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ABSTRACT 
 
In this paper, we study the Schur geometric convexity (concavity) of the ratio of difference 
of means. Also established some inter related mean inequalities related to the ratio of 
difference of means. 

 
 
Keywords:  Schur convexity; schur harmonic convexity; ratio of difference of means; 

inequality. 
 
1. INTRODUCTION 
 
The well-known means in literature such as arithmetic mean, geometric mean harmonic 
mean, Heron means and contra harmonic mean are presented by pappus of Alexandria 
[1,2]. In Pythagorean School on the basis of proportion these means are defined as follows: 
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       For �, � are positive real numbers, 
 

                                    ��a, b� = 
��

                                                                                      (1)  

  

                                    ���, �� = √��                                                                                    (2) 
 

                                    ���, �� = 

�

��                                                                                    (3)  

     And 

                                    ���, �� = 
����

��                                                                                   (4)     

     
 are respectively called arithmetic mean, geometric mean, harmonic mean and contra 
harmonic mean.       
 
   For positive real numbers � and � the Heron mean is defined as:      
 

                                  ����, �� = 
�√
���
�                                                                           (5) 

 
   Let � = �, � = 1  in equations (1)-(5). Then 
 

                                     ��t, 1� = ���

                                                                                        (6)  

  

                                    ���, 1� = √�                                                                                      (7) 
 

                                    ���, 1� = 
�
���                                                                                     (8)  

      

                                    ���, 1� = ����
���                                                                                     (9)  

And 

                                  ����, 1� = ��√���
�                                                                             (10) 

 
Various researchers have studied several homogeneous functions and obtained identities 
involving means and established remarkable mean inequalities [3 -8]. 
 
In [9], Jamal Rooin and Mehdi Hassni, introduced the homogeneous functions 
f(x) and g(x), where 
 

                ���� = 
����
�����    and    ��� = !" 
����

�����  for   � ∈ �−∞,∞�                                      (11) 

 
and                 � > � ≥ ' > ( > 0. 
 
Further, authors established some convexity results and refinements to Ky-Fan-type 
inequalities. Motivated by the attempt to introduce the ratio of difference of means and to 
establish some inequalities involving them. And we have studied the convexity(concavity) of 
the following ratio of difference of means see [10]. 
 

                                    *+,-.�a, b� = +�
,���,�
,��
-�
,���.�
,��                                                               (12)   
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                                    *,./-.�a, b� = ,�
,���./�
,��
-�
,���.�
,��                                                              (13) 

 

                                    *+./-.�a, b� = +�
,���./�
,��
-�
,���.�
,��                                                              (14)  

     And 

                                    *+,./-�a, b� = +�
,���,�
,��
./�
,���-�
,��                                                            (15)         

 
In this paper, we study the Schur geometric convexity of ratio of difference of means *+,-.�a, b�, *,./-.�a, b�, *+./-.�a, b�, *+,./-�a, b�. and some applications of these ratio of 

difference of means. 
               

2.  PRELIMINARY RESULTS 
 
In 1923, the Schur Convex function was introduced by I Schur, and proved many important 
applications to analytic inequalities. In 2003, X. M. Zhang propose the concept of Schur-
geometrically convex function which is an extension of Schur-convexity function. In recent 
years, the Schur convexity, Schur geometrically convexity and Schur harmonic convexity 
have attracted the attention of a considerable number of mathematicians ([11],- [21]).  For 
convenience of readers, we recall some definitions as follows: 
 
Definition 1. [3,7]  Let  � = ���, �
, … , �1� and 2 = �2�, 2
 , … , 21�   ∈  41. 
 

1. Let � is said to be majorized by 2 (in symbol � ≺ 2) ∑ �7 ≤ ∑ 2797:�97:�   for ; =
1,2,3, … , " and ∑ �7 = ∑ 2797:�97:�   where �[�] ≥, … , ≥ �[1] and 2[�] ≥, … , ≥ 2[1] are 

rearrangement of � �"( 2 in descending order. 
2. Ω ⊆ 41.  The function B:Ω → 4 is said to be schur convex function on Ω if � ≺ 2  on 

Ω implies B��� ≤ B�2�. B is said to be a Schur concave function on Ω  if and only if −B is Schur convex. 
 
