13) 
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Where L is the length of the sliding window;yiandoidenotes desired outputs 
and actual outputs of the ith sample in the sliding window;βiis a forgetting 
factor, and it can be shown as Equation (14). 

βi ¼
2i

L Lþ 1ð Þ
;
XL

i
βi ¼ 1: (14) 

Based on Equations (13) and (14), the latest sample has a large amount of 
information from online learning, the weighting coefficients of the latest 
sample of the sliding window are more significant than under the old sample, 
its weighting coefficients are small.

The online self-adaptive optimal algorithm for the RBF network in this 
paper has three options: adding, pruning, and merging network hidden nodes.

Adding the hidden nodes. For the process of online training, the maximum 
error of the samples in each sliding window is detected and recorded. 
Therefore, one hidden node is added to the hidden layer and regarded with 
its kernel function center as the training sample corresponding to the currently 
recorded maximum training error when the RBF network is trained to 
a certain step, and the root mean square error (RMSE) of the training samples 
in the sliding window does not reach the target value. The RMSE of the 
training sample in the sliding window is shown in Equation (15). 

ermse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL

i¼1
βi yi � oið Þ

2

L
:

v
u
u
u
t

(15) 

Pruning the hidden nodes. If such inactive hidden nodes can be detected and 
removed as learning progresses, it will mean that the hidden node will lose the 
ability of learning. The criterion for judging whether the hidden node is 
activated is in Equation (16)(Lu, Sundararajan, and Saratchandran 1997). 

ϕk
h xkð Þ ¼ wk

h exp �
k xk � chk

2

σh

� �

; rk
h ¼k

ϕk
h

ϕk
max

k : (16) 

whereϕk
his the output of the hth hidden node at time k, wk

his the weight 
connecting from hidden node h to output node at k time. rk

his the normalized 
output of the hth hidden nodes at time k, ϕk

maxis the value of the largest 
absolute value among the outputs of all hidden nodes at k time. For multiple 
consecutive training samples, if rk

his less than a thresholdδ, it will be pruned.
Merging the hidden nodes. In the process of learning, if the distance of the 

center and the width are close significantly between the two hidden nodes 
under the RBF network, according to the characteristics of the local response 
characteristics of the hidden nodes of the RBF network, the function of the two 

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3799



nodes is almost identical. Thus, we will merge the two hidden nodes into one. 
This operation will not only simplify the RBF network structure but make no 
difference to the learning performance of the current network. The relevant 
parameters can be set as Equation(17). 

wi ¼ wi þ wj;

ci ¼ ci þ cj
� �

=2;
σi ¼ max σi; σj

� �
:

8
<

:
(17) 

Using the sliding window method can achieve the online application of 
the LM algorithm and make the RBF network more robust to changes in 
learning parameters and faster convergence. The structure optimization 
algorithm combines the advantages of RAN, MRAN, and GGAP-RBF, and 
it also overcomes their shortcomings. One hidden node is added to the 
hidden layer and regarded as its kernel function center as the training 
sample corresponding to the currently recorded maximum training error. 

Table 1. Algorithmic depiction of OSA-RBFNN.
Initialization 
set the length of the sliding window L 
there is one hidden node in the network 
for k = 1:NMAX 

move new samples xk; ykð Þ to the sliding windows, then remove the first sample 
calculate ermse of the sample in the current sliding window using Equation (15) (step=1) 
for step = 2:max_step 

find maximum of abs error of ermse 
if the fixed training steps is reached and ermse > eobj (eobj is the target value of the network training error) 
create a new hidden node at the location of maximum error by setting weight the width of the new RBF node 

to 1. 
calculate Jacobian vector jp using Equations (9)~(12) 
calculate sub quasi-Hessian matrix qp ¼ jT

p jp , and gradient vector ηp ¼ jT
p ep 

if check the hidden nodes and the node cannot activate 
prune the hidden node 

end 
if check redundant hidden nodes in the RBF network, and the Euclidean distance between the center of 

two hidden nodes is less than the threshold. 
merge the two hidden nodes using Equation (17) 
end 

end 
calculate quasi-Hessian matrix Q using Equation (8);Using Equations (6) and (7) to calculate the gradient 

vector g. 
update RBF network parameters using Equation (3); calculate new output using Equation (16), and sign the 

state of the node. 
calculate RMSE(step) 
while ermse of the sample in the current sliding window is not reduced 

adjust the μk parameter using Equation (3) 
endwhile (ermse is not reduced) 
if RMSE(step)<desired error, then break 

endfor(max_step) 
if RMSE(k)<desired error, then break(new RBF node loop) 

endfor(main loop)
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It can not only reduce the training error but avoid adding hidden nodes 
randomly.

Considering the aforementioned problems, an online self-adaptive opti
mal algorithm for the RBF network can be obtained and it is shown in 
Table 1.

