
____________________________________________________________________________________________

*Corresponding author: Email: neelakan@fau.edu;

British Journal of Economics, Management & Trade
4(2): 228-263, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

Technoeconomic Projections with Artificial
Neural Networks using an Ensemble of

Sparsely-Sampled Bootstrapped Data

Mohammad Dabbas1, Perambur S. Neelakanta2*

and Dolores De Groff3

1Department of Engineering, Broward College, Coconut Creek, Florida 33066, USA.
2Department of Computer and Electrical Engineering and Computer Science College of

Engineering and Computer Science Florida Atlantic University Boca Raton, Florida 33431,
USA.

3Civil, Environmental and Geomatics Engineering College of Engineering and Computer
Science Florida Atlantic University Boca Raton, Florida 33431, USA.

Authors’ contributions

This work was carried out in collaboration between all authors. Author PSN formulated the
problem and wrote the first draft of the manuscript. Author MD developed the analytical

methods and performed the computations. Author DDG managed the neural network
analyses. All authors read and approved the final manuscript.

Received 29th March 2013
Accepted 25th June 2013

Published 8th November 2013

ABSTRACT

Aims: The present study refers to developing an artificial neural network (ANN) that can
be designed exclusively for ex ante forecasting in technoeconomic contexts using an
ensemble set of sparse and insufficient sampled-data availed ex post.
Study Design: In general, the samples in a data set of technoeconomic structures would
largely be limited in number due to sparse-sampling; also, availability of number of such
sets is mostly inadequate for robust training of an ANN so as to obtain realistic inferences
subsequently in the prediction phase. Hence, a sparsity-recovery strategy is advocated
via a cardinality enhancement procedure (through Nyquist sampling) performed on the
sparse data set in order to augment the number of samples in its sampled-data space.
Further, the concept of statistical bootstrapping technique of resampling is invoked and
applied on the cardinality-improved subset so as to obtain an enhanced number of data
sets. This ensemble of data set is then adopted to facilitate robust training of the test
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ANN.
Place and Duration of Study: The studies were conducted (2012-2013) at: Department
of Computer and Electrical Engineering and Computer Science, College of Engineering &
Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, USA.
Methodology: The study governs technoeconomic ex ante projections pertinent to a
wind-power generation business complex elucidated via ANN-based forecasting. Relevant
test ANN is designed to accommodate training with an ensemble of sampled set available
ex post but, in limited numbers. The associated scarcity is recovered by artificially
enhancing the data space to an adequate extent via Nyquist sampling and bootstrapping
techniques. Further, the test ANN designed corresponds to a multilayer perceptron (MLP)
supporting backpropagation of the perceived error at the output with respect to a
supervisory value. It accommodates the bootstrapped data space at its input relevant to
technoeconomic details on a practical wind-power system performance reported in the
literature. The training and prediction exercises on the test ANN corresponds to optimally
elucidating output predictions in the context of the technoeconomics framework of the
power generation considered.
Results: Using the test ANN trained with bootstrap-enhanced, scarcity-recovered sparse
data on wind-power generation statistics and associated plant economics, reliable
inference (in the prediction phase) is achieved on the system performance. That is, the
ANN output obtained depicts forecast projections on the productivity of electric power
generation in the ex ante regime. Simulation studies thereof and results obtained
demonstrate the efficacy of the method proposed, bootstrapping algorithm developed and
the use of MLP in the technoeconomic contexts.

Keywords: Technoeconomic forecasting; artificial neural network; sampled-data;
bootstrapping; scarcity recovery; wind-turbine power generation.

1. INTRODUCTION

In economics, the observed (ex post) outcomes invariably exhibit rise and fall in their values
due to various exogenous and endogenous causal factors. To assess the corresponding
trend in economy across a projected ex ante domain, an analysis can be performed to
identify the components that go through changes in the observed ex post values and how
such changes lead to discernable patterns along the ex ante frame. In a general sense,
relevant forecasting implies a strategy of prediction on a “statement concerning unknown, in
particular future, events”; and specific to economics-related contexts forecasting refers to the
“best estimate” of futuristic projections of an associated entity with reference to its growth or
decline as a function of time [1,2]. That is, forecasting in economics implies predictions on
futuristic details on growth or decay of a dependent variable as a function of time. Further, in
lieu of seeking a projection in the temporal framework, forecasting may also be done as
regard to any outcome as a function of the associated causative inputs. That is, forecasting
entails in general, the task of quantitatively estimating the details about the likelihood of
future events (or unknown outcomes/effects) based on past and current information on the
observed events (or known causal factors).

In practice, the temporal forecast on an economics variable is done using a set of observed
ex post data versus time via regression analysis and a trend curve of the outcome is
determined as a function of time. This trend-line is then projected to forecast an estimate of
possible values of the dependent variable at a specified futuristic value of time. That is,
forecast estimate is obtained using extrapolation of the trend values beyond the range over



British Journal of Economics, Management & Trade, 4(2): 228-263, 2014

230

which the regression is performed. However, such extrapolations based on classical
strategies of simple curve-fitting may not lead to realistic forecasting because relevant efforts
may often ignore the uncertainty of underlying realism pertinent to various factors that
cohesively enable each data point (dependent variable) to acquire that value at a given
instant of time.  As a consequence, the conjectural or stochastical considerations inherent in
the evolution of the entity under growth (or decline) are not per se carried forward into the
forecast regime while envisaging a simple mathematical regression analysis. Consequently,
the forecasts made may end up as unrealistic ‘hockey-stick’ projections [3]. Nevertheless,
such pursuits are not uncommon in forecasting an economics outcome but often leading to
over- and/or under-estimations. Therefore, methods are sought in practice to conceive
forecasting methods in economics (as well as in other areas) that are more reliable.

In particular, considering technology-specific economics, robust forecasting is essential for
near-futuristic reliable pursuits of practical, strategic engineering operations and exercises
on managerial decisions using the tactical technoeconomic details in hand. Here, the term
“technoeconomics” offers explicitly insight into the synergism of technological considerations
in the perspectives of macro-, meso- and microscopic economics theory [1]. Relevant
studies involve multi-disciplinary considerations, underpinned by a portfolio of specialized
quantitative research tools like econometrics, mathematical programming, data-mining,
statistical analysis, cost-benefit analysis, forecasting methods, etc. For a techno-economist,
relevant econometric strategies denote the part of engineering economics applied to a
specific technology being addressed; and a judicious blend of principles of economics and
econometric pursuits is necessary in real-world technoeconomic efforts toward robust
forecasting and reliable decision-making strategies for imminent applications.

The first level of relevant approach toward technoeconomic forecasting includes developing
an evolutionary model on the associated independent versus dependent variables and then
the model is analyzed via a chosen econometric approach. Such evolutionary models when
ascribed to business structures of technoeconomic enterprises (like electric power utility or
telecommunication service industry), they portray the growth and futuristic welfare of the
industry in question. Further, relevant forecasting vis-à-vis growth dynamics conforms to
robustly predicting the performance of the underlying infrastructure technology as well as the
prevailing (competitive) market profile pertinent to the products supplied and service options
rendered to the consumers. As such, in the realm of technoeconomics, the growth (and
hence the forecasting) considerations of the underlying complex business structure include
both market versus time and technology versus performance projected in the ex ante regime
consistent with the associated causal factors. The temporal market growth indicates the
revenue prospects and the projected technology-specific performance details are needed for
prudent maintenance and operation schedules in the near- and far-sighted future. Further, in
all such technical and managerial processes, decision-making is imperative and any
decision being made thereof has an element of looking forward into a state of ‘yet-to-be-
explored’ scenario pertinent to market status and engineering concerns. In both cases, the
heuristics of required decisions needs logistics of forecasting reliable for use.

The present study is concerned with forecasting on the technology-related performance
details versus causal factors. That is, in the context of technology-centric business, an
exclusive scheme of forecasting efforts is needed on the system performance in
implementing an adaption framework that robustly sustains the engineering operations on
tactical and strategic basis. For example, in order to implement reliable maintenance and
enhanced production schedules, forecast-benchmarking models [4] can be adopted in the
technoeconomic framework of an engineering business (such as electric power generation
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and distribution service industry). Such models concern with performance variables versus
causative factors involved. Hence, the forecasting strategies pursued rely on a set of sample
observations on a dependent (outcome) variable versus corresponding set of independent
causal entities. Such observations recorded and made available in the database are
presumably known with certainty. That is, in the relevant ex post domain, the outcomes
(dependent variable) versus the independent causal variable are mostly deterministic and
can be checked against the existing data. Corresponding forecast exercises predict the
values of the dependent variables beyond the ex post domain falling in the ex ante regime.

The efficacy of forecasting in technoeconomic exercises can be estimated in terms of the
reliability of the outcome projected by the (forecasting) method pursued; and in reality, such
methods are far from being simple since the business in hand itself could be a complex
system. Traditionally as stated earlier, the regression coefficients of the trend curves of the
dependent variables are deduced ex post and interpreted as a function of independent
causal variables in the ex ante domain. However, such pursuits towards forecasting may
suffer from errors, especially if the overall statistical data used is small in size rendering the
included variables being insufficient to portray adequately the entropy involved. Further, the
accuracy of long-term forecast is largely influenced by paradigm shifts in managerial visions
and the forecasts become susceptible to errors in truly tracking the associated unpredictable
states. That is, the technoeconomic data profile in general, may have a complex structure
with mostly nondeterministic attributes that affect robust forecasting, (if the data profile
exhibits intense non-stationarity or when it falls into chaotic states). Therefore, the progress
(growth/decay) of the dependent variable decided via forecasting becomes limited by the
restricted (short-term) details available on the track of the ex post chain; and the ex post
data inherently involve chances or probability considerations that directly lead to a need for
describing and dealing with the uncertainty associated with the values of the data set being
processed and used while forecasting.

Characterizing and dealing with such uncertainty in forecast modeling is not, simple. But,
since uncertainty is present implicitly in all decision-theoretic reasoning, at least an ‘expected
value that includes the uncertainty’ associated with the data set should be a part of any
forecasting exercise [5]. In all, considering various constraining variables on forecasting
being partially deterministic and mostly stochastic, the technoeconomic forecasts cannot per
se be made just by using any simple analytical methods based on stochastic simulations.

In such cases forecast projections can however, be attempted via a ‘black-box approach’
using artificial neural networks (ANN) trained with ex post details containing the diverse and
uncertain variables of the technoeconomic infrastructure. Hence, rational intuitions on
forecast projections can be derived in the ex ante regime as a prediction phase effort using
the trained ANN in question. Yet, such ex ante forecasts could still be susceptible to errors in
truly or exactly tracking the unpredictable states of the ex post regime into the regime of
forecast. As such, any forecast done (either via ANN or otherwise) could be valid within a
progressive error-bar set between an upper- and lower-bound [3].

