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ABSTRACT 

Fractional order controllers have been used intensively over the last decades in controlling different types of processes. 
The main methods for tuning such controllers are based on a frequency domain approach followed by optimization rou-
tine, generally in the form of the Matlab fminsearch, but also evolving to more complex routines, such as the genetic 
algorithms. An alternative to these time consuming optimization routines, a simple graphical method has been proposed. 
However, these graphical methods are not suitable for all combinations of the imposed performance specifications. To 
preserve their simplicity, but also to make these graphical methods generally applicable, a modified graphical method 
using a very straightforward and simple optimization routine is proposed within the paper. Two case studies are pre-
sented, for tuning fractional order PI and PD controllers. 
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1. Introduction 

Fractional order PIDs (FO-PIDs) have been employed in 
various engineering fields ranging applications in a wide 
variety of domains. The fractional order PID controller is 
in fact a generalization of the classical integer order PID. 
In the fractional order PID control algorithm, the error 
signal is integrated and differentiated to any order, rather 
than to an integer order as with the traditional PIDs. The 
fractional order PIDs have two supplementary parame-
ters compared to the traditional PIDs. It is for this reason, 
that the fractional order PIDs have the potential to meet 
more design specifications than the traditional PIDs and 
hence to increase the performance and robustness of 
closed loop systems [1-4]. A couple of interesting meth- 
ods have been proposed for tuning such FO-PIDs with 
the great majority centered upon Matlab’s fminsearch or 
graphical approaches [1, 5-7]. The current trend nowa- 
days is directed to the latter methods, since they require 
less computational and time resources. Nevertheless, if 
no exact solution exists, the current graphical methods 
fail at the tuning of the FO-PID controller. 

The purpose of this paper is to design an improved 
graphical method for tuning FO-PI and FO-PD control- 
lers, based upon an optimization routine that selects the 
best possible tuning option even in the case of no exact 
solution. For exemplification, two case studies are con-
sidered. The first case study implies the design of FO-PI 
control for a simple first order process. The second case 

study consists in the design of a FO-PD controller for a 
second order process with integrator effect. Simulation 
results in both case studies show that the fractional order 
controllers tuned using the proposed algorithm can meet 
all performance specifications. To exemplify the opti-
mized graphical methods for tuning fractional order con-
trollers, the first case study has no exact solution, while 
the second case study has an exact solution. 

The paper is organized as follows. Section 2 contains 
the main contribution of the present paper, with a de-
scription of the fractional order PI and PD optimized 
graphical tuning algorithms, while Section 3 presents the 
two case studies. The final section contains the conclud-
ing remarks. 

2. Optimization Routine for Tuning  
Fractional Order Controllers 

The transfer function of the fractional order PI (FO-PI) 
controller is given by: 

( ) 1 i
FO PI p

k
H s k

s
 
 






           (1) 

while the transfer function for the fractional order PD 
(FO-PD) controller is given by: 

( ) 1FO PD p dH s k k s             (2) 

where kp, ki and kd are the proportional, integral and de- 
rivative gains and    and    are the fractional 
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order. If 1  , then the FO-PI controller in (1) is re- 
duced to a traditional PI controller: 

( ) 1 i
FO PI p

k
H s k

s
 
 


              (3) 

and the FO-PD is reduced to the classical PD controller 
by setting 1   in (2): 

 ( ) 1FO PD p dH s k k s                (4) 

A proper tuning of the FO-PI and FO-PD controllers in 
(1) and (3), as well as of the PI and PD controllers in (3) 
and (4), respectively, implies determining the values for 
the parameters, three in the case of the FO-PI and FO-PD 
controllers and two in the case of the traditional PI and 
PD controllers. For tuning FO-PI and FO-PD controllers, 
in order to uniquely determine the three parameters -  , 
kp and ki in the case of the FO-PI and  , kp and kd in the 
case of the FO-PD– three equations are used that de- 
scribe the performance of the closed loop system. The 
general approach regarding the tuning of fractional order 
controllers is based on frequency domain performance 
specifications [8-10], which refer to imposing a gain 
crossover frequency, a phase margin and robustness to 
open loop gain variations.  