Results and Discussion

Computational Complexity Analysis

In the subsection, we compare the computation complexity of the traditional 
RBF neural network algorithm with OSA-RBFNN.

To build a compact RBF neural network structure, we adopt the sliding 
window method based on the LM algorithm to optimize the structure by 
adjusting parameters continuously. RAN, MRAN, and GGAP algorithms 
all use the gradient descent method, while OSA-RNFNN uses the LM 
algorithm for training optimization. Let m denote the number of itera
tions required to reach the object training error, and s denote the training 
step.

The gradient descent method has the characters of slow convergence 
and a large number of iterations, the time complexity of one iteration can 
be approximated asOðnÞ. Thus, the computational complexity of training 
can be approximated asOðm � s � nÞ. While the LM algorithm has fast 
convergence and a small number of iterations, and one iteration time 
complexity is Oðn3Þ, the computational complexity can be approximated 
asOðm � s � n3Þ. For the above-mentioned computational complexity, it is 
shown that the gradient descent method is better than the LM algorithm. 
However, for the RBF neural network structure, the LM algorithm can 
calculate the learning rate of each gradient under the curved error surface 
according to the Hessian matrix to obtain the optima compared to the 
gradient descent method. It will reduce the number of iterations largely. 
And OSA-RBFNN based on the LM algorithm uses the latest single 
sample to adjust parameters dynamically, it can reduce the training step 
and the training iterations to reach the object training error. Thus, the 
computational complexity of the LM algorithm is superior to the gradient 
descent method for OSA-RBFNN.

Non-Linear Function Approximation

We proposed OSA-RBFNN for constructing minimal RBF structure. 
According to Equation (1), we build a non-linear function in Equation (18) 
which consists of six exponential Gaussian functions (Yingwei, Sundararajan, 
and Saratchandran 1997). The function is the summation of six Gaussian 
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exponential functions; thus, the RBF network should have six nodes with 
Gaussian functions in its hidden layer. In Figure 2, “△” indicates the true 
positions of hidden unit centers from non-linear function, and the circles 
represent the estimated positions of centers obtained from the minimal RBF 
network.

y xð Þ ¼ exp �
x1 � 0:3ð Þ

2
þ x2 � 0:2ð Þ

2

0:01

" #

þ exp �
x1 � 0:7ð Þ

2
þ x2 � 0:2ð Þ

2

0:01

" #

þ exp �
x1 � 0:1ð Þ

2
þ x2 � 0:5ð Þ

2

0:02

" #

þ exp �
x1 � 0:9ð Þ

2
þ x2 � 0:5ð Þ

2

0:01

" #

þ exp �
x1 � 0:3ð Þ

2
þ x2 � 0:8ð Þ

2

0:01

" #

þ exp �
x1 � 0:7ð Þ

2
þ x2 � 0:8ð Þ

2

0:01

" #

(18) 

The aim is to construct a minimal RBF network using the method to approx
imate the function with small error. For this approximation, 2000 training 

Figure 2. The attribution of the true and estimated centers.
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samples x1; x2ð Þ; yð Þwere generated randomly, x1; x2ð Þand y present input and 
output, xi 2 0; 1ð Þ; i 2 1; 2f g:And set the length of sliding window L is equal 
to 20.

Because of the randomness of the training results, we try running the 
experiment 20 times independently. The algorithm generated six hidden 
nodes, similar to the non-linear function, by training 16 times. In other 
times, we got seven hidden nodes. From Table 2, the centers, widths, and 
output weights for the non-linear function in the hidden nodes are quite close 
to the true values. Thus, OSA-RBFNN can accurately approximate the non
linear function with minimal network size.

Non-Linear Time-Varying System Identification

We choose a benchmark problem Mackey-Glass (MG) chaotic time series 
(Harpham and Dawson 2006; Jiang et al. 2022) generated by the differential 
delay Equation (19) to test the ability of OSA-RBFNN for non-linear time- 
varying system identification. 

dx
dt
¼

0:2xðt � τÞ
1þ x10 t � τð Þ

� 0:1x tð Þ: (19) 

And we use the input vector xðtÞxðt � 6Þxðt � 12Þxðt � 18Þ½ � to predict the 
output vectorxðt þ 50Þ. Equation (19) is a static chaotic time series under the 
condition that τ is constant. We set τ equal to 17, 30, 50, and 100 separately to 
test the ability of an online self-adaptive algorithm for the RBF network to 
build time-varying systems. And the chaotic behavior of the system increases 
with the delay coefficients. Figure 3 shows how the delay between x(t) and x(t  
+ 50) becomes more chaotic as τ increases.