In the present study, the ANN-based approach pursued is more appropriate in
technoeconomic contexts, since the ANN can be trained to assimilate the ex post vagaries in
economics and performance shifts in engineering variables. The trained ANN then has a
pattern of input-output relations mapped in it reflecting the stochastics of the ex post
contexts. When a new data set is addressed at its input, it can classify it robustly vis-à-vis
the trained pattern stored in it. In short, by training an ANN with an ensemble of data known
a priori and using the trained network, an output can be sought in a prediction phase when
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subjected to an input of unknown data set. Relevant (converged) output observed is then
analyzed to infer forecast details on a posteriori basis pertinent to the data space [6-19].

The underlying efforts conform to a best-effort strategy so that the outcomes projected and
forecast made are rendered fairly robust and reliable consistent with observed details ex
ante. Such assurance is however feasible, only if the ex post data adopted and applied on
the models or tools are available to an adequate extent so that the stochastical features of
the epochs of the past are projected effectively into the ex ante domain and tracked reliably.
However, it is not uncommon in practice that, mostly available prior data for use in the
aforesaid forecasting efforts on business performance evaluations are limited in number and
are sparsely indicated with details incompletely described. Such insufficient and scarce set
of information would however, hamper making realistic and robust forecast inferences say,
for example using the ANN strategy or otherwise.

Therefore, deducing forecasts even with inadequately captured ex post data is sought and
emphasized in the present study. A relevant suite is proposed thereof to apply models and
tools that conform to an ANN-based approach. Hence, by duly considering the inadequacy
or scarcity of available (sampled) data, the cardinality of data space is first (artificially)
enhanced via Nyquist sampling and Whittaker-Kotelnik-Shannon (WKS) heuristics of
interpolation theory; and, statistical resampling via bootstrapping is then exercised on the
cardinality-improved data set to obtain its multiple pseudo replicates. The ensemble of such
surrogate sets is used for training the test ANN multiple times with scarcity-recovered details
(availed through cardinality-improvement and post-bootstrapping exercises). Thus the ANN
is rendered thereof to yield a prediction performance on the output to a reliable extent.

Thus, the scope of the present study is to address the notions of technoeconomic
forecasting using the proposed method using ANN. Relevantly, the consequences of
applying inadequate ensemble of sample data as the ANN input (during training phase) is
considered; and, the need to enhance the sampled data space, that is, exercising a scarcity
recovery procedure so as to improve the ANN performance toward robust output predictions
is indicated. Hence, a cardinality-enhancement scheme in a sampled subset (via Nyquist
sampling principle and WKS interpolation theoretics) as well as statistical resampling to
obtain multiple surrogates of the cardinality-enhanced subset  (using bootstrapping
algorithm) are developed vis-à-vis scarcity removal in the sampled-data space availed ex
post pertinent to typical technoeconomic contexts. The test ANN trained with sparsity
recovered data is then used for subsequent prediction exercise to obtain meaningful
forecasts in the ex ante regime. The test ANN designed is based on a multilayer perceptron
(MLP) architecture using backpropagation (BP) of the error schedule [6].

The (limited) sampled-data set considered here refers to a practical technoeconomic context
of wind-turbine based power generation complex [20-22]; however, without any loss of
generality, the methodology outlined can assess the technoeconomic performance of any
similar business structures. Performance prediction here implies elucidating optimally the
underlying futuristic predictions (forecast projections) on the anticipated productivity across
the ex ante regime. Simulation studies presented here are illustrative of practical
implementation of the projected objective and hence, the studies performed are presented in
sections as listed below:

(i) In Section 2, the technoeconomic aspects of robustly assessing the futuristic
prospects of the underlying business are outlined and the need for a reliable
forecasting technique is indicated
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(ii) Suggested in Section 3 is a method toward such forecasting efforts via an ANN; and
the required architectural aspect of such an ANN is studied vis-à-vis the pros and
cons of applying inadequate ensemble of data exercised as ANN input during the
training phase. Corresponding reliability issues on the outcome in the prediction
phase of the ANN operation are also analyzed

(iii) The question of statistically enhancing the (inadequate) sampled-data space using
(a) the technique of cardinality enhancement in a sampled data space and (b)
obtaining multiple pseudoreplicates of the cardinality improved subset via
bootstrapping are described in Section 4; and relevant computational scheme on
scarcity removal is outlined using a pseudocode

(iv) An exemplary technoeconomic framework is identified in Section 5 where in a
limited extent of sampled data set is gathered pertinent to a practical context of
wind-power generation complex [20]. Relevant sampled-data acquired is concerned
with the information gathered from an ensemble of power generation versus wind-
speed/direction details over a period of time-frame. This data set is designated as
the ex post regime pertinent to a certain wind-speed and direction conditions

(v) Designing an appropriate, bootstrapped-data based test ANN (abbreviated as BSD-
ANN) for forecast purposes [6-19] is described in Section 6

(vi) The training schedule and prediction performance of the BSD-ANN are addressed in
Section 7. That is, the performance of the trained ANN in yielding output that
conforms to ex ante predictions (and forecasts) on the technoeconomics of power
generation versus wind-speed/direction parameters is evaluated in the prediction
phase. Relevant simulation experiments are described and the results are presented
with appropriate discussions

(vii) Lastly, in Section 8, as a closure the efforts addressed in this study are summarized.

2. TECHNOECONOMIC BUSINESS AMBIENT AND RELIABLE FORECASTING

As indicated before, forecasting refers to predicting a statement concerning an unknown,
futuristic disposition of a variable or event. In technoeconomic contexts it may refer to the
“best estimate” of futuristic projections of an entity with reference to its growth or decline as a
function of time [2,3]. Alternatively, technoeconomic forecasting may also depict
performance projections or forecast values of engineering details versus a new set of
causative variables. The dogmatic aspect of forecasting in depicting the unknowns in future
events on the basis of known history of the past learned requires, (i) a comprehensive data
set concerning the past (that is, the ex post details); (ii) ability of the forecasting tool to
“learn” the features of the ex post epochs and (iii) the forecast engine judiciously track these
features reliably at least within a pair of upper- and lower-bounds [3].

Making of such a forecast inference engine is the motivated inquest of this study, which
proposes the ANN pursuit as a compatible strategy as described below. Specifically, the
ANN method described here allows inadequate sampled-data space of the past in the
pursuit of futuristic forecast details; and, as mentioned before, the data suite considered is
relevant to a technoeconomic base and Nyquist sampling and WKS heuristics are prescribed
for scarcity removal locally in a given sampled data subset augmenting the extent of
inadequate data samples therein; and, statistical resampling via bootstrapping is performed
to obtain an ensemble of surrogates of cardinality-enhanced sample set for use to train the
ANN.
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3. ANN-BASED PURSUITS IN FORECASTING EFFORTS

Artificial neural networks refer to a class of models inspired by and “made in the image of
biological nervous system” [6]. The architecture of an ANN in general is made of a set of
interconnected computing elements called neurons (units). The network can be designed
with an input layer having a prescribed number of input units and an output layer with a
single output unit. (However in general terms, the output layer of an ANN can have more
than one output-target value. It is not mandatory to have only one output unit and the
number of outputs is decided by the problem-specific requirement). In between, a set of
hidden layers can be included with a designated number of neurons. The interconnections
are synaptic links that connect to the inputs, output, or hidden neurons as illustrated in Fig.
1. A linear combiner is used to sum the output of the hidden layer so as to produce a single
value (zi) corresponding to the inputs addressed. That is, zi implicitly denotes the weighted
sum of all the inputs. It represents an activation signal and passed through a (sigmoidal)
activation to produce a squashed output value (Oi), which can be compared against a
teacher value (Ti) to yield an error (i).

In general, there are several versions of ANN (such as Time-lagged Recurrent Networks,
Generalized Feed forward Networks etc.) in vogue [23-26] with different topological features
and schedules of operation. There are relative merits and demerits in their applications
viewed in terms of the associated architectural complexity, convergence schedule,
robustness of prediction performance, real-time usage etc. However, since the present study
is exclusively devoted more on the application of ANN in forecasting strategies with a limited
(scarce) data set available a priori, only a simple version that adequately does the intended
application-specific effort is considered and adopted. It corresponds to a particular type of
ANN known as the multilayer perceptron (MLP) shown in Fig.1. The MLP has a simple feed-
forward architecture where in the information is rendered to propagate one way from input to
output. Further, between input and output layers certain intermediate (hidden) layers are
included. The resulting feed-forward, multilayer topology uses the backpropagation (BP)
algorithm in successive iterations of input training set in order to minimize the output error
with respect to a supervisory (teacher) value [6,14-18]. Notwithstanding the use of MLP as
exemplar architecture in technoeconomic forecasting (with sparsity of data) as attempted
here, the conceived approach can be applied to any other compatible ANN topology without
any loss of generality.

Fig. 1. The test ANN with MLP architecture
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The MLP has the ability to “learn” the complex relationships between input and output
patterns. The inputs to the networks correspond to certain data being fed forward; and, this
feed-forward exercise enables the network to get “trained” or made to learn (or gain
knowledge) on the data passed through in repeated ensembles, each having a stochastical
dispersion with respect to the objective functional value. The learning process also involves
a supervisory effort. That is, for a given input addressed, the squashed output obtained is
compared against a teacher value (denoting the desired convergence or objective function)
and the resulting error is back propagated iteratively so that, the network converges to yield
almost a zero-error implying that its connecting synapses are duly weighted to hold the
trained data pattern as a memory set. The training of the ANN is repeated multiple times with
an ensemble of input data-sets, so that the network converges robustly. Subsequent to
training, suppose a new input set (each having distinct stochastical features as mentioned
earlier) is addressed. Then the network converges to the input received and concurrently the
output error is seen minimized. That is, the network output designates the closeness of the
new input set to the trained pattern.

The test MLP (Fig. 1) adopted in the present study has a simple architecture with only one
hidden layer and both input and hidden layers consist of ten neurons each. Further, it has a
single output node wherein the output is compared against a prescribed teacher value. Any
resulting error is sensed and applied via backpropagation efforts that follow the suite of an
algorithm that changes or adjusts the weights of the neural network iteratively. That is, a
gradient-vector of the error surface is calculated and this vector follows the direction of
steepest descent at each neural node in the backpropagation, so that the error is iteratively
reduced seeking eventually the global minimum of the error trough.

