
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

An online self-adaptive RBF network algorithm
based on the Levenberg-Marquardt algorithm

ZhaoZhao Zhang, Yue Liu, YingQin Zhu & XiaoFei Zhao

To cite this article: ZhaoZhao Zhang, Yue Liu, YingQin Zhu & XiaoFei Zhao (2022) An online
self-adaptive RBF network algorithm based on the Levenberg-Marquardt algorithm, Applied
Artificial Intelligence, 36:1, 2146800, DOI: 10.1080/08839514.2022.2146800

To link to this article: https://doi.org/10.1080/08839514.2022.2146800

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 21 Nov 2022.

Submit your article to this journal

Article views: 434

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2022.2146800
https://doi.org/10.1080/08839514.2022.2146800
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2022.2146800
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2022.2146800
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2146800&domain=pdf&date_stamp=2022-11-21
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2146800&domain=pdf&date_stamp=2022-11-21
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2022.2146800#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2022.2146800#tabModule

An online self-adaptive RBF network algorithm based on
the Levenberg-Marquardt algorithm
ZhaoZhao Zhang, Yue Liu, YingQin Zhu, and XiaoFei Zhao

Institute of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an, China

ABSTRACT
Aiming at the problem that the Levenberg-Marquardt (LM)
algorithm can not train online radial basis function (RBF) neural
network and the deficiency in the RBF network structure design
methods, this paper proposes an online self-adaptive algorithm
for constructing RBF neural network (OSA-RBFNN) based on LM
algorithm. Thus, the ideas of the sliding window method and
online structure optimization methods are adopted to solve the
proposed problems. On the one hand, the sliding window
method enables the RBF network to be trained online by the
LM algorithm making the RBF network more robust to the
changes in the learning parameters and faster convergence
compared with the other investigated algorithms. On the
other hand, online structure optimization can adjust the struc-
ture of the RBF network based on the information of training
errors and hidden nodes to track the non-linear time-varying
systems, which helps to maintain a compact network and satis-
factory generalization ability. Finally, verified by simulation ana-
lysis, it is demonstrated that OSA-RBFNN exhibits a compact RBF
network.

ARTICLE HISTORY
Received 20 July 2022
Revised 18 October 2022
Accepted 4 November 2022

Introduction

RBF neural network has been extensively applied to industrial control, pattern
classification, signal processing, modeling of non-linear systems and other
areas, as it has the ability of strong non-linear fitting, faster convergence,
strong robustness, and is not easy to lead to local minima (Gao 2022; La
Rosa Centeno et al. 2018; Zhang et al. 2020; Zhou, Oh, and Qiu 2022).
Structure constructing methods and parameters tuning algorithms are the
keys to construct RBF neural networks (Gu, Tok, and Yu 2018). Structural
constructing is the strategy used to determine the number of hidden nodes in
the RBF network; Parameter tuning is how to adjust three parameters in this
network (Kadakadiyavar, Ramrao, and Singh 2020).

In recent years, considerable advancement has been proposed in the struc-
tural construction of the RBF network. The first algorithm dynamically adapts
the weights of the participating kernels using the gradient descent method

CONTACT Yue Liu 571778255@qq.com Institute of Computer Science and Technology, Xi’an University of
Science and Technology, Xi’an 710054, China

APPLIED ARTIFICIAL INTELLIGENCE
2022, VOL. 36, NO. 1, e2146800 (3809 pages)
https://doi.org/10.1080/08839514.2022.2146800

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2146800&domain=pdf&date_stamp=2022-11-19

thereby alleviating the need for predetermined weights (Khan et al. 2017).
The second method realizes online modeling by combing the advantages of the
sliding window strategy and clustering algorithm (Jia, Li, and Qiao 2022). The
novel algorithm provides better performance such as faster convergence rate,
better local minima, and resilience against leading to poor local minima. It is
a multi-kernel radial basis function neural network in which every base kernel
has its weight (Atif et al. 2022).

Regarding architectural optimization for RBF neural networks, the most
classic online algorithms are resource-allocating network (RAN), minimal
resource allocating network (MRAN), and generalized growing and pruning
radial basis function (GGAP-RBF). The principles mentioned above of algo-
rithms both design the network online to meet the accuracy requirements,
maintain a compact structure, and improve its generalization performance
(Meng, Zhang, and Qiao 2021). Therefore, it is important to design an online
neural network. However, these algorithms have deficiencies in networks.

John Platt (Platt 1991) presented RAN to test each training sample con-
tinuously. When the new training sample meets the ”‘novelty’,” a new node is
allocated to the training sample. However, once the hidden nodes are added,
they will not be pruned in the algorithm. Therefore, redundant hidden nodes
will inevitably appear in this network for complex online learning tasks,
affecting the network’s generalization performance.