To build a time-varying system, mixing the static MG sequences with delay 
coefficients of 17, 30, 50, and 100 were used, and the mixing method is shown 
according to Equations (20) and (21). 

f xtð Þ ¼ α tð Þf1x tð Þ þ 1 � α tð Þð Þf2 xtð Þ; (20) 

αðtÞ ¼ expð� 5t=TÞ; t ¼ 1; 2; . . . ;T: (21) 

Table 2. Performance comparison of true and estimated value on object function.
True center (0.3,0.2) (0.7,0.2) (0.1,0.5) (0.9,0.5) (0.3,0.8) (0.7,0.8)
Estimated center (0.3110, 

0.2000)
(0.6798, 
0.1993)

(0.0988, 
0.5000)

(0.8799, 
0.5103)

(0.3000, 
0.7994)

(0.6981, 
0.8022)

True width 0.1 0.1 0.144 0.144 0.1 0.1
Estimated width 0.0998 0.0999 0.1425 0.1496 0.0992 0.0995
True weight 1 1 1 1 1 1
Estimated weight 1.0299 1.0073 1.0200 0.9887 1.0021 1.0003
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Figure 3. Chaotic behavior of x(t) and x(t + 50).

Figure 4. The performance of online learning.

e2146800-3804 Z. ZHANG ET AL.



By mixing four static MG sequences, i.e. τ = 17→30, τ = 30→50, τ = 50→ 100, 
τ = 100→50, τ = 50→30, τ = 30→17. Each changing process has 500 data. 
Thus, we obtain a total of 3000 samples, the first 2500 samples were selected 
as training samples and the last 500 samples for testing. Set the length of 
sliding window L is equal to 200.

In Figure 4, at the beginning of learning, the training error is large, but it is 
suppressed quickly by adding hidden nodes. It shows that OSA-RBFNN models 
the actual output well. Figure 5 shows the training RMSE is large at the beginning 
of learning and it has a small fluctuation when constructing the network, but the 
overall trend tends to converge. Figure 6 presents that when t is equal to 241, the 

Figure 5. The performance of RMSE.

Figure 6. The change in hidden nodes.
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hidden nodes reach 36, which completes the construction of the network by 
adding nodes. In the whole process of learning, the maximum number of hidden 
nodes reach 41, and the nodes reaches 39 at the end of the training.

In Figure 7, the maximum error is within 0.03, and the average error of 500 
testing samples is 0.0072. For this experiment, we did 20 independent experi
ments and set the length of the sliding window L equal to 100, 150, and 200, 
respectively. The results show that the number of hidden nodes was between 
39 and 45, and the average error of 500 testing samples was also 0.0072 ~  
0.0136, which is a stable result.

To further verify the effectiveness of the proposed method, we compare 
OSA-RBFNN with RAN and MRAN. Table 3 indicates that the training RMSE 
and testing error of OSA-RBFNN on the MG series is lower than the other 
algorithms.

The reasons are that we combine the advantages of RAN and MRAN. 
RAN can modify the parameters of the node when adding a new one; thus, it 

Figure 7. The testing error of 500 samples.

Table 3. The performance of comparison of different algorithms.
Algorithms Number of Hidden Nodes Training RMSE Testing Error

eTS 99 -a -a

RAN 51 0.0316 0.0427
MRAN 47 0.0274 0.0319
OSAMNN 35 0.0319 -a

OSA-RBFNN 39 0.0057 0.0072

Note: “a”Results not listed in the original paper.
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will improve the learning speed, but the node cannot be pruned once it is 
added to the RBF network. MRAN can prune inactive hidden nodes to 
decrease the redundant hidden nodes of the RBF network. We also choose 
the LM algorithm to estimate the learning rate of each gradient under the 
curved error surface according to the Hessian matrix. Thus, the learning 
ability of the RBF network will be improved compared to RAN and RAN. 
Moreover, we employ a sliding window method to use the latest sample to 
adjust parameters, it can enhance the accuracy of learning and make the 
network more stable.

eTS (Rong, Sundararejan, Huang, and Saratchandran Rong et al. 2006)
OSAMNN (Qiao, Zhang, and Bo 2012)

Conclusion

Aiming at the deficiencies that the LM algorithm can not train online RBF 
network, we propose OSA-RBFNN based on the LM algorithm. We combine 
the sliding window method with the LM algorithm to build an online self- 
adaptive network. We also adopt the operations of adding, pruning, and 
merging hidden nodes to optimize the RBF network structure. Moreover, 
the hidden nodes are directly added to the training sample with the maximum 
training error, which can effectively suppress the training error of the current 
network and avoid adding hidden nodes randomly. Pruning and merging 
hidden nodes can reduce the impact on the RBF network performance and 
simplify the network structure. Finally, we have simulation analyze on non- 
linear function approximation and non-linear time-varying system identifica
tion, the results demonstrate that the proposed OSA-RBFNN realizes online 
modeling with a compact and stable structure. It has a generalization ability 
with a minimal structure.
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