In realizing ANN architectures such as MLP toward robust prediction performance, it is
necessary that the test network should be trained adequately with sufficient extent of input
data. In other words, for any meaningful classification of a given set of data via ANN method,
the training of the ANN should be exercised with several iterations of input data set and each
set is exhaustively defined. Then, the network will be robust in identifying and classifying a
given set of new data freshly addressed on its input.

Most often the availability of ANN training data set will rather be restricted in numbers. More
so, any such data set may not be of continuous to yield the full details across the sampled
values of the data. Largely such data acquired in real-world context may correspond only to
fragmented sampled details and as such, the data would contain only a partial information
insufficient for robust training of the ANN. Essentially neural networks are data-driven, self-
adaptive units, which can adjust themselves to a data without any explicit specification of the
underlying model function. That is, ANN tends to represent the universe of approximation of
any function with arbitrary extent of accuracy. Here, the accuracy refers to classifying a set
of data of its closeness to a known class. In this sense, neural networks are estimator of an
outcome based on posterior probability [14]. The question of accuracy on classification
however, depends on two major considerations: (i) The complexity of the architecture and (ii)
the extensiveness of the training input data set. Normally, the architecture is conceived with
minimal extent of computational burden and time taken by the network toward convergence.
Having designed an ANN based on reduced complexity its performance in the prediction
phase is decided by the extent of input training data on the learning patterns. In general
sense, it is often assumed that the network is trained with sufficiently exhaustive set of input
data. But, in reality as said earlier, the available data, in a particular context could only be
sparse. Further, the functional dependence of the data is largely specified only as discrete
sampled entity. Therefore pertinent to the scope of present study, in order to make the test
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ANN design compatible to handle limited data set and still offer acceptable performance in
the prediction phase, the following considerations and queries are posed as regard to a
given an ANN architecture, such as the MLP:

 How simple or complex should the ANN be in its architectural features, trained with
a sparsely-indicated sampled data set and still yield robustly predictive
classifications?

 How best can the ANN be trained with a sparsely-indicated sampled data set?
 How can the given sample-data population be enhanced or sparsity recovered so as

to improve the confidence level of ANN prediction?
 How can a multiple set of a data be created artificially, when only an assorted and

limited set of random samples are available?

Relevant to the question on architectural considerations, the associated complexity is
decided by the number hidden layers and the number of neuronal units accommodated in
each layer. There are several heuristics and empirical details that have been evolved thereof
[25,26] to specify the manner in which the neurons of an ANN are structured consistent with
the learning algorithm pursued to train the network. That is, the learning algorithms (rules)
and the associated number of neuronal units decide the extent of interconnections. More
number of hidden-units is necessary to capture higher-order irregularities in a given behavior
that cannot be expressed by simple co-occurrence of the states of the input units. That is,
hidden units enable the construction of an internal representation of the states. Such internal
representations are local with each connection strength between the units correspond to a
meaningful relation between the units established via specified algorithm such as Hebb rule
[27]. Eventually, the trained ANN bears in its memory (as steady-state coefficients of
interconnection weights) of the trained patterns. The associated stable-states assumed by N
neuronal units correspond to with  being an asymptotic constant. The computational
complexity of the ANN is decided by the severity of achieving robustly this gross extent of
stable-states [6,28]. As such, structural design of an ANN constitutes a very important phase
in its construction and the architecture of an ANN has significant impact on a network’s
information processing capabilities. Given a learning task, an ANN with only a few
connections and linear nodes may not be able to perform the task of capturing the intricate
details in the training ensemble; and an ANN with a large number of connections and
nonlinear nodes may over fit noise in the training data and fail to have good generalization
and convergence ability [29].

In general, ANN architecture design is still very much a human expert’s job. It depends
heavily on the expert experience and a tedious trial-and-error process; and finding the most
appropriate ANN structure is a very time consuming process [30]. Since there are no fixed or
designated rules in determining the ANN structure or its parameter values, a large number of
ANNs may have to be constructed with different structures and parameters before
determining an acceptable model. For example, the selection of the optimal number of
hidden layers (and hidden nodes) has a significant impact on the performance of a neural
network, though typically decided in an ad hoc manner.

In short, any conceivable ANN architecture (specified in terms of its number of hidden layers
and the associated neuronal units) should primarily be decided by the extensiveness of the
problem in hand to be solved. Such extensive attributes refer to the following: (i) The amount
of data to be used in training the test ANN expressed in terms of the number of ensemble
sets available, number of items in each ensemble, and variety/diversity of the ensemble. The

 3N2
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gross feature of the data set and the underlying cardinality, in turn dictate microscopically
resolvable details in the local (internal) representation of the ANN ‘black-box’. Larger the size
of the gross features would require significantly an excessive number of hidden units; and as
such, the associated distributed interconnections would become enormous making the
learning much harder. So, given a set of data intended for data-mining via ANN, the prudent
choice of internal complexity in an ANN is decided by facilitating just an adequate number of
hidden layers supporting minimally optimal hidden units to perceive sufficient extent of
associative capabilities and fault tolerance [31].

Typically, the number of neurons could be marginally higher so as to generate a compatible
configuration of decision areas, complex enough for a given problem; however, if the number
of neurons is excessive, the corresponding interconnections may become extensively
complex as indicated above. Hence, there is a possibility of risk in achieving the balance
between the converging trends of the connection weights versus desired computed
outcomes using only the available examples. Lest, the network may generate noisy artefacts
undermining the eventual output performance [32,33].

A heuristic suggestion with an empirical formalism in the literature [34] suggests that the
number of hidden neurons should be between the size of the input layer and the size of the
output layer (typically, about 2/3 the size of the input layer, plus the size of the output layer).
Relevant choice is supposed to enable stable ANN learning. Hence, a rule-of-thumb on the
number of hidden neurons (Nh) being equal to the geometric mean of the number of input
and output neurons (Ni and No) respectively is indicated in [34]. Likewise, an approximate
formula is also suggested in [34] to calculate the learning rate (). It is given by: = 32/(Ni 
No)1/2.

Further, given a hidden architecture, the gradient-descent based optimizations in neural
networks using backpropagation algorithm and the required learning rates etc. can also be
possibility decided by invoking error-metrics other than the MSE, such as Csiszar's
generalized error-metrics as proposed by one of the authors in [35].

Notwithstanding the methods based mostly on empirically-decided, rule-of-thumb suites as
above in deciding the architectural complexity and evolving a relevant topology for the ANN
compatible for use in a given problem, the appropriate ANN configuration can rather be more
pragmatically chosen first on the basis of the following considerations mentioned earlier: (i)
Extensiveness of the data being handled and the output performance sought; (ii) ability of
the network to converge robustly and (iii) the convergence complying with real-time or non-
real time applications [36].

Specific to the first consideration, the choice of the number of input neurons (Ni) should be
consistent with the extent of the data available for application at the input layer. That is, the
value of Ni should be pro-rated on one-to-one basis with the data structured for input toward
training and prediction phases. Correspondingly, the number of output neuronal units (No)
should match the number of output variables being sought in the prediction phase. Lastly,
the number of hidden layers (and the neurons thereof) should be minimal to avoid
computational complexity mentioned earlier and avoid undue iterations for learning
convergence. Funahashi [37] among others, has shown that if a network which is able to
take an arbitrary input pattern in the first layer, and provide an arbitrary desired output
pattern in the last layer, all that is necessary is 3 layers (1 input layer + 1 hidden layer + 1
output layer) for minimal complexity (in Kolmogorov sense). Further, if any desired input-
output function can be approximated in systems with one output neuron, such single-output
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systems can be easily concatenated into larger ones (with more outputs) which have
essentially arbitrary approximate input-output properties.

The second and third considerations imply seeking a guarantee on network convergence (on
real or non-real time basis) toward assimilating the input pattern assigned. It is entirely an
application-specific issue [36]. Again, in general simpler networks yield faster convergence.
In the present context, the MLP is chosen since no real-time, on-the-fly urgency exists in the
technoeconomic forecasting being exercised.

Related to the above topological and convergence issues, yet there are other parameters
such as learning rate, bias and nonlinear squashing being implemented in the test network.
Invariably, the choice of nonlinearity is justifiable vis-à-vis the stochastics of the data as
observed by Neelakanta et al. [38]. As such, as a limiting stochastically-justifiable function
refers to the hyperbolic function that can be adopted in trial simulations. Further, relevant
squashing nonlinearity can also be dynamically set as described in [39].

The learning rate () decides the slope of convergence [35]. If it is too small, the search for
global minimum takes excessive time (in terms of iterations performed). Should it be of large
value, the slope of convergence may over-step and miss the objective value set by the
supervising (teacher) parameter. As such, () can be taken at the first instant of trial
simulation as a small value (in the order of say, 10 3) and, depending on the convergence
(or divergence) trend observed, it can be altered.

A bias value is also introduced in ANN simulations to the summed and weighted inputs so as
to reduce the closeness of the estimated error being offset far from the desired zero value.
That is, relevant to the statistics of the data being processed, if the mean of the function
being regressed is offset significantly, a bias value can be introduced to cancel this offset, so
that the estimated error (between the regressed data and objective function) is small enough
and feasibly reduced toward zero. Again, the need for the bias value is more of application-
and data-specific.

In view of the above considerations, regardless of the variety in the types of ANN
architecture that prevail, a feed-forward MLP network with 10 input neurons (consistent with
the data in hand as described later), a single hidden layer with 10 neuronal units and a
single neuron output is considered in this study. As will be seen with simulated results, it is
simple lending itself of its parameters being chosen and varied transparently and
accommodates the training and prediction data sets commensurately. In short, the 10 input
neurons (Ni) are interconnected with 10 neurons set on a hidden layer; and the output
facilitated on a single neuron for comparison against a supervisory value. The value of Ni =
10 is decided by a segment of input sample space of 10 values available in the window of
the test data set being adopted (as detailed later). The number of neurons in the hidden
layer is determined automatically by adapting to network complexity. That is, the design
procedure complies with heuristics of providing a maximum of 10 neurons in the hidden layer
facilitating minimal complexity of input-to-hidden layer connectivity. It balances the
performance against the internal network complexity.

While the present study envisages a simple architecture commensurate with the data being
handled, it is also designed to meet the context of a limited sample population for use as
ANN inputs. Hence an appropriate scheme of ANN training methodology is formulated so as
realize an optimal prediction model and yield a reliable network performance even under the
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conditions of source data being sparse. Relevant considerations are discussed in the
following section.