Definition 2. [22] Let  � = ���, �
, … , �1� and 2 = �2�, 2
, … , 21�   ∈  4�1.  Ω ⊆ 41 is called 

geometrically convex set if ���∝2�F , … , �1G21F� ∈ 41 for all � �"( 2 ∈ Ω where H, I ∈ [0,1] with H + I = 1. 
 
Let  Ω ⊆ 4�1 .  The function B:Ω → 4� is said to be schur geometrically convex function on Ω 
if �!"��, … , !"�1� ≺ �!"2�, … , !"21�  on Ω implies B��� ≤ B�2�. Let B is said to be a Schur 
geometrically concave function on Ω  if and only if −B is Schur geometrically convex. 
 
Definition 3. ([3], [7]) The set Ω ⊆ 41 is called symmetric set if  � ∈ Ω   implies K� ∈ Ω for 
every " × "  permutation matrix K.   
       
The function B:Ω → 4 is said to be symmetric if every permutation matrix  K,   
 B�K�� = B��� for all � ∈ Ω.   
 
Lemma 1. ([3], [7]) Let Ω ⊆ 41 . B:Ω → 4 is symmetric and convex function. Then B is Schur 
convex on Ω.   
 
Remark 1. The ratios of difference means given (12)-(15) are symmetric. 
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Lemma 2. [11] For � > � ≥ ' > ( > 0, the function ���� = 
����
�����  where � ∈ �−∞,∞� is           

                        
(i) Convex, if �( − �' > 0 
(ii) Concave if �( − �' < 0 
(iii) Equality holds if �( − �' = 0. 

 
 Lemma 3. [22]    Let  Ω ⊆ 41 be symmetric with non empty interior geometrically convex set 

and let B:Ω → 4� be continuous on Ω  and differentiable on Ω
N. If  B is symmetric on Ω and      

      

                      O = �!"�� − !"�
� P�� QR
QST − �
 QR

QS�U ≥ 0�≤ 0�.                                     (16) 

 

Holds for any on  � = ���, �
, … , �1� ∈ ΩN
 then B is a Schur geometrically convex (Schur 

geometrically concave) function. 
 

Lemma 4.  [17] Let � ≤ �, V��� = �� + �1 − ���, W��� = �� + �1 − ���, 
�

 ≤ �
 ≤ �� ≤ 1 or 

0 ≤ �� ≤ �
 ≤ �

. Then 

 

                   
�
���


 ≺ �V��
 �, W��
 �� ≺ �V����, W�����.                                                 (17) 

 
Theorem 1.  For �, � > 0, then the ratio of difference of means*,./-. is schur geometrically 

concave.  
 
Proof. Recall equation (13)  
 

*,./-.�a, b� = ,�
,���./�
,��
-�
,���.�
,��  . 

 
From Lemma 2, if  �� − ��� < 0 then *,./-. is concave. 

Consider, 
 

���, �� = �� − ��� = 
��

  

�


�� − 
�√
���
�  √�� 

 

���, �� = 2�� − �� + ��√��
3  

 
 By finding the partial derivatives of ���, �� and with simple manipulation gives 
                              

� X�
X� = 1

3 Y2�� − ��
 + 3�
�
2√�� Z 

And 
 

� X�
X� = 1

3 Y2�� − �
� + 3��

2√�� Z 

 
From Lemma 3, 
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�!"� − !"�� [� X�
X� − � X�

X�\ =  �!"� − !"��
3 �� − ��√�� ≤ 0 

 
Holds for  � ≥ �. 
 
 This completes the proof of theorem 1.  
   
Remark1. For � = �, � = 1, in the equation (16) gives 
 

O = log �
3 [��
 − ��
\ = ���� 

 

� ʹ��� = 1
6 �log � + 2� [��
 − ��
\ 

 

�ˈˈ��� = − 1
6 ���
 [1

2 log�1 + 3�
� + 6�
\ 

 
Theorem 2.  For �, � > 0, the ratio of difference of means*+./-. is schur geometrically 

concave.  
 
Proof. Recall equation (12)  
 

*+./-.�a, b� = +�
,���./�
,��
-�
,���.�
,��  . 

 
    From Lemma 2, if  �� − �� < 0 then *,./-. is concave. 