To address the mentioned problems, Lu Y W et al. (Lu, Sundararajan, and
Saratchandran 1997) proposed that MRAN is improved by RAN. On the one
hand, if the deviation of the current network for multiple consecutive training
samples is too large, add a hidden node; if several consecutive training samples
cannot activate a hidden node, prune the node (Jia, Li, and Qiao 2022). To
a certain extent, MRAN can obtain a compact network model. On the other
hand, it also has blindness with adding nodes, because the center of the kernel
function is determined randomly. Thereby it results in the poor robustness
and generalization performance of the algorithms (Arif, Ray Chaudhuri, and
Ray et al. 2009).

Based on the poor performance of the MRAN network. In (Li, Chen, and
Huang 2006), GGAP-RBF neural network links the required learning accuracy
to the significance of neurons in the learning algorithm to realize a compact
RBF network. But the neural network needs to initialize the network para-
meters based on all samples, thus it is difficult to realize an optimal online
algorithm for the RBF network.

The RAN, MRAN, and GGAP-RBF algorithms use the gradient descent
method for the parameters learning algorithm. The gradient descent method is
the first-order algorithm. The main problem of the first-order algorithm is
slow convergence, and it is easy to lead to the local minimum of the curved
error surface. In these situations, second-order algorithms are superior. The
Levenberg-Marquardt (LM) algorithm (Houcine Bergou, Diouane, and

e2146800-3794 Z. ZHANG ET AL.

Kungurtsev 2020) is a second-order algorithm, which is a mix of the Steepest
Gradient Method and Gauss–Newton method. When the gradient of the error
surface is small, the LM algorithm is similar to the Steepest Gradient Method.
When the gradient of the error surface is large, the LM algorithm is similar to
the Gauss–Newton method. LM can estimate the learning rate of each gradient
under the curved error surface according to the Hessian matrix. The LM
algorithm is efficient for training neural networks compared to the first-
order algorithm (Wilamowski and Yu 2010).

The error correction (ErrCor) algorithm (Hao et al. 2014) applies the LM
algorithm to train the RBF network, and after each iteration, it turns out that
a much better learning ability of the RBF network can be obtained when
adding a new RBF node at the location of the highest error peak or lowest
error valley. This algorithm has strong robustness and can design a compact
network (Xi et al. 2018). However, it is an offline design and difficult to apply
to non-linear time-varying systems.

Based on previous research, according to the above-mentioned problems,
we propose an online self-adaptive algorithm for the RBF network based on
the LM algorithm. The algorithm builds a sliding window and uses the LM
algorithm to train the RBF network. During the training process, it can add,
prune or merge hidden nodes according to the training error information and
the relevant information of each hidden node, which makes the RBF network
structure compact in the learning process, and then ensures the generalization
performance of the RBF network. Using the sliding window method can
achieve the online application of the LM algorithm and make the RBF network
more robust to changes in learning parameters and easier to converge. Finally,
the performance of OSA-RBFNN is verified by simulation experiments.

The remainder of this paper is organized as follows. Section 1 introduces
RBF network briefly. In Section 2, an online self-adaptive optimal algorithm
for the RBF network is proposed in detail. Section 3 evaluates OSA-RBFNN
through simulation analysis. Finally, the study is concluded in Section 4.

Materials and Methods

RBF Network

The RBF network comprises three feedforward network layers: the input layer,
the hidden layer, and the output layer. The weight connection from the input
layer to the hidden layer is fixed at 1. Without loss of generality, set the RBF
network structure is I-H-1, that is I input nodes, H hidden nodes, and one
output node. The structure is given in Figure 1.

Set xp ¼ ½xp;1; xp:2; . . . ; xp;I� is the pth I dimensional sample in the RBF
network, the output of the hth hidden node is as Equation (1):

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3795

ϕpðxpÞ ¼ exp �
k xp � ch k

2

σh

� �

(1)

Where ch and σh are the center vector of the hth RBF node and its width,
respectively, k � k denotes Euclidean distance.

The output of the network for the pth sample is as Equation (2):

Op ¼
XH

h¼1
whϕp xp

� �
þ w0 (2)

where wh denotes the weight connecting between the hth hidden node and the
output node,w0is bias.

LM Algorithm

The LM algorithm is a second-order algorithm successfully applied to the back
propagation (BP) network. In terms of the LM algorithm training RBF net-
work, the paper (Wilamowski and Yu 2010) improved the LM algorithm. On
this basis, the paper (Hao et al. 2014) proposed an error correction (ErrCor)
algorithm to construct the RBF network structure based on the peak of error
training. This algorithm belongs to the growth algorithm and can design
a compact RBF network structure.