4. APPLYING BOOTSTRAPPED DATA FOR ANN TRAINING

In the event of available data set being inadequate for robust ANN training, indicated in [19]
is a method to build an ANN model with fairly accurate and reliable estimation performance.
Hence advocated is a method of resampling based on the so-called statistical bootstrap
method introduced by Efron in 1979 [40]. This method of bootstrapping became a popular
statistical strategy in constructing more samples from a given sample set. When it is required
to expand the realization of a statistical distribution of an inadequate variable set, creating a
set of new bootstrap samples (of the variable) can provide a better understanding of the
average and variability of the original, sparsely-known distribution of the statistical process.
Bootstrap method in ANN modeling processes has been applied in the past to estimate the
generalization error of an ANN; and such ANNs are known as bootstrapped ANN where,
each bootstrap sample is used to exercise the underlying ANN effort in the training phase.
The relationship between model inputs and model outputs is approximately elucidated in
such ANN strategies. Bootstrapped ANN models have been used in a variety of applications,
including experimental data-processing, prediction of foreign exchange rates, predicting
curls in paper-making modeling of an airfoil.

The basic heuristics of bootstrap method and its use in ANNs is as follows: Assume a small
sample-set {(x1, y1), (x2, y2),…, (xn, yn)} where xi is the ith input vector, depicting certain
independent observations in a study and yi denotes the corresponding dependent outcome
variable; further, the observation pair (xi, yi) is independent and identically-distributed
pertinent to an unknown/sparsely-known distribution, FX,Y. A bootstrap approach can be
invoked to replace this unknown/sparsely-known distribution FX,Y by a new, empirical
distribution F*X,Y with a probabilistic density on (xi, yi). That is, instead of generating new
samples from the unknown distribution FX,Y, a set of bootstrap samples are created by
sampling with replacement of the empirical distribution, F*X,Y with a probability density 1/n on
each pair (xi, yi). Thus, bootstrapping involves “a sample substituted with a replacement”.
Because of the replacement process, each bootstrap sample may include multiple copies of
some observations and no copies of other observations from the original set. The set of
bootstrap samples can be expressed as {(x1, y1)b, (x2, y2)b,…, (xn, yn)b}, with b = 1, 2, …, B,
and the total number of bootstrap samples, B considered in practice, may range usually from
50 to 200; and it could be even higher based on how many bootstrapped sets are needed
(for example, to form an adequate ensemble of inputs to train an ANN). So, the value of B is
need-based and is not decided by any optimal criterion. In the present study, an ensemble
value of B = 50 is used purely on notional basis.

Given a data-set, an ensemble of B bootstrapped surrogate data-sets can be constructed
and used to train an ANN, B times. Hence, the average performance of ANNs on their
corresponding validation sets can be adopted as an estimate of the generalization error of
the ANN models developed. Thus, bootstrapping of a data set and its application in ANNs
are relevant to the state of sparse details available in a subset subjected to psedoreplication.
The level of sparsity specifies the extent to which one can discard the associated (small)
coefficients in the subset under resampling without much conceptual loss. More generally,
sparsity recovery is a fundamental modeling tool that permits efficiently accurate statistical
estimation and classification.
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Relevant to the data set of [20] being adopted in the present study, as will be detailed in a
later section, the entirety data being used toward ANN training is presumably regarded as
sparse; and the stretch of (ex post) sparsely-sampled data space is specified as the set X:
{xj}j = 1, 2, … with distribution FX. This ex post data space is divided into Wk = 1, 2, …, K windows.
The event spaces in each window are designated as epochs of the available samples at j =
1, 2, … with  their values at the (random locations) (j) across the kth window of the data
space. Each window space is considered as a subset to be pseudoreplicated eventually.

There are two efforts involved in scarcity removal under consideration: (a) Improving the
cardinality of the sampled data subset representing a window; and (b) pseudoreplicating the
subset B times (as required) via bootstrapping.

Considering the first effort, suppose 10 samples in each window (subset space) are needed
to represent adequate details for use as 10 inputs in the test ANN; but, there are lesser
number of samples prevail (say, 7 samples) in that window. Hence, Nyquist sampling and
WKS heuristics are invoked to obtain 3 extra samples (to make up 10). In summary, while
attempting to improve the cardinality of a subset (denoting a window), additional samples as
required are implanted in the subset in the vicinity of existing samples. Such proximal
samples are chosen on the basis of a certain criterion. The criterion adopted here is based
on Nyquist sampling theorem [43] consistent with Whittaker [44]–Shannon [45] heuristics as
mentioned earlier and explained later.

Next effort is concerned with constructing pseudoreplicates of the subset, each with an
enhanced cardinality of 10. Such surrogates are obtained via bootstrap procedure. The
entity B mentioned above denotes the total count on the number of such bootstrapped
subsets (of size 10 each) simulated for each window and adopted as an ensemble of B
times training entities for the test ANN.

In general, resampling can be done by two methods namely: (i) Using subsets of available
data (jackknifing); or (ii) drawing randomly with replacement from a set of data points
(bootstrapping). That is, both bootstrapping and jackknifing denote sampling methods with
replacement versus leaving out one observation at a time. In other words, in bootstrapping
the original data set is sampled randomly but with replacement to produce “psedoreplicate”
data set (also known as surrogate population of phantom or copies). Each pseudoreplicate
consists of elements as the original data set, but may not include all the original elements;
some elements may appear more than once, others not at all. This replacement procedure in
general, can be repeated thousands of time leading to the desired value B; and each
iteration will produce a new pseudoreplicate from which the sample statistics can be
deduced at least to an approximate extent.

In contrast, jackknifing produces a limited number of pseudoreplicate data sets, each of
which contains all but one of the original data elements. Given a data set with M elements, M
pseudoreplicate data sets are generated, each lacking a different data element. Since
jackknifing requires far fewer iterations, it is considered as an approximate of bootstrapping.
Typically, the bootstrap method gives different results when repeated on the same data,
whereas the jackknife gives exactly the same result each time. Because of this, the jackknife
technique is popular when the estimates need to be ‘verified’ several times. Whether to use
the bootstrap or the jackknife may depend more on operational aspects than on statistical
concerns involved. The jackknife, originally used for bias reduction, is more of a specialized
method and only estimates the variance of the point estimator. This can be enough for basic
statistical inference (for example, hypothesis testing, confidence intervals etc.). The
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bootstrap, on the other hand, first estimates the whole distribution (of the point estimator)
and then computes the variance from that. Thus, the bootstrap is mainly recommended for
distribution-specific estimations [41,42]. The present study is concerned with getting distinct
surrogate data sets for iterated use in ANN training; and each surrogate data represents a
new set with the scarcity of available data removed. As such, bootstrap method is adopted
here to realize a batch of B data set usable as an ensemble for ANN training. That is, to
resample (with replacement) from the scare sample data at hand and create more number of
phantom samples (or bootstrap samples) for ensemble testing of the ANN.

Further, the procedure of resampling can be done in line with ‘wild bootstrapping method’
due to Wu [42] where new surrogates are picked to deliberately assume heteroskedasticity
(meaning variability from others). Here, the sub-populations of new samples introduced in
the subset under bootstrapping (in lieu of actual replacements) can be rendered to have
different variability. That is, the replacements are ‘tweaked’ to show some ‘variability’ on ad
hoc basis and thereby expected to statistically augment the statistical features of the
ensemble set of surrogates adopted for supervised ANN learning.

Since bootstrapping involves “a sample substituted with a replacement”, natural queries of
interest are as follows: To what extent can the bootstrapped samples be adopted (without
any loss of generality) in a supervised process such as in an ANN vis-à-vis performance
issues? (ii) Could the repetition of same observations-prototypes affect ANN’s learning ability
leading to over-/under-training and hence, influence (adversely) the memorization of the
pattern involved? These queries can be overviewed in terms of the heuristic considerations
presented below.

For successful and robust application of bootstrapped ANN (BSD-ANN) conceived here to
support the under-sampled data environment, the following considerations can be identified:

 Cardinality improvement in a given window (subset) having inadequate sample
counts: This is done by adopting a compatible sampling rate such as, Nyquist-
Shannon criterion on sampling. The Nyquist-Shannon sampling theorem specifies
an upper-bound on the sampling interval (T) of a discretized signal (sampled data)
in time-domain such that the sample contains all the available frequency information
from the signal. The entity T is known as Nyquist interval. In short, the Nyquist-
Shannon criterion stipulates that for a lossless capture of information, the sampling
should be at least twice faster than the largest frequency content of the signal.
(Nyquist-Shannon theorem is generally known as Nyquist–Shannon–Kotelnikov,
Whittaker–Shannon–Kotelnikov, Whittaker–Nyquist–Kotelnikov–Shannon, or simply,
WKS cardinal theorem of interpolation theory) [43-45][46-49]. In summary, given a
sample set satisfying Nyquist interval T, it can be stated that in the vicinity of this
sampling interval, the data points in the probability density function (PDF) are
minimally correlated

 Type of sampling: In constructing a cardinality-enhanced subset as above both
uniform (equally-spaced) or non-uniform (randomly spaced) sample space [46] [47]
can be validly considered

 Information recovery and its consequences in a test ANN: Given a single subset of
(cardinality-improved) sampled data subset (evolved by satisfying the Nyquist-
Shannon sampling theorem), the problem is to derive an ensemble of B such
sampled-data sets (from the given single subset) as required for training the test
ANN. Relevant construction of  B surrogates in forming the required ensemble
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should conform to asymptotically linear multiples of sample-sets being necessary
and sufficient to train the test ANN adequately enough vis-à-vis the information
recovery being robust in the prediction phase. As such, when surrogates are created
to form an adequate number of subsets constituting the ensemble required, the
constructed pseudoreplicates would conserve the minimal correlation at each
bootstrap value so as to preserve the underlying information in the data structure of
the original sampled data-set adopted for bootstrapping.

The methods of (a) improving the cardinality of samples in a given window (subset space)
and (b) statistically enhancing the number of subset space by creating B pseudoreplicates
via bootstrapping are described below in terms of relevant computational algorithms outlined
via pseudocode.

---------------------------------------------------------------------------------------------------------------------------
Pseudocode on scarcity removal procedure on a sparse sampled date space

// Methodology:
(a) Enhancing the cardinality of a subset with limited and inadequate samples therein
(b) Resampling (using statistical bootstrapping technique) to replicate the number of

such subsets so as to realize an ensemble subsets of desired size.