For a general process transfer function Hp(s), the open 
loop system when s j  is written as: 

( ) ( ) ( )oop FO PI Popen lH j H j H j          (5) 

where   is the frequency. 
In order for the open loop system to attain an imposed 

gain crossover frequency gc , then the following rela- 
tion must hold: 

( )open loop gcH j 1              (6) 

where denotes the modulus of the complex function. 
The open loop phase margin, m , is also computed at 

the gain crossover frequency as: 

( )open loop gc mH j                (7) 

where  denotes the phase of the complex function. 
Finally, the last performance specification, robustness 

to gain variations, implies that the phase of the open loop 
system at the gain crossover frequency should be flat:  

 ( )
0

open loop gc

gc

d H j

d






            (8) 

2.1. Optimization Routine for Tuning Fractional 
Order PI Controllers 

The transfer function of the FO-PI controller, in the fre- 
quency domain, may be written as: 

( )PIH j 1 cos sin
2 2FO p ik k j   


        

  (9) 

in which 

 
1 1

cos sin
2 2

j
s j




 


     
 


    (10) 

Equations (6), (7) and (8) imply a certain behavior of 
the closed loop system, according to the specified values 
for the gain crossover frequency and the phase margin, 
and may further be used to determine all three values for 
the kp, ki and   parameters of the FO-PI controller: 

1 cos sin 1 (
2 2 gcp i gc pk k j H j


 

        
)  (11) 

 
sin

2
( )

cos
2

i

m p gc

gc i

k
tg H j

k

 

  
 

 
 
    

   
 

   (12) 

1

2 2

sin ( )2

1 2 cos
2

i gc
p gc

gc
i gc i gc

k d H j

dk k



 

  
  

 

 


 

 
    (13) 

where Hp(s) is the process transfer function.  
Using solely equations (12) and (13), ki and   may 

be determined uniquely, while (11) may be then used to 
determine kp. The simplest method for computing the 
FO-PI parameter values is based on a graphical approach 
[1, 5-7], which implies that ki is computed and plotted as 
a function of   using equations (12) and (13). The in- 
tersection point of the resulting two curves yields the 
final values for ki  and  . Consequently, kp is deter-
mined using (11) and the previously graphically selected 
values for ki  and  . Such an example is given in Fig-
ure 1. 

Although this method proves to be highly efficient and 
simple, the graphical approach is based upon the inter- 
section of the curves resulting from (12) and (12). Such  
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Figure 1. Selection of ki and according to the intersection 

point of the curves. 
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an intersection point depends upon the imposed criteria 
for the gain crossover frequency and the phase margin. 
For a specified set of gain crossover frequency and phase 
margin, such an intersection point might not exist. Thus, 
the existing graphical methods cannot be used to com- 
pute the parameters and optimization algorithms need to 
be used instead. 

In order to facilitate the use of the simplicity of the 
graphical methods in tuning the FO-PI controllers and to 
avoid complex optimization algorithms, a simple approach 
is proposed that combines the graphical methods with a 
very simple optimization routine. The idea behind the 
optimization routine consist in plotting the two curves for 
ki as a function of   and selecting the values that 
minimize the distance between the two plotted curves. 
The proposed tuning algorithm is given below: 

for 0 :1   
 compute ki using (12) 
 store result in vector ki1 
 compute ki using (13) 
 store result in vector ki2 
end 
 plot ki1 as a function of   
 plot ki2 as a function of   
 compute absolute value of distance = ki1-ki2 

 determine optim = min(distance) 
 return optim  corresponding to optim 
 compute ki using (13) and optim  
 compute kp using (11) 
The algorithm for computing PI controllers is based 

upon setting 1   and computing ki using either (12) or 
(13) and kp using (11). Since, the PI controller in (3) has 
only two design parameters, the tuning of the PI control- 
ler may be done using any combination of two perform- 
ance criteria in (11), (12) or (13). Thus, imposing (11) 
and (12) means that (13) will not necessarily be ensured, 
which is the main drawback of traditional PI controllers 
as compared to FO-PI controllers. 

2.2. Optimization Routine for Tuning Fractional 
Order PD Controllers 

The tuning of the FO-PD controller is achieved in a 
similar manner to the FO-PI. The transfer function of the 
FO-PD controller, in the frequency domain, may be 
written as: 

( ) 1 cos sin
2 2FO PI p dH j k k j   

       


  (14) 

in which 

  cos sin
2 2

s j j
        







      (15) 

Similar to the FO-PI situation, equations (6), (7) and (8) 

may be used to determine the three parameters of the 
FO-PD controller, kp, kd and  : 

11 cos sin
2 2 ( )

gc

p d gc

p

k k j
H j





         
 (16) 

 
sin

2
( )

cos
2

d

m p gc

gc d

k
tg H j

k

 

  
 

 
 
    

   
 

   (17) 

1

2 2

sin ( )2

1 2 cos
2

d gc
p gc

gc
d gc d gc

k d H j

dk k



 

  
  




 
 

     (18) 

Then, (17) and (18) may be employed to determine 
using the optimized graphical algorithm the parameters 
kd and  , and then, kp may be computed directly using 
(16), as described below: 

for 1:0  
 compute kd using (17) 
 store result in vector kd1 
 compute kd using (18) 
 store result in vector kd2 
end 
 plot kd1 as a function of   
 plot kd2 as a function of   
 compute absolute value of distance = kd1-kd2 

 determine optim = min(distance) 
 return optim  corresponding to optim 
 compute kd using (18) and optim  
 compute kp using (16) 
The algorithm for computing PD controllers is based 

upon setting 1   and computing kd using either (17) 
or (18) and kp using (16). Since, the PD controller in (4) 
has only two design parameters; the tuning of the PD 
controller may be done using any combination of two 
performance criteria in (16), (17) or (18). Thus, imposing 
(16) and (17) means that (18) will not necessarily be en- 
sured, which is the main drawback of traditional PD con- 
trollers as compared to FO-PD controllers. 