When the LM algorithm trains the RBF network, the parameter update rule
is as Equation (3).

Δkþ1 ¼ Δk � Qk þ μkI
� �� 1gk (3)

Figure 1. Structure of RBF networks.

e2146800-3796 Z. ZHANG ET AL.

Where Δ denotes tuning parameter in RBF network (including centers c,
widths σ, and the output weights w); Q denotes Quasi-Hessian matrix; I is the
identity matrix; μis the learning coefficient; g is the gradient vector.

The training errorepis calculated as the desired outputyp and actual out-
putop, it is shown in Equation (4).

ep ¼ yp � op: (4)

The elementjp;nof the nth row of the Jacobian matrix can be calculated by
Equation (5).

jp;n ¼
@ep

@Δn
; (5)

Where n is three tuning parameters in this RBF network.
The gradient vector g is calculated through the sum of sub-vector ηpin

Equation (6).

g ¼
XP

p¼1
ηp (6)

and sub-vector ηp is calculated as Equation (7).

ηp ¼ jT
p ep (7)

Where jp is the row of Jacobian matrix and ep is calculated as Equation (4).
The calculation of quasi-Hessian matrix Q is transformed to the sum of sub-

matrices in Equation (8).

Q ¼
XP

p¼1
qp; qp ¼ jT

p jp (8)

For a given p training sample, and considering the tuning parameterwh; ch;i,
andσhunder the RBF network, the Jacobian row elements is calculated by
Equation (9).

jp ¼

@ep
@ω0

;
@ep
@ω1

. . .
@ep
@ωh

. . .
@ep
@ωH

;
@ep
@c1;1

. . .
@ep
@c1;i

. . .
@ep
@c1;I

. . .
@ep
@ch;1

. . .

@ep
@ch;i

. . .
@ep
@cH;1

. . .
@ep
@cH;i

. . .
@ep
@cH;I

;
@ep
@σ1

. . .
@ep
@σh

. . .
@ep
@σH

2

4

3

5: (9)

Integrating Equations (1), (2), and (4), with the differential chain rule, the
Jacobian row of the pth training sample in (6) can be rewritten as Equations
(10)~(12).

@ep

@ωh
¼ � φh Xp

� �
;
@ep

@ω0
¼ � 1; (10)

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3797

@ep

@ch;i
¼ �

2ωhφh Xp
� �

xp;i � ch;i
� �

σh
; (11)

@ep

@σh
¼ �

ωhφh Xp
� �

k Xp � chk
2

σ2
h

: (12)

Integrating Equations (10)~(12), all the elements of Jacobian row of the jth can
be calculated. For all input samples, all elements of the Jacobian matrix can be
calculated. Quasi-Jacobian matrix Q and gradient vector g are obtained by
Equations (6)~(8). To apply the update Equation (3) for parameter
adjustment.

Online Self-Adaptive Optimal Algorithm for RBF Network(OSA-RBFNN)

Although the LM algorithm is a effective algorithm for training neural net-
works at present, the LM algorithm can only be used in batch processing when
training the RBF network. Hence, the ErrCor algorithm is an offline algorithm
for designing the RBF network structure and cannot be performed online, it is
not easy to apply to non-linear time-varying systems. In addition, since the
RAN, MRAN, and GGAP-RBF online algorithms all use the latest single
sample to train the RBF network, it leads to a poor local optimum, and if it
has a sample noise impact on learning, it will result in the poor accuracy of
learning. For online modeling, the reasonable method is to use the latest
multiple samples to dynamically adjust the network parameters during the
learning process (Arif, Ray Chaudhuri, and Ray et al. 2009).

The mentioned problems can be worked out by the using sliding window
method in this paper (Pedro and Ruano 2009). The sliding window is a “FIFO”
(First In First Out) queue of a fixed length. The elements of the queue are the
online input sample by the entry window in chronological order. Sets online
input sample is xn; ynð Þ, thus the elements in the sliding window of the length
of L denotes xi; yið Þ; xiþ1; yiþ1ð Þ; . . . ; xiþL� 1; yiþl� 1ð Þ½ �:When a new sample
arrives, the sample in this window are updated by including the latest sample
and eliminating the oldest. All the samples in the sliding window are the RBF
network training sample.

As above, when using the sliding window method, and applying the LM
algorithm to training the RBF network, the target function of RBF network
learning is as Equation (13).

eL ¼
XL

i¼1
βi yi � oið Þ

2
: (13)

e2146800-3798 Z. ZHANG ET AL.