// Procedure (a): Cardinality enhancement in a subset: Nyquist sampling and WKS
heuristics

Initialize
Input

→ Sparsely-sampled data space of the set X: {xj}j = 1, 2, … with distribution FX
 Identify the kth window of the data space wherein the bootstrapping is to

be done
 List epochs of the samples at j = 1, 2, … and note their values at each

epochs at locations (j) across the kth window of the data space

%% Illustrative example: Fig. 2

Fig. 2 Illustration of clustered and non-clustered parts of the epochs denoting
sparsely sampled data set in the kth window
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Perform
→ Step I: Segregation of clustered sample

 Filter out/mask the clustered sample subspace as illustrated in Fig.2
 Masked subspaces with clustered (closely-packed) will be excluded for

cardinality enhancement
Identify

→ Candidate samples/epochs in the unmasked, non-clustered sample space:
Step I

 The identified samples, {X} are subjected to cardinality enhancement as
follows:

Perform
→ Sample-size (cardinality) enhancement in a given window/subset: A method

of enhancing the number of samples/epochs artificially at the candidate
samples/epochs identified in the unmasked, non-clustered sample space of
Step I: {X}

 These samples in the non-clustered section can be subjected to
cardinality enhancement as follows:

 Track the slope of a candidate sample/epoch X at the location  across
its neighbors Xand Xat locations (  1) and ( + 1) respectively.

Go to
→ Step II: Cardinality enhancement procedure via bilateral slope tracking

 Here new samples/epochs are constructed via Nyquist sampling/WKS
interpolation as follows: (See Fig. 3)

 With reference to a candidate sample/epoch X at the location  and
its neighbors Xand Xplaced at (  1) and ( + 1) respectively, two
fresh epochs are constructed bilaterally as illustrated at B1 and B2

 The values, (Xj at j = B1) and (Xj at j = B2) are decided by the slopes
across the candidate sample and its nearest neighbors

 The locations of these samples/epochs namely, at j = B1 and j = B2
are set by the sample-intervals WB1 and WB2 respectively
juxtapositioned with reference to the candidate sample/epoch at j = 

 The sample-intervals WB1 and WB2 are constrained by the norms
of the sampling theorem and Nyquist sampling rate

 (Xj at j = B1) and (Xj at j = B2) are bootstrapped samples obtained
with reference to the candidate sample/epoch at j =  having
bilateral offsets WB1 and WB2 (that are less than or equal to
Nyquist sampling interval)
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%% Illustrative example: Fig. 3

Fig. 3 Illustration of constructing new samples in the unmasked subsample domain in
the kth window

Go to Step III
// Procedure (b): Bootstrapping the cardinality-enhanced subset to obtain B surrogate

subsets for use an ensemble of B sets in training the test ANN
Define
→ B: Number of bootstrapped data subsets (surrogates) to be created for each

window (and used as ensemble in training the test ANN)

Perform Do Loop
→ For  = 1 to  = B (= 50 in the present study) for each window to generate B

data set ensemble

Set →  = 1
 Generation of the first surrogate set for the kth window of the data space

where in the bootstrapping is to be done

→ Constructing a pseudoreplicates of cardinality-enhanced subset (of
kth window, originally with sparse samples) via resampling
procedure of bootstrapping

Next

Continue Do Loop

→ Resampling is repeated to a desired extent of B times in realizing B new
surrogates

→ Steps II -III can be repeated (to a desired extent of B times meaning
creating a set of bootstrap samples for use as an ensemble of B
runs pertinent to each window). This bootstrapping is exercised for
each window

End Do Loop

  + 1  1

Unmasked subsample
domain in the kth window

Epochs at  j  = 1, 2, … in the kth window
B1 B2

WB1

WB2

Xj
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 Thus, all the windows of interest can be subjected to population
enhancement (each with B surrogate samples) as required

 Constructed B subsets are used as the input ensemble to train
the ANN B times

End Procedures (a) and (b)
---------------------------------------------------------------------------------------------------------------------------

5. FORECASTING WITH SPARSELY-SAMPLED TECHNOECONOMIC DATA
SPACE

To illustrate the efficacy and practical applicability of the proposed strategy, the
technoeconomic data considered here for forecast applications refers to the performance
details of a power-grid pertinent to electric energy accessed from wind-propelled electric
generators [20]. Relevant details on the exemplar technoeconomic system chosen are as
follows:

Abundant wind resources on the earth lend themselves as viable candidates of extensive
energy source conceived via electric generators using wind-turbines as prime-movers.
Hence, landscapes of wind-turbine farms are emerging profusely to cope with global
demand for clean energy; and, the footprints of such farms are mushrooming and scattered
all around the world at different geographical locales under diverse climatic conditions. As
such, it can be expected that depending on location and season, the wind turbines may face
significant variations in wind-speed and direction over different times of the year.
Correspondingly, it can be concurrently expected that the electric power generated would
fluctuate extensively with appreciable magnitude. Further, such fluctuations could largely be
continuous, partly intermittent and mostly stochastical. Further, the electric current generated
is proportional to the generator shaft-torque. Typically, the wind-propelled shaft is connected
through a set of gear-train to the hub of the turbine and the output power is limited by
controlling the torque produced by turbine blades. (Ailerons at the tip of the blades are used
thereof to reduce the blade lift and this is necessary during high winds in order to protect the
equipment facing uncertain fluctuations in wind characteristics).

In any case, it is obvious that the electric-power tapped from a wind-farm should be
judiciously imparted to the power-grid despite of the associated stochastics so that the load-
sharing is accomplished smartly across different energy sources supported on the grid in situ
and evenly distributed. This will assure a productive technoeconomic ambient on the
scenario in question.

In order to facilitate productive technoeconomics to achieve logical and intelligent load-
sharing, it is necessary to know a priori the extent of  power output available from a given
wind-power resource; and, prediction of power generated from a set of electric wind-turbines
can help proactive decisions on load-sharing on the grid. In other words, forecasting electric
power output from a wind-turbine source can be a viable technoeconomic support in making
of a successful smart-grid.

The question of reliable forecasting in such contexts of wind-power generator systems will
depend on the following: Mostly, the data acquired in the past (ex post) on the performance
of a wind-turbine system is pertinent to seasonal fluctuations in wind-speed and wind-
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direction vis-à-vis the corresponding electric power output delivered. Normally, relevant
sampled-data are measured and stored (as regard the prevailing conditions of wind-speed
and directions in a specified period); and, the stored data is subsequently adopted for
predictions on the power delivery in future (ex ante). However, in order to make reliable
predictions/forecast, first a compatible algorithm should be developed relating the power
generated versus wind-speed and wind-direction details. That is, the ex post data
corresponds to the result of a compatible mathematical algorithm which correlates the
generated electric power with wind speed.

Hence, in the context of wind-turbine based electric-power generation outlined above, the
method proposed here toward ex ante forecasting on the underlying technoeconomics is to
adopt an ANN compatible to accommodate bootstrapped sample data at its input. The
efficacy of the strategy proposed is determined by considering limited data set availed from
[20] and expanded via bootstrapping. Hence forecast results are obtained and compared
against those of [20] in the ex ante states of a single variable depicting the state of wind-
speed/direction.

The data adopted in forecasting of [20] conform to a large, continuous, thorough and
abundantly exhaustive set on the technoeconomics of wind-power generation. Relevant
forecasting provides load-sharing details of the grid complex. On the other hand, the forecast
evaluated in the present method uses only a limited and sparsely sampled data set pertinent
to the same database. Hence, the merit and efficacy of the proposed strategy (that uses only
a limited ex post sampled data) versus the forecast results based on exhaustive ex post data
of [20] are elucidated. The following section provides the details on experimental simulations
performed on a test ANN and the results obtained thereof are presented.

6. EXPERIMENTAL SIMULATIONS: DETAILS

The pursuit based on using ANNs in forecast efforts described in [20] relies on the ANN
being trained with an exhaustive set of data available. Relevant data refers to details on
generated power fluctuations vis-à-vis wind-speed and wind direction gathered at 5 second
and 10 minute averages. Correspondingly, the simulations in [20] show a robust
performance of the test ANN adopted. Thus, in general, the feasibility of using ANN is now a
proven technique for the application in question when an abundantly exhaustive input data is
available to train the ANN as in [20].

However, suppose the data-set in question is sparse; that is, when it represents only a
limited sample space, not so exhaustive. The query as posed earlier is that, to what extent
such a limited sampled data-set can train the ANN robustly and yet yield reliable output
predictions. The above query is significantly important for, in many circumstances data
acquisitions may not be continuously feasible nor totally exhaustive. Mostly, data is collected
as samples either periodically and/or on aperiodic basis; and as such, (i) no continuous
information may be available; and, (ii), the extent of ensemble data (in terms of samples
available) is limited in number. Therefore, in such limited (sampled) data space, the
information addressed to train the ANN may rather be inadequate. As a result, the training of
ANN will not be robust enough to yield reasonably accurate predictions.
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Fig. 4. Wind-power generation versus wind-speed averaged across an ensemble of
wind directions. (A and B denote the assumed ex post and ex ante regimes indicated

for forecasting purposes in the present study). The ex post subset corresponds to the
available data space of wind-speed (up to 50 mph) as in [20]

Hence, as mentioned earlier, attempted in this study is to invoke the concept of statistical
bootstrapping and apply it to the limited data space of the ex post regime. Then the resulting,
enhanced extent of data availed from bootstrapping is used for ANN training so that
subsequent output prediction becomes more robust and reliable in practical contexts. That
is, without increasing the architectural complexity, realizing a robust ANN-based prediction is
studied by constructing adequate number of bootstrapped sampled data-sets. They are then
addressed as the input sets during the training phase of to test ANN. In short, it is surmised
that the augmented data space (derived via bootstrapping the available sparse data-set)
when applied to a test ANN of simple architecture would enable robust prediction
performance on the output results sought.

The data adopted in the present study is same as that in [20]. Shown in Fig. 4 is the
measured wind-turbine power generated (P in kW) versus the average wind-speed (in mph)
gathered from the measured cluster of data with varying wind directions. The combined
influence of wind-speed (v = WS) and wind-direction () on the general trend in power
generation (P) is approximately specified by a functional relation proportional to: f(v)  g()
where the functions f(.) and g(.) are explicitly depicted in Fig. 5 in normalized scale. Specific
to Fig. 5, the details obtained as field data, the functions f(.) and g(.) are empirically modeled
in [20] as compressing functions created via error-and-trial method using an exhaustive field
data set. That is, on the basis of extensive data collected in the wind-farm consistent with the
power generation profile of Fig.4 f(.) and g(.) are decided to fit closely the empirical suites.
These functions are now considered as predictive algorithms in the present study concerning
forecast predictions on wind-power generated versus (v and That is, the functions f(.) and
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g(.)are adopted in the test ANN simulation experiments. (The functional value of [f(v)  g()]
is taken in normalized form and normalization is done with respect to the maximum value).