Consider, 
 

���, �� = �� − ��� = 
����

��  

�


�� − 
�√
���
�  √�� 

 
                           
 By finding the partial derivatives of ���, �� and with simple manipulation gives 
                              

� X�
X� − � X�

X� = �� − �� Y− 4��
�� + ��� ��
 + �
� + 4��

� + � − √��
3 Z 

 
From Lemma 3, 
 

�!"� − !"�� [� X�
X� − � X�

X�\ =  −�!"� − !"���� − �� b2�
� �� − �� + �

3c ≤ 0 

 
Holds for  � ≥ �. 
 
This completes the proof of theorem 2.  
 
Theorem 3.  For �, � > 0, then the ratio of difference of means*+,-. is schur geometrically 
concave.  
 
Proof. Recall equation (12)  
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*+,-.�a, b� = +�
,���,�
,��
-�
,���.�
,�� . 

 
From Lemma 2, if  �� − �� < 0 then *,./-. is concave. 

Consider, 
 

���, �� = �� − �� = 
����

��  

�


�� − 
��

  √�� 

 
 By finding the partial derivatives of ���, �� and with simple manipulation gives 
                              

� X�
X� − � X�

X� = �� − �� Y− 4��
�� + ��� ��
 + �
� + 4��

� + � − √��
2 Z 

 
From Lemma 3, 
 

�!"� − !"�� [� X�
X� − � X�

X�\ =  −�!"� − !"���� − �� b2�
� �� − �� + �

2c ≤ 0 

 
Holds for  � ≥ �. 
 
This completes the proof of theorem 3.  
 

3. APPLICATIONS TO MEAN INEQUALITIES  
 
This section concern with some inters related mean inequalities of Ratio of difference of 
means. 
 
Theorem 5.  
 

Let 0 ≤ � ≤ �, if  �

 ≤ � ≤ 1 or 0 ≤ � ≤ �


. Then 

 

                  *,./-.d√��, √��e ≥ *,./-.������� , ������� ≥ *,./-.��, ��                     (18) 

 
Proof. From Lemma 4,   
 

Pln √�� , ln g��,U ≺ �ln�������� , ln��������� ≺ �ln � , ln �� 

 
    And by Theorem 1 the ratio of difference of means 
 

*,./-.�a, b� = ,�
,���./�
,��
-�
,���.�
,�� = 


��

  

�


�� − 
�√
���
�  √�� 

 

= 2�� − �� + ��√��
3  

 
Is Schur geometrically concave in4�
   so we have 
 

*,./-.d√��, √��e ≥ *,./-.������� , ������� ≥ *,./-.��, ��. 



 
 
 
 

Lokesha et al.; JSRR, Article no. JSRR.2014.9.008 
 
 

1217 
 

 This completes the proof of theorem 5.  
 
Theorem 6.   
 

Let 0 ≤ � ≤ �, if  �

 ≤ � ≤ 1 or 0 ≤ � ≤ �


. Then 

 

                  *+.�-./d√��, √��e ≥ *+.�-./������� , ������� ≥ *+.�-./��, ��                     (19) 

 
Proof. From Lemma 4,   
 

Pln √�� , ln g��,U ≺ �ln�������� , ln��������� ≺ �ln � , ln �� 

 
    And by Theorem 1 the ratio of difference of means 
 

*+.�-./�a, b� = +�
,���./�
,��
-�
,���.�
,�� = 


����

��  

�


�� − 
�√
���
�  √�� 

 
Is Schur geometrically concave in4�
   so we have 
 

*+.�-./d√��, √��e ≥ *+.�-./������� , ������� ≥ *+.�-./��, �� 

  
This completes the proof of theorem 6.  
 
Theorem 7.   
 

Let 0 ≤ � ≤ �, if  �

 ≤ � ≤ 1 or 0 ≤ � ≤ �


. Then 

 

                  *+,-.d√��, √��e ≥ *+,-.������� , ������� ≥ *+,-.��, ��                     (20) 

 
Proof. From Lemma 4,   
 

Pln √�� , ln g��,U ≺ �ln�������� , ln��������� ≺ �ln � , ln �� 

 
    And by Theorem 1 the ratio of difference of means 
 

*+,-.�a, b� = +�
,���,�
,��
-�
,���.�
,�� = 


����

��  

�


�� − 
��

  √�� 

 
Is Schur geometrically concave in 4�
   so we have 
 

*+,-.d√��, √��e ≥ *+,-.������� , ������� ≥ *+,-.��, �� 

 
 This completes the proof of theorem 7.  
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