Where L is the length of the sliding window;yiandoidenotes desired outputs
and actual outputs of the ith sample in the sliding window;βiis a forgetting
factor, and it can be shown as Equation (14).

βi ¼
2i

L Lþ 1ð Þ
;
XL

i
βi ¼ 1: (14)

Based on Equations (13) and (14), the latest sample has a large amount of
information from online learning, the weighting coefficients of the latest
sample of the sliding window are more significant than under the old sample,
its weighting coefficients are small.

The online self-adaptive optimal algorithm for the RBF network in this
paper has three options: adding, pruning, and merging network hidden nodes.

Adding the hidden nodes. For the process of online training, the maximum
error of the samples in each sliding window is detected and recorded.
Therefore, one hidden node is added to the hidden layer and regarded with
its kernel function center as the training sample corresponding to the currently
recorded maximum training error when the RBF network is trained to
a certain step, and the root mean square error (RMSE) of the training samples
in the sliding window does not reach the target value. The RMSE of the
training sample in the sliding window is shown in Equation (15).

ermse ¼

ffi
PL

i¼1
βi yi � oið Þ

2

L
:

v
u
u
u
t

(15)

Pruning the hidden nodes. If such inactive hidden nodes can be detected and
removed as learning progresses, it will mean that the hidden node will lose the
ability of learning. The criterion for judging whether the hidden node is
activated is in Equation (16)(Lu, Sundararajan, and Saratchandran 1997).

ϕk
h xkð Þ ¼ wk

h exp �
k xk � chk

2

σh

� �

; rk
h ¼k

ϕk
h

ϕk
max

k : (16)

whereϕk
his the output of the hth hidden node at time k, wk

his the weight
connecting from hidden node h to output node at k time. rk

his the normalized
output of the hth hidden nodes at time k, ϕk

maxis the value of the largest
absolute value among the outputs of all hidden nodes at k time. For multiple
consecutive training samples, if rk

his less than a thresholdδ, it will be pruned.
Merging the hidden nodes. In the process of learning, if the distance of the

center and the width are close significantly between the two hidden nodes
under the RBF network, according to the characteristics of the local response
characteristics of the hidden nodes of the RBF network, the function of the two

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3799

nodes is almost identical. Thus, we will merge the two hidden nodes into one.
This operation will not only simplify the RBF network structure but make no
difference to the learning performance of the current network. The relevant
parameters can be set as Equation(17).

wi ¼ wi þ wj;

ci ¼ ci þ cj
� �

=2;
σi ¼ max σi; σj

� �
:

8
<

:
(17)

Using the sliding window method can achieve the online application of
the LM algorithm and make the RBF network more robust to changes in
learning parameters and faster convergence. The structure optimization
algorithm combines the advantages of RAN, MRAN, and GGAP-RBF, and
it also overcomes their shortcomings. One hidden node is added to the
hidden layer and regarded as its kernel function center as the training
sample corresponding to the currently recorded maximum training error.

Table 1. Algorithmic depiction of OSA-RBFNN.
Initialization
set the length of the sliding window L
there is one hidden node in the network
for k = 1:NMAX

move new samples xk; ykð Þ to the sliding windows, then remove the first sample
calculate ermse of the sample in the current sliding window using Equation (15) (step=1)
for step = 2:max_step

find maximum of abs error of ermse
if the fixed training steps is reached and ermse > eobj (eobj is the target value of the network training error)
create a new hidden node at the location of maximum error by setting weight the width of the new RBF node

to 1.
calculate Jacobian vector jp using Equations (9)~(12)
calculate sub quasi-Hessian matrix qp ¼ jT

p jp , and gradient vector ηp ¼ jT
p ep

if check the hidden nodes and the node cannot activate
prune the hidden node

end
if check redundant hidden nodes in the RBF network, and the Euclidean distance between the center of

two hidden nodes is less than the threshold.
merge the two hidden nodes using Equation (17)
end

end
calculate quasi-Hessian matrix Q using Equation (8);Using Equations (6) and (7) to calculate the gradient

vector g.
update RBF network parameters using Equation (3); calculate new output using Equation (16), and sign the

state of the node.
calculate RMSE(step)
while ermse of the sample in the current sliding window is not reduced

adjust the μk parameter using Equation (3)
endwhile (ermse is not reduced)
if RMSE(step)<desired error, then break

endfor(max_step)
if RMSE(k)<desired error, then break(new RBF node loop)

endfor(main loop)

e2146800-3800 Z. ZHANG ET AL.

It can not only reduce the training error but avoid adding hidden nodes
randomly.

Considering the aforementioned problems, an online self-adaptive opti-
mal algorithm for the RBF network can be obtained and it is shown in
Table 1.