Fig. 5. Functional relations that decide the wind-power generation (P) versus wind-
speed (v) and wind direction () and P is proportional to: f(v)  g() in normalized scale
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Fig. 6 (I). Ex post (Xj)k = {f(.)  g(.)}k (normalized) values correspond to the data on f(v)
and g() of Fig. 5 versus window # k of the wind-speed up to k = 5 (or v  50 mph). The

ex ante (blue line) values of (Xj)k refer the extrapolated details on the ex post data
regressed in the vicinity of (ex post)-to-(ex ante) transition adopted towards

forecasting [3]. (II) Power delivery Pk in kW versus window # k. (As mentioned in the
text, the window number k is an index representing the kth sub-segment window

(denoted as Wk) of the wind-speed (v = WS in mph). Explicitly, Wk corresponds to the
sub-segment of wind-speed sequenced in ex post regime as follows: (k = 1: WS = 0-8;
k = 2: WS = 8-16; k = 3: WS = 16-24; k = 4: WS = 24-32; k = 5: WS = 32-40).  The window

designations for the ex ante regime are: (k = 6: WS = 40-48; k = 7: WS = 48-54; k = 8:
WS = 54-60; ….; k = 13: WS = 92-100)

For forecasting purposes, the stretch of data in Fig. 4 is bifurcated into two assumed
regimes, ex post (A) and ex ante (B) as illustrated. In each regime, sub-segments of wind-
speed are designated as Wk. They correspond to wind-speeds sequenced in ex post regime
as follows: (k = 1: WS = 0-8; k = 2: WS = 8-16; k = 3: WS = 16-24; k = 4: WS = 24-32; k = 5:
WS = 32-40); further, the window designations for the ex ante regime are: (k = 6: WS = 40-
48; k = 7: WS = 48-54; k = 8: WS = 54-60; ….; k = 13: WS = 92-100).
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as follows: (k = 1: WS = 0-8; k = 2: WS = 8-16; k = 3: WS = 16-24; k = 4: WS = 24-32; k = 5:
WS = 32-40); further, the window designations for the ex ante regime are: (k = 6: WS = 40-
48; k = 7: WS = 48-54; k = 8: WS = 54-60; ….; k = 13: WS = 92-100).
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Fig. 6 (I). Ex post (Xj)k = {f(.)  g(.)}k (normalized) values correspond to the data on f(v)
and g() of Fig. 5 versus window # k of the wind-speed up to k = 5 (or v  50 mph). The

ex ante (blue line) values of (Xj)k refer the extrapolated details on the ex post data
regressed in the vicinity of (ex post)-to-(ex ante) transition adopted towards

forecasting [3]. (II) Power delivery Pk in kW versus window # k. (As mentioned in the
text, the window number k is an index representing the kth sub-segment window

(denoted as Wk) of the wind-speed (v = WS in mph). Explicitly, Wk corresponds to the
sub-segment of wind-speed sequenced in ex post regime as follows: (k = 1: WS = 0-8;
k = 2: WS = 8-16; k = 3: WS = 16-24; k = 4: WS = 24-32; k = 5: WS = 32-40).  The window

designations for the ex ante regime are: (k = 6: WS = 40-48; k = 7: WS = 48-54; k = 8:
WS = 54-60; ….; k = 13: WS = 92-100)

For forecasting purposes, the stretch of data in Fig. 4 is bifurcated into two assumed
regimes, ex post (A) and ex ante (B) as illustrated. In each regime, sub-segments of wind-
speed are designated as Wk. They correspond to wind-speeds sequenced in ex post regime
as follows: (k = 1: WS = 0-8; k = 2: WS = 8-16; k = 3: WS = 16-24; k = 4: WS = 24-32; k = 5:
WS = 32-40); further, the window designations for the ex ante regime are: (k = 6: WS = 40-
48; k = 7: WS = 48-54; k = 8: WS = 54-60; ….; k = 13: WS = 92-100).
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Fig. 7. Flow-chart on the procedure for constructing the bootstrapped sample-space
and applying it on the test ANN in the training phase and subsequent prediction

phase exercised for forecasting in the ex ante regime
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In the assumed ex post regime (A), 0  (WS = v)  40-50, a set of sparsely sampled-data are
noted across each of the wind-speed segments namely, {k = 1, k = 2, …, k = 5}  {v = 0-8,
8-16, 16-24, 24-32 and 32-40}. Then, in each window (segment), the prevailing sparse
samples (less than 10 values) are enhanced to an extent of 10 via bootstrapping exercised
on 1 or 2 or on more sparse-samples as necessary (Table 1). Next, these 10 bootstrapped
samples in each segment are adopted as inputs to train the test ANN. Iteratively, B = 50
surrogate data sets are generated to represent as the ensemble of training sets for each
window segment presumed.

The ex post values of (Xj)k = {f(.)  g(.)}k are first gathered from the data on f(v) and g() of
Fig. 5 versus window # k of the wind-speed up to k = 5 (or v  50 mph). Relevant plot of (Xj)k

= {f(.)  g(.)}k is presented in Fig. 6(I).Correspondingly, for each subset indicated above, the
mean value of power delivery Pk expressed via the (normalized) functional relation f(v)  g()
is determined and used as the corresponding  teacher value in ANN simulations (Table 1).

The ex ante (blue line) values of (Xj)k refer the extrapolated details on the ex post data
regressed in the vicinity of (ex post)-to-(ex ante) transition adopted towards forecasting as
described in [3]. (II) Power delivery Pk in kW versus window # k. The window number k is an
index representing the kth sub-segment window (denoted as Wk) of the wind-speed (v = WS
in mph).

The complete procedure adopted in constructing the bootstrapped sample-space and
applying it on the test ANN during training phase and enabling forecasting in the prediction
phase of the ex ante regime is illustrated in Fig. 7.

7. RESULTS AND DISCUSSIONS

To perform the training schedule on the test ANN, an ensemble of B = 50 subsets (for each
window are generated) with random sparse-samples followed by bootstrapping as indicated
above. Table 1 lists the entire ensemble of simulated (bootstrapped) sample-space adopted
in test ANN training and the corresponding details on the convergence are also presented in
Table 1. Examples of relevant learning curves (deduced with ex post data) confirming the
convergence of ANN training are presented in Figs. 8(a) - 8(e).

Indicated in Table 2 are details on the prediction phase of ex ante regime spanning the wind-
speed sub-segments (40-48), (48-56) …, (96-100). In each sub-segment, the converged test
ANN output expressed in {f(.)  g(.)] is indicated and the corresponding actual and predicted
values of the generated wind-power in kW are also presented. Fig. 9 illustrates the
summarized results with the corresponding percentage error observed in the predicted data.
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Table 1. Example details on the training phase with ex post (A) data

Test ANN: Description

Multi-layer perceptron (MLP) depicting a feed-forward, multilayer architecture, which
uses backpropagation algorithm in successive iterations to minimize the output error
sensed with respect to a supervisory (teacher) value (Fig. 1).

Number of input neurons:
Number of hidden layers:
Number of output unit:
Nonlinear squashing function:
Error function:
Bias value:

10
1
1
Hyperbolic tangent
Mean-squared error (MSE)
0

Test ANN: Training phase with ex post data

Input values (Xj)k, j = 1, 2, …, 10 correspond to: [f(.)  g(.)] values known at the ith
instants of sample occurrence within the kth sub-segment window of wind-speed (WS
in mph) denoted by (W)k across the ex post regime divided into k-windows. Explicitly,
(W)k corresponds to the sub-segments of wind-speed: k = 1: WS = 0-8;  k = 2: WS =
8-16; k = 3: WS = 16-24; k = 4: WS = 24-32; k = 5: WS = 32-40; and, each window
has 10 epochs or samples that may include bootstrapped values. Corresponding to
each window segment, a teacher value Tk is prescribed and it is equal to: Ensemble
average of {Xj}k {[f(.)  g(.)]j}k training data adopted in the kth sub-segment of
interest across the ex post regime

Examples of  teaching schedule illustrating the convergence of the network

(The input values shown bold correspond to entities obtained to enhance the sparse
sample-set to 10 in number via bootstrapping)

Note: The input values shown depict one subset of B different possible subsets
constituting the training ensemble.

Window (W)k
In the ex post
regime:

ANN training
phase

Input
values
{X}j|k

Converged
error ()
(10  4)
at test ANN
output

(T)k

Learning curves:
Normalized error (N)
versus
Number of iterations.

(Normalization done
with respect to
maximum error seen at
the start of the
iterations)
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k = 1
WS: 0-8 mph

0.000
0.075
0.235
0.075
0.075
0.100
0.100
0.250
0.250
0.255

0. 50 0.155

Fig. 8(a). Learning curve for
Wk = 1

k = 2
WS: 8-16 mph

0.025
0.025
0.100
0.235
0.235
0.235
0.235
0.235
0.250
0.250

6.80 0.198

Fig. 8(b). Learning curve for
Wk = 2

k = 3
WS: 16-24 mph

0.025
0.025
0.100
0.235
0.235
0.235
0.235
0.235
0.250
0.250

2.40 0.250

Fig. 8(c). Learning curve for
Wk = 3

0.250
0.235
0.275
0.275
0.300
0.300 1.40 0.271
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k = 4
WS: 24-32 mph

0.235
0.236
0.375
0.236

Fig. 8(d). Learning curve for
Wk = 4

k = 5
WS: 32-40 mph

0.250
0.235
0.275
0.236
0.300
0.236
0.235
0.236
0.375
0.236

2.40 0.261

Fig. 8(e) Learning curve for
Wk = 5

Table 2.  Test ANN: Prediction phase (B: ex ante) results and forecast data on power
generation

Window
(W)k
In ex ante regime:

ANN prediction
phase

Ex ante
regime:
Input
values
{X}j

Converged
test ANN
output
value of:
[f(.)  g(.)]

Power
generated
in kW

Actual
Value [20]

Predicted
via
test ANN

k = 6
WS: 40-48 mph

0.250
0.250
0.275
0.236
0.300
0.236
0.235
0.236
0.375
0.237

0.272 479 470

0.250
0.235

N

1

0   2    4 6     8
10

0

Number of
iterations
( 104)

0

N

1

0    2    4     6     8
10Number of

iterations
( 104)
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k = 7
WS: 48-56 mph

0.275
0.236
0.300
0.236
0.235
0.235
0.375
0.375

0.263 325 316

k = 8
WS: 56-64 mph

0.250
0.250
0.275
0.236
0.300
0.236
0.235
0.236
0.236
0.236

0.250 300 285

k = 9
WS: 64-72 mph

0.250
0.235
0.235
0.236
0.300
0.300
0.325
0.236
0.375
0.236

0.273 275 300

k = 10
WS: 72-80 mph

0.250
0.250
0.275
0.236
0.300
0.326
0.325
0.235
0.375
0.236

0.271 270 290

k = 11
WS: 80-88 mph

0.250
0.250
0.235
0.275
0.236
0.236
0.235
0.236
0.236
0.236

0.249 270 280

0.250
0.250
0.100
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k = 12
WS: 88-96 mph

0.235
0.235
0.235
0.235
0.235
0.375
0.236

0.243 270 280

k = 13
WS: 96-100 mph

0.250
0.250
0.275
0.236
0.236
0.275
0.235
0.236
0.375
0.375

0.233 270 282

Fig. 9. Predicted results with the test ANN. (a) The actual power generated (Pa in kW)
as in [20] and the predicted power (Pp in kW) versus window sub-segments k = (6,

7,…,13) as defined earlier; and (b): Percentage error of predicted result with respect to
actual data of [20].

250

350

450

 5.0

0

+ 5.0

6 10
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power
in kW

Pa Pp

(Pa Pp)/ Pa
in %

k: Window number in ex ante
regime
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From the results presented above the following can be inferred:

 The proposed ANN strategy (of MLP architecture) is able to yield forecast
projections when it is trained with an ensemble of ex post data

 In this context, the ANN can be exclusively designed for ex ante forecasting in even
when the an ensemble set of sampled-data availed ex post is sparse and insufficient

 That is, even if the available ex post data samples are inadequate in number,
relevant cardinality of the set can be enhanced via cardinality enhancement using
Nyquist sampling and WKS considerations. The associated information recovery
criterion is that the new samples generated should be asymptotically linear multiples
and meet the Nyquist-Shannon condition [44-49].

 The cardinality improved subset of each window can be subjected to resampling to
obtain a desired extent of B surrogates forming the ensemble set for ANN training

 Once adequate pseudoreplicates are constructed each with sufficient cardinality, the
sparsity recovered information is addressed as input data at the test ANN; and, the
associated pattern gets mapped on to the synoptic weights. When any new pattern
is addressed later at the input, the test ANN classifies this new input detail vis-à-vis
the mapped pattern

 With a real world technoeconomic data on wind-power generation complex, the
efficacy of the proposed approach is illustrated. For the purpose of forecasting, the
wind-speed domain is bifurcated into two regimes namely, A (ex post) and B (ex
ante) as illustrated in Figs. 4 and 6. The test ANN is trained with ex post (Region A)
details and the predicted results in ex ante (Region B) stretch of wind-speed are
within about  10% of the actual value of the wind-power generated

 The associated convergence and forecast predictions are evident from the results
indicated in Tables 1 and 2

 Without any loss of generality, the present method of forecast predictions can be
exploited in similar technoeconomic contexts where insufficiency of data samples is
observed; and, the performance of such structures can be elucidated optimally in
terms of the underlying futuristic predictions (forecast projections) and the
anticipated productivity across the ex ante regime.

 The accuracy of forecasting however relies on the extent to which the test ANN is
trained with the ensemble of data (bootstrapped or otherwise) adopted during
training. Specifically, the forecast trend would follow the extensiveness and
stochastics of the ex post details that prevail just prior to and in the vicinity of (ex
post)-to-(ex ante) transition as observed by Neelakanta and Yassin in [3]. Further,
as indicated in [3], any features of forecast details (with constancy or jagged
variations) as seen ahead in the ex ante frame could be true only to an extent within
a cone-of-forecast. The method of constructing such progressive error-bar on the
forecast values is detailed in [3].

 It will be of interest to determine the prognostic aspects of generated power when
the wind speed is in the vicinity of 60 mph or higher. As per the details of Fig. 2 in
[20], the generated power remains steady at wind speeds greater than 60 mph; and
it appears that most commercial wind turbines currently do not operate for wind
speed values higher than 50 mph. As such, specific considerations in elucidating the
wind-turbine performance at 50 mph or more via forecasting and interpreting the
results could be an open-question for future research if relevant field details are
available. The present study, however is confined to the forecast results as
presented in Fig 9 using the available details of Figs. 2, 7 and 8 in [20] viewed in
terms of relevant functional relation [f(.)  g(.)].
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 The present study is confined to generating bootstrapped samples for use in an
ANN context pertinent to one-dimension data. However how new interpolated
samples can be generated relevant to a multidimensional scheme is an open-
question for future research.

In summary, the present study proposes an overall strategy of using the ANN-based
approach to realize robust forecasting with sparse data; and the methodology is illustrated
with typical database information using a simple MLP architecture and its associated
parameters as indicated earlier. However, it is desirable to make a comparative assessment
on the performance efficacy of the approach using the test ANN as a function of its
parameters. For example, suppose another type of nonlinearity is adopted (in lieu of the
hyperbolic tangent function) in minimizing the cost-function via the regularization suite of
backpropagation-specified iterations. Methods thereof (such as using splines that
approximate the associated nonlinearity piece-wise are well known [25]). In general, relevant
choice of nonlinear approximation of the underlying neurocomputing system warrants the
associated basis function to be continuous, globally and locally; further, it is elementary and
multiple times differentiable (required in gradient-seeking efforts of BP).

While the hyperbolic tangent function (adopted in this study) as well as other functions (like
splines), satisfy the requirements as basis functions, yet another class of stochastically-
justifiable sigmoids can be conceived toward emulating a generalized nonlinear function. It is
known as the Langevin-Bernoulli function LQ(x) given by: LQ(x) = (1 + 1/Q)  coth[(1 + 1/Q)x]
– (1/Q)  coth[(1/Q)x]. As indicated by one of the authors in [50], LQ(x) is a viable,
differentiable and a comprehensive logistic sigmoid in emulating the input (x) versus
(nonlinear) output relation compatible for ANN applications; and [(1/2)  Q < ∞] denotes the
upper- and lower-bound parameters depicting the extent of disorder in the system. Further, it
is shown in [50] that when Q → ½, the LQ(x) → tanh(x). Hence, the choice of Q = 0.5 leads
to the traditional hyperbolic squashing; and Q > 0.5, leads to more logistic activation
feasibility and universal approximation of the nonlinearity involved. Typically, for ½  Q  3,
simple MLP architectures (even with a single hidden layer) are capable of approximating any
continuous function on a compact set. Presently, LQ(.) function is used in the test ANN and
illustrated in Table 3 are results on learning curves obtained  with a couple of exemplary
data sets (of windows: k = 1 and k = 5) adopted in original simulations (and presented earlier
in Tables 1 and 2).

Another consideration of importance in specifying the goodness-fit of the neurocomputing
system performance is to exemplify the results with at least a pair of error-metrics (for
example, MSE and entropy measure such as Kullback-Leibler divergence [50]). Hence,
cross-validations can be accomplished as indicated in Table 3 as regard to relative learning
capabilities. The Kullback-Leibler error (KLE) can be specified as follows: Referring to Fig. 1,
considering the entities (Oi and Ti) in normalized forms, the KLE denotes the mutual/cross
entropy of divergence equal to: (KLE1 + KLE2)/2 where KLE1 = [Oi  log2(Oi/Ti)] bits; and

KLE 2 = [Ti  log2(Ti/Oi)] bits. (The MSE denotes: 2
i i

i 1

1 | O  T |





 ). The results on learning

capabilities of the test ANN adopted show that regardless of the type of nonlinearity chosen
and the error-metric used the test ANN shows robust convergence in learning schedules
even when the input data conforms to a bootstrapped surrogate of a sparse data-space.
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Table 3. A comparative assessment of test ANN performance in terms of learning
curve convergence characteristics vis-à-vis distinct nonlinear modeling and using
two different error-measures (MSE and KLE): Exemplary training phase details and

results

Exemplar
windows and input
values: {X}j|k

Normalized learning curves
with KLE metric

Normalized learning curves
with MSE metric

k = 1
WS: 0-8 mph
{X}j|k=1
0.000
0.075
0.235
0.075
0.075
0.100
0.100
0.250
0.250

0.255

Fig. 10(a). Learning curve for Wk = 1 Fig. 10(b). Learning curve for Wk = 1

k = 5
WS: 32-40 mph
{X}j|k=5

0.250
0.235
0.275
0.236
0.300
0.236
0.235
0.236
0.375
0.236

Fig. 10(c). Learning curve for Wk = 5
Fig. 10(d). Learning curve for Wk = 5

Lastly, the simulation results on ANN prediction phase presented in Table 2 are pertinent to
a single subset of bootstrapped sets {B = 50} constituting the test ensemble. The compiled
data on the average and standard deviation on the converged error-values are listed in
Table 4.  Hence the confidence interval of the predictions estimated provides the prediction
efficacy as shown in Table 4.

N
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0   2    4     6     8
10

0

Number of iterations
( 104)
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Q = 3

Q = 0.5
N|
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0   2    4     6     8    10
0

Number of iterations
( 104)

Q = 1

Q = 3

Q = 0.5

0

N

1

0    2    4     6     8    10
Number of iterations
( 104)

Q = 3

Q = 1

Q = 0.5
0

|N|
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0    2    4     6     8    10
Number of iterations
( 104)

Q = 3

Q = 1

Q = 0.5
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Table 4. Statistics on the prediction phase (ex ante) results compiled with
bootstrapped subsets of {B} = 50

Window
(W)k
In ex ante regime:

ANN prediction
phase

Predicted values of
power
generated
in kW: Average value
() and standard
deviation ()

Power
generated
in kW:
Results as
per [20]

95 %
Confidence interval of
predicted values

Lower end-
point

Upper
end-point

k = 6
WS: 40-48 mph

468  2.5 479 467.3 468.7

k = 7
WS: 48-56 mph

312  3.0 325 311.2 312.8

k = 8
WS: 56-64 mph

288  1.9 300 287.5 288.5

k = 9
WS: 64-72 mph

305  2.5 275 304.3 305.7

k = 10
WS: 72-80 mph

298  3.0 270 297.2 298.3

k = 11
WS: 80-88 mph

275  3.0 270 274.2 275.8

k = 12
WS: 88-96 mph

290  2.8 270 289.2 290.8

k = 13
WS:96-100 mph

281  1.5 270 280.6 281.4

8. CONCLUSION

Pursuant to a summary of details on the study performed as outlined above, relevant to the
major queries posed earlier, the conclusive remarks and response can be listed as follows:

 Regarding ANN architectural complexity versus training the ANN with a sparsely
available sampled data set and ascertaining robust predictive classifications: As
elaborately presented in Section 3, the test ANN should be first designed with
architectural simplicity/complexity (in Kolmogorov sense) with minimal hidden layer
and neuron units); and based on observed performance, necessary enhancements
can be incorporated to achieve desired input-output results.