Results and Discussion

Computational Complexity Analysis

In the subsection, we compare the computation complexity of the traditional
RBF neural network algorithm with OSA-RBFNN.

To build a compact RBF neural network structure, we adopt the sliding
window method based on the LM algorithm to optimize the structure by
adjusting parameters continuously. RAN, MRAN, and GGAP algorithms
all use the gradient descent method, while OSA-RNFNN uses the LM
algorithm for training optimization. Let m denote the number of itera-
tions required to reach the object training error, and s denote the training
step.

The gradient descent method has the characters of slow convergence
and a large number of iterations, the time complexity of one iteration can
be approximated asOðnÞ. Thus, the computational complexity of training
can be approximated asOðm � s � nÞ. While the LM algorithm has fast
convergence and a small number of iterations, and one iteration time
complexity is Oðn3Þ, the computational complexity can be approximated
asOðm � s � n3Þ. For the above-mentioned computational complexity, it is
shown that the gradient descent method is better than the LM algorithm.
However, for the RBF neural network structure, the LM algorithm can
calculate the learning rate of each gradient under the curved error surface
according to the Hessian matrix to obtain the optima compared to the
gradient descent method. It will reduce the number of iterations largely.
And OSA-RBFNN based on the LM algorithm uses the latest single
sample to adjust parameters dynamically, it can reduce the training step
and the training iterations to reach the object training error. Thus, the
computational complexity of the LM algorithm is superior to the gradient
descent method for OSA-RBFNN.

Non-Linear Function Approximation

We proposed OSA-RBFNN for constructing minimal RBF structure.
According to Equation (1), we build a non-linear function in Equation (18)
which consists of six exponential Gaussian functions (Yingwei, Sundararajan,
and Saratchandran 1997). The function is the summation of six Gaussian

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3801

exponential functions; thus, the RBF network should have six nodes with
Gaussian functions in its hidden layer. In Figure 2, “△” indicates the true
positions of hidden unit centers from non-linear function, and the circles
represent the estimated positions of centers obtained from the minimal RBF
network.

y xð Þ ¼ exp �
x1 � 0:3ð Þ

2
þ x2 � 0:2ð Þ

2

0:01

" #

þ exp �
x1 � 0:7ð Þ

2
þ x2 � 0:2ð Þ

2

0:01

" #

þ exp �
x1 � 0:1ð Þ

2
þ x2 � 0:5ð Þ

2

0:02

" #

þ exp �
x1 � 0:9ð Þ

2
þ x2 � 0:5ð Þ

2

0:01

" #

þ exp �
x1 � 0:3ð Þ

2
þ x2 � 0:8ð Þ

2

0:01

" #

þ exp �
x1 � 0:7ð Þ

2
þ x2 � 0:8ð Þ

2

0:01

" #

(18)

The aim is to construct a minimal RBF network using the method to approx-
imate the function with small error. For this approximation, 2000 training

Figure 2. The attribution of the true and estimated centers.

e2146800-3802 Z. ZHANG ET AL.

samples x1; x2ð Þ; yð Þwere generated randomly, x1; x2ð Þand y present input and
output, xi 2 0; 1ð Þ; i 2 1; 2f g:And set the length of sliding window L is equal
to 20.

Because of the randomness of the training results, we try running the
experiment 20 times independently. The algorithm generated six hidden
nodes, similar to the non-linear function, by training 16 times. In other
times, we got seven hidden nodes. From Table 2, the centers, widths, and
output weights for the non-linear function in the hidden nodes are quite close
to the true values. Thus, OSA-RBFNN can accurately approximate the non-
linear function with minimal network size.

Non-Linear Time-Varying System Identification

We choose a benchmark problem Mackey-Glass (MG) chaotic time series
(Harpham and Dawson 2006; Jiang et al. 2022) generated by the differential
delay Equation (19) to test the ability of OSA-RBFNN for non-linear time-
varying system identification.

dx
dt
¼

0:2xðt � τÞ
1þ x10 t � τð Þ

� 0:1x tð Þ: (19)

And we use the input vector xðtÞxðt � 6Þxðt � 12Þxðt � 18Þ½ � to predict the
output vectorxðt þ 50Þ. Equation (19) is a static chaotic time series under the
condition that τ is constant. We set τ equal to 17, 30, 50, and 100 separately to
test the ability of an online self-adaptive algorithm for the RBF network to
build time-varying systems. And the chaotic behavior of the system increases
with the delay coefficients. Figure 3 shows how the delay between x(t) and x(t
+ 50) becomes more chaotic as τ increases.

To build a time-varying system, mixing the static MG sequences with delay
coefficients of 17, 30, 50, and 100 were used, and the mixing method is shown
according to Equations (20) and (21).

f xtð Þ ¼ α tð Þf1x tð Þ þ 1 � α tð Þð Þf2 xtð Þ; (20)

αðtÞ ¼ expð� 5t=TÞ; t ¼ 1; 2; . . . ;T: (21)

Table 2. Performance comparison of true and estimated value on object function.
True center (0.3,0.2) (0.7,0.2) (0.1,0.5) (0.9,0.5) (0.3,0.8) (0.7,0.8)
Estimated center (0.3110,

0.2000)
(0.6798,
0.1993)

(0.0988,
0.5000)

(0.8799,
0.5103)

(0.3000,
0.7994)

(0.6981,
0.8022)

True width 0.1 0.1 0.144 0.144 0.1 0.1
Estimated width 0.0998 0.0999 0.1425 0.1496 0.0992 0.0995
True weight 1 1 1 1 1 1
Estimated weight 1.0299 1.0073 1.0200 0.9887 1.0021 1.0003

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3803

0 0.5 1 1.5
0

0.5

1

1.5

y(t)

x(
t+
50
)

0 0.5 1 1.5
0

0.5

1

1.5

x(t)

x(
t+
50
)

0 0.5 1 1.5
0

0.5

1

1.5

y(t)

x(
t+
50
)

0 0.5 1 1.5
0

0.5

1

1.5

x(t)

x(
t+
50
)

tau=30

tau=50 tau=100

tau=17

Figure 3. Chaotic behavior of x(t) and x(t + 50).

Figure 4. The performance of online learning.

e2146800-3804 Z. ZHANG ET AL.

By mixing four static MG sequences, i.e. τ = 17→30, τ = 30→50, τ = 50→ 100,
τ = 100→50, τ = 50→30, τ = 30→17. Each changing process has 500 data.
Thus, we obtain a total of 3000 samples, the first 2500 samples were selected
as training samples and the last 500 samples for testing. Set the length of
sliding window L is equal to 200.

In Figure 4, at the beginning of learning, the training error is large, but it is
suppressed quickly by adding hidden nodes. It shows that OSA-RBFNN models
the actual output well. Figure 5 shows the training RMSE is large at the beginning
of learning and it has a small fluctuation when constructing the network, but the
overall trend tends to converge. Figure 6 presents that when t is equal to 241, the

Figure 5. The performance of RMSE.

Figure 6. The change in hidden nodes.

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3805

hidden nodes reach 36, which completes the construction of the network by
adding nodes. In the whole process of learning, the maximum number of hidden
nodes reach 41, and the nodes reaches 39 at the end of the training.

In Figure 7, the maximum error is within 0.03, and the average error of 500
testing samples is 0.0072. For this experiment, we did 20 independent experi-
ments and set the length of the sliding window L equal to 100, 150, and 200,
respectively. The results show that the number of hidden nodes was between
39 and 45, and the average error of 500 testing samples was also 0.0072 ~
0.0136, which is a stable result.

To further verify the effectiveness of the proposed method, we compare
OSA-RBFNN with RAN and MRAN. Table 3 indicates that the training RMSE
and testing error of OSA-RBFNN on the MG series is lower than the other
algorithms.

The reasons are that we combine the advantages of RAN and MRAN.
RAN can modify the parameters of the node when adding a new one; thus, it

Figure 7. The testing error of 500 samples.

Table 3. The performance of comparison of different algorithms.
Algorithms Number of Hidden Nodes Training RMSE Testing Error

eTS 99 -a -a

RAN 51 0.0316 0.0427
MRAN 47 0.0274 0.0319
OSAMNN 35 0.0319 -a

OSA-RBFNN 39 0.0057 0.0072

Note: “a”Results not listed in the original paper.

e2146800-3806 Z. ZHANG ET AL.

will improve the learning speed, but the node cannot be pruned once it is
added to the RBF network. MRAN can prune inactive hidden nodes to
decrease the redundant hidden nodes of the RBF network. We also choose
the LM algorithm to estimate the learning rate of each gradient under the
curved error surface according to the Hessian matrix. Thus, the learning
ability of the RBF network will be improved compared to RAN and RAN.
Moreover, we employ a sliding window method to use the latest sample to
adjust parameters, it can enhance the accuracy of learning and make the
network more stable.

eTS (Rong, Sundararejan, Huang, and Saratchandran Rong et al. 2006)
OSAMNN (Qiao, Zhang, and Bo 2012)