 Given a sparsely-specified sampled data set, obtaining enhanced or sparsity
recovered details (so as to improve the confidence level of ANN prediction) dictates
relevant network convergence issues (namely, real or non-real-time considerations). It
is however, entirely an application-specific requirement as per [36].

 Creating multiple set of a data artificially, when only an assorted and limited set of
random samples are available could be accomplished by applying statistical either by
bootstrapping or via jackknifing (with relative merits and demerits) as outlined earlier.

In all, the proposed BSD-ANN suggests the feasibility of assessing forecast projections
effectively even with only a limited (sparse) sampled-data set available in practical
technoeconomic contexts. Bootstrapping-based enhancement of sampled-data can be up to
30-40 % of the available data. The efficacy of the proposed method in the contexts of
technoeconomics is illustrated with a practical real-world system wherein, sparsity recovery
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is done and relevant bootstrapped data sample-set is effectively applied to a test ANN for
robust forecast purposes.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Neelakanta PS, Baeza D. Next-generation telecommunication and Internet
engineering. New York: Linus Publications; 2009.

2. Tourinho RC, Neelakanta PS. Evolution of forecasting of business-centric
technoeconomics: a time-series pursuit via digital technology, i- Business. 2010;2:181-
200.

3. Neelakanta PS, Yassin RR. Information theoretics-based technoeconomic forecasting:
application to telecommunication service industry. Netnomics. 2012;13:45-78.

4. Yusof FM, Aziz RA. Forecasting management and strategic adaption: case evidence
from Malaysia. Proceedings IPEDR. 2011:4:428-32.

5. Henrion M. The value of knowing how little you know: The advantages of a
probabilistic treatment of uncertainty in policy analysis. PhD Dissertation. Carnegie
Mellon University, Pittsburg, USA; 1982.

6. Neelakanta PS, De Groff D. Neural network modeling: Statistical mechanics and
cybernetic perspective. Boca Raton: CRS Press; 1994.

7. Jia Y, Culver T. Bootstrapped artificial neural networks for synthetic flow generation
with a small data sample. Journal of Hydrology; 2006;331(3-4):580-90.

8. Allende H, Nanculef R. Robust bootstrapping neural networks. In Menroy R et al.
(Eds), Lecture Notes in Artificial Intelligence, (LNAI 2972): Mexican International
Conference in Artificial Intelligence MICAI-2004 (April 26-30, 2004 Mexico City,
Mexico) Berlin: Springer Verlag. 2004;813-22.

9. Mohammed O, Park D, Merchant R, Dinh T, Tong C, Azeem A, Farah J, Drake C.
Practical experience with adaptive neural network short-term load forecasting system.
IEEE Transactions on Power Systems.1995;10(1):254-65.

10. Mohatram M, Kumar S. Application of artificial neural network in economic generation
scheduling of thermal power plants. Accessed 20 February 2013.
Available:http://mohtaram.pbworks.com/f/ApplicationofArtificialNeuralNetworkinEcono
micGeneationSchedulingofThermalPowerPlants.pdf.

11. Abananthen KS, Sainarayanan G, Chekima A, Teo J. Artificial neural network
approach in data mining. Malaysian Journal of Computer Science. 2007;20(1):51-62.

12. Singh Y, Chauhan AK. Neural networks and data mining. Journal of Theoretical and
Applied Information Technology. 2009;5(1):37-42.

13. Online Chapter 6: Neural methods for data mining. Business intelligence:
Management approach. Accessed 20 January 2013.
Available: www70.homepage.villanova.edu/matthew.../turban_online_ch06.pdf

14. Kamruzzaman SM, Sarkar AMJ. A new scheme using artificial neural networks.
Sensors. 2011;11:4622-47.

15. Popescu MC, Balas VE, Popescu LP, Mastorakis N. Multilayer and perceptron
networks. WSEAS Trans. Circuit and System. 2009;8(7):579-88.



British Journal of Economics, Management & Trade, 4(2): 228-263, 2014

262

16. Adepoju GA, Ogunjuyigbe SO, Alawode KO, Tech B. Application of neural network to
load forecasting in Nigerian power system. The Pacific Journal of Science and
Technology. 2007;8(1):68-72.

17. Kuncoro AH, Zuhal, Dalimi R. Long-term load forecasting the Java-Madura-Bali
electricity system using artificial neural network method. International Conference on
Advances in Nuclear Science and Engineering in Conjunction with LKSTN. 2007:177-
81. (November.13, 2007 University of Batan-Indonesia).

18. Mohatram M, Tewari P, Latanath N. Economic load flow using Lagrange neural
network. Accessed 26 February 2013.
Available: http://ipac.kacst.edu.sa/eDoc/2011/193208_1.pdf.

19. Twomey JM, Smith, AE. Committee networks by resampling. Intelligent engineering
systems through artificial networks. New York, NY: SME Press. 1995:153-58.

20. Li S, Wunsch DC, O’Hair EA, Geisselmann  MG. Using neural networks to estimate
wind turbine power generation, IEEE Transactions on Energy Conversion.
2001;16(3):276-82.

21. Vigneswaran T, Dhivya S. Analyzing the probabilistic distribution of the predicted wing
speed. International Journal of Computer and Information Technology. 2012;01(2):88-
93.

22. Kang MS, Chen CS, Ke YL, Lin CH, Huang CW. Load profile synthesis and wind
power generation predictions for an isolated power system, IEEE Transactions on
Industry Applications. 2007;43(6):1459-64.

23. Deshmukh RP, Ghatol AA. Short term flood forecasting using recurrent neural
networks – a comparative study. IACSIT International Journal of Engineering and
Technology. 2010;2:430-34.

24. Arulampalam G, Bouzerdoum A. A generalized feedforward neural network classifier.
Proceedings of the International Joint Conference on Neural Networks. 2003;2:1429-
34.

25. Haykin S. Neural networks. Upper Saddle River, NJ: Prentice Hall; 1999.
26. Fausett L. Fundamentals of neural networks. Englewood Cliffs, NJ: Prentice Hall;

1994.
27. Aarts E, Korst J. Simulated annealing and Boltzmann machine. New York, NY: John-

Wiley & Sons; 1989.
28. Abu-Mostafa YS, St. Jacques S. Information capacity of the Hopfield model. IEEE

Transactions on Information Theory. 1985;31(4):461-64.
29. Charnail E, McDermott D. Introduction to artificial intelligence. Reading, MA: Addison-

Wesley; 1985.
30. Sinha M, Kumar k, Kalra PK. Some new neural network architectures with improved

learning schemes. Journal of Soft computing. 2000;4(4):214-23.
31. Rumelhart DE, McClelland JL. Parallel distributed processing (Volume 1). Cambridge,

MA: The MIT Press; 1987.
32. Hornik K, Stinchcombe M, White H. Multilayer Feedforward networks are universal

approximators. Neural Networks.1989;2:359-66.
33. Hornik, K. Some new results on neural network approximation, Neural Networks.

1983;6:1069-72.
34. Shibata K, Ikeda Y. Effect of number of hidden neurons on learning in large-scale

layered neural networks. Proceedings ICROS-SICE International Joint Conference
(Fukuoka, Japan). 2009;5008-13.

35. Neelakanta PS, Abusalah S, De Groff D, Sudhakar R, Park JC. Csiszar's generalized
error-metrics for gradient descent based optimizations in neural networks using
backpropagation algorithm, Connection Science. 1996;8(1):79 -114.



British Journal of Economics, Management & Trade, 4(2): 228-263, 2014

263

36. Neelakanta PS, Preechayasomboon A. Development of a neuroinference engine for
ADSL modem applications in telecommunications using an ANN with fast
computational ability, Neurocomputing. 2002;48;423-41.

37. Funashi K. On the approximate realization of continuous mapping by neural networks.
1989;2:183-92.

38. Neelakanta PS, Sudhakar R, De Groff D. Langevin machine: a neural network based
on stochastically justifiable sigmoidal function. Biological Cybernetics. 1991;65:331-38.

39. Neelakanta PS, Dabbas M, De Groff D. Constructive ANN with dynamically set
sigmoid: A simulation tool for technoeconomic forecasting. International Journal of
Latest Trends in Computing. 2012;3(2):30-7.

40. Efron B. Bootstrap methods: Another look at the jackknife. Annals of Statistics.
1979;7(1):1-26.

41. Shao J, Tu, D. The jackknife and bootstrap. New York, NY: Springer Verlag; 1995.
42. Wu CFJ. Jackknife, bootstrap and other resampling methods in regression analysis

(with discussions). Annals of Statistics. 1986;14(4);1261-95.
43. Marks II RJ (Ed). Advanced topics in Shannon sampling and interpolation theory. New

York, NY: Springer Verlag; 1993.
44. Whittaker E. On the functions which are represented by the expansion of the

interpolation theory. Proceedings of Royal Society (Edinburg) Section A; 1915;35:181-
94.

45. Shannon CE. Communication in the presence of noise. Proceeding of Institution of
Radio engineers. 1949;37:10-21.

46. Candes E, Walkin MB. An introduction to compressive sampling. IEEE Signal
Processing Magazine. 2008;25(2):21-30.

47. Krishanan MP, Rao KR. Compressive sampling techniques for integrating video
acquisition and coding. Accessed 15 January 2013.
Available:http://wwwee.uta.edu/Dip/Courses/EE5359/Compressive%20Sampling%20T
echniques%20for%20Integrating%20Video%20Acquisition%20and%20Coding.pdf

48. Ackakaya M, Tarokh V. Shannon- theoretic on noisy compressive sampling. IEEE
Transactions on Information Theory. 2010;56(1):492-504.

49. Battle DJ, Harrison RP. Maximum entropy image reconstruction from sparsely
sampled coherent field data. IEEE Transactions on Image Processing.1997;6(8):1139-
47.

50. Neelakanta PS (Ed). Information –theoretic aspects of neural networks. Boca Raton,
FL: CRC Press; 1999.

_________________________________________________________________________
© 2014 Dabbas et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history.php?iid=304&id=20&aid=2468