Conclusion

Aiming at the deficiencies that the LM algorithm can not train online RBF
network, we propose OSA-RBFNN based on the LM algorithm. We combine
the sliding window method with the LM algorithm to build an online self-
adaptive network. We also adopt the operations of adding, pruning, and
merging hidden nodes to optimize the RBF network structure. Moreover,
the hidden nodes are directly added to the training sample with the maximum
training error, which can effectively suppress the training error of the current
network and avoid adding hidden nodes randomly. Pruning and merging
hidden nodes can reduce the impact on the RBF network performance and
simplify the network structure. Finally, we have simulation analyze on non-
linear function approximation and non-linear time-varying system identifica-
tion, the results demonstrate that the proposed OSA-RBFNN realizes online
modeling with a compact and stable structure. It has a generalization ability
with a minimal structure.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work is supported by the [Basic Research plan of Natural Science Foundation of Shaanxi
Coal Joint Fund] under Grant [No.2019JLZ-08]; [Basic Research Plan of Nature Science in
Shaanxi Province of China] under Grant [No.2020JM-522].

Code Availability

Sample code is available on Github (https://github.com/YLiu000222/OSARBFNN)

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3807

https://github.com/YLiu000222/OSARBFNN

References

Arif, J., N. Ray Chaudhuri, S. Ray, et al. 2009. Online Levenberg-Marquardt algorithm for
neural network based estimation and control of power systems. 2009 International Joint
Conference on Neural Networks. Atlanta, GA, USA, 199–206. IEEE.

Atif, S. M., S. Khan, I. Naseem, R. Togneri, and M. Bennamoun. 2022. Multi-kernel fusion for
RBF neural networks. Neural Processing Letters. doi:10.1007/s11063-022-10925-3.

Gao, X. 2022. A nonlinear prediction model for Chinese speech signal based on RBF neural
network. Multimedia Tools and Applications 81:5033–49. doi:10.1007/s11042-021-11612-6.

Gu, L., D. K. S. Tok, and D.L. Yu. 2018. Development of adaptive p-step RBF network model
with recursive orthogonal least squares training. Neural Compution and Applications
29 (5):1445–54. doi:10.1007/s00521-016-2669-x.

Hao, Y., P. D. Reiner, T. Xie, T. Bartczak, and B. M. Wilamowski. 2014. An incremental design
of radial basis function networks. IEEE Transactions on Neural Networks and Learning
Systems 25 (10):1793–803. doi:10.1109/TNNLS.2013.2295813.

Harpham, C., and C. W. Dawson. 2006. The effect of different basis functions on a radial basis
function network for time series prediction: A comparative study. Neurocomputing 69 (16–
18):2161–70. doi:10.1016/j.neucom.2005.07.010.

Houcine Bergou, E., Y. Diouane, and V. Kungurtsev. 2020. Convergence and complexity
analysis of a Levenberg–Marquardt algorithm for inverse problems. Journal of
Optimization Theory and Applications 185 (3):1–18. doi:10.1007/s10957-020-01666-1.

Jia, L., W. Li, and J. Qiao. 2022. An online adjusting RBF neural network for nonlinear system
modeling. Application Intelligence. Advanced online publication. doi: 10.1007/s10489-021-
03106-7.

Jiang, Q., L. Zhu, C. Shu, and V. Sekar. 2022. An efficient multilayer RBF neural network and its
application to regression problems. Neural Computing & Applications 34 (6):4133–50.
doi:10.1007/s00521-021-06373-0.

Kadakadiyavar, S., N. Ramrao, and M. K. Singh. 2020. Efficient mixture control chart pattern
recognition using adaptive RBF neural network. International Journal of Information
Technology 12 (4):1271–80. doi:10.1007/s41870-019-00381-z.

Khan, S., I. Naseem, R. Togneri, and M. Bennamoun. 2017. A novel adaptive kernel for the RBF
neural networks. Circuits Systems and Signal Processing 36 (4):1639–53. doi:10.1007/s00034-
016-0375-7.

La Rosa Centeno, L., F. C. C. De Castro, M. C. F. De Castro, C. Müller, and S. M. Ribeiro. 2018.
Cognitive radio signal classification based on subspace decomposition and RBF neural
networks. Wireless Networks 24 (3):821–31. doi:10.1007/s11276-016-1376-y.

Li, S., Q. Chen, and G.-B. Huang. 2006. Dynamic temperature modeling of continuous
annealing furnace using GGAP-RBF neural network. Neurocomputing 69 (4–6):523–36.
doi:10.1016/j.neucom.2005.01.008.

Lu, Y. W., N. Sundararajan, and P. Saratchandran. 1997. A sequential learning scheme for
function approximation using minimal radial basis function neural networks. Neural com-
putation 9 (2):461–78. doi:10.1162/neco.1997.9.2.461.

Meng, X., Y. Zhang, and J. Qiao. 2021. An adaptive task-oriented RBF network for key water
quality parameters prediction in wastewater treatment process. Neural Computing &
Applications 33 (17):11401–14. doi:10.1007/s00521-020-05659-z.

Pedro, M. F., and A. E. Ruano. 2009. Online sliding-window methods for process model
adaptation. IEEE Transactions Instrumentation and Measurement 58 (9):3012–20. doi:10.
1109/TIM.2009.2016818.

Platt, J. 1991. A resource-allocating network for function interpolation. Neural computation
3 (2):213–25. doi:10.1162/neco.1991.3.2.213.

e2146800-3808 Z. ZHANG ET AL.

https://doi.org/10.1007/s11063-022-10925-3
https://doi.org/10.1007/s11042-021-11612-6
https://doi.org/10.1007/s00521-016-2669-x
https://doi.org/10.1109/TNNLS.2013.2295813
https://doi.org/10.1016/j.neucom.2005.07.010
https://doi.org/10.1007/s10957-020-01666-1
https://doi.org/10.1007/s10489-021-03106-7
https://doi.org/10.1007/s10489-021-03106-7
https://doi.org/10.1007/s00521-021-06373-0
https://doi.org/10.1007/s41870-019-00381-z
https://doi.org/10.1007/s00034-016-0375-7
https://doi.org/10.1007/s00034-016-0375-7
https://doi.org/10.1007/s11276-016-1376-y
https://doi.org/10.1016/j.neucom.2005.01.008
https://doi.org/10.1162/neco.1997.9.2.461
https://doi.org/10.1007/s00521-020-05659-z
https://doi.org/10.1109/TIM.2009.2016818
https://doi.org/10.1109/TIM.2009.2016818
https://doi.org/10.1162/neco.1991.3.2.213

Qiao, J., Z. Zhang, and Y. Bo. 2012. An online self-adaptive modular neural network for
time-varying systems. Neurocomputing 125:7–16. doi:10.1016/j.neucom.2012.09.038.

Rong, H.-J., N. Sundararajan, G.-B. Huang, and P. Saratchandran. 2006. Sequential adaptive
fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy
Sets Systems 157 (9):1260–75. doi:10.1016/j.fss.2005.12.011.

Wilamowski, B. M., and H. Yu. 2010. Improved computation for Levenberg-Marquardt
training. IEEE Transactions on Neural Networks 21 (6):930–37. doi:10.1109/TNN.2010.
2045657.

Xi, M., P. Rozycki, J.-F. Qiao, and B. M. Wilamowski. 2018. Nonlinear system modeling using
RBF networks for industrial application. IEEE Transactions on Industrial Informatics
14 (3):931–40. doi:10.1109/TII.2017.2734686.

Yingwei, L., N. Sundararajan, and P. Saratchandran. 1997. Identification of time-varying
nonlinear systems using miniman radial basis function neural networks. IEEE Proceedings-
Control Theory Applications 144 (2):202–08. doi:10.1049/ip-cta:19970891.

Zhang, Y., D. Kim, Y. Zhao, and J. Lee. 2020. PD control of a manipulator with gravity and
inertia compensation using an RBF neural network. International Journal of Control,
Automation, and Systems 18 (12):3083–92. doi:10.1007/s12555-019-0482-x.

Zhou, K., S.K. Oh, and J. Qiu. 2022. Design of ensemble fuzzy-RBF neural networks based on
feature extraction and multi-feature fusion for GIS partial discharge recognition and
classification. Journal of Electrical Engineering & Technology 17:513–32. doi:10.1007/
s42835-021-00941-z.

APPLIED ARTIFICIAL INTELLIGENCE e2146800-3809

https://doi.org/10.1016/j.neucom.2012.09.038
https://doi.org/10.1016/j.fss.2005.12.011
https://doi.org/10.1109/TNN.2010.2045657
https://doi.org/10.1109/TNN.2010.2045657
https://doi.org/10.1109/TII.2017.2734686
https://doi.org/10.1049/ip-cta:19970891
https://doi.org/10.1007/s12555-019-0482-x
https://doi.org/10.1007/s42835-021-00941-z
https://doi.org/10.1007/s42835-021-00941-z

	Abstract
	Introduction
	Materials and Methods
	RBF Network
	LM Algorithm
	Online Self-Adaptive Optimal Algorithm for RBF Network(OSA-RBFNN)

	Results and Discussion
	Computational Complexity Analysis
	Non-Linear Function Approximation
	Non-Linear Time-Varying System Identification

	Conclusion
	Disclosure statement
	Funding
	Code Availability
	References