3. Case Studies 

3.1. Tuning an FO-PI Controller for a First  
Order Process 

The process transfer function is given by: 

27.5
( )

0.26 1pH s
s




              (19) 

For a gain crossover frequency of cg  =15 rad/s and 
a phase margin of m =70o, the curves in Figure 1 are 
obtained. Thus, the existing graphical methods may be 
used to determine the final values for the FO-PI control- 
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ler parameters. Imposing slightly different performance 
criteria, such as cg =30 rad/s, m =70o and robustness 
to gain uncertainties, the two curves in Figure 2 are ob- 
tained.  

For these particular performance criteria, the two plots 
for ki do not intersect. Nevertheless, using the algorithm 
proposed in Section 2, the minimum distance between 
the two curves is computed, yielding 0.55   and ki = 
5.69. Finally, using (11) the remaining FO-PI parameter 
is computed as kp=0.1677. 

The resulting (FO-PI) is:  

0.55

5.69
(PIH s ) 0.1677FO s

  
 
1

         (20) 

Figure 3 shows that the Bode plot of the open loop 
system with a FO-PI controller. It can be seen that the 
phase margin is slightly increased from 70o as imposed 
to74o. This is due to the optimization algorithm, in which 
the final value for ki is chosen in order to meet the ro- 
bustness criteria, rather than the phase margin criteria. 
However, thanks to the optimal choice for the fractional 
order  , the phase margin criteria obtained does not 
vary significantly from the one imposed in the design 
phase. The Bode plot also indicates that the modulus 
crosses the zero axes at 30rad/s, as imposed in the design 
specifications. Most importantly, it can be seen, that 
changing the open loop gain will not reduce the phase 
margin, but rather increase it, which means that the 
overshoot of the closed loop system will not vary sig- 
nificantly from the nominal value. Hence, the closed loop 
system should behave robustly despite uncertainties in 
the gain variations.  

The closed loop results considering ±50% gain uncer- 
tainty are given in Figure 4. It can be seen that the FO-PI 
controller maintains the overshoot below 5%, while the 
settling time varies slightly between 0.15-0.25 seconds.  
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Figure 2. Plots of ki as a function of μ using (12) and (13) for 
ωcg = 25 rad/s and φm = 70o 
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Figure 3. Open loop Bode diagram using FO-PI controller. 
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Figure 4. Closed loop results with FO-PI controller consid-
ering ±50% process gain variation. 

3.2. Tuning an FO-PD Controller for a Second 
Order Process 

The process transfer function is given as: 

1
( )

( 0.5)pH s
s s




             (21) 

Taking ωcg = 15 and m = 50O and using the algorithm 
described in Section 2, the plots of kd as a function of μ 
are derived as given in Figure 5. In this case, the algo-
rithm presented in Section 2 yields the same result as any 
of the existing graphical methods, since the two curves 
intersect. Figure 5 finally yields a fractional order λ= 
0.573 and kd =2.59. 

Using (16), the following value is obtained for the kp 

parameter, as a function of the previously determined μ 
and kd values: kp =17.5.  

Copyright © 2013 SciRes.                                                                                AJCM 



C. I. MURESAN 11

The resulting (FO-PD) is: 

 0.573( ) 17.5 1 2.59FO PDH s s          (22) 

The Bode diagram of the open loop system using the 
previously determined FO-PD controller is given in Fig- 
ure 6, while the closed loop system considering ±50% 
gain uncertainty is given in Figure 7. 

The Bode diagram in Figure 6 shows that variations of 
the open loop gain will not have a negative effect on the 
overshoot of the closed loop system, but only on the set-
tling time, which demonstrates that the designed frac-
tional order PD controller ensures the robustness of the 
closed loop system despite gain variations. As compared 
to the fractional order PI controller, the solution of the 
PD controller at the intersection of the two curves im-
plies that all performance specifications are met: the gain 
crossover frequency is exactly 15 rad/sec, as specified, 
the phase margin is exactly 50o and the phase plot is flat 
around the gain crossover frequency. 
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Figure 5. Selection of the fractional order μ and kd parameter. 
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Figure 6. Bode diagram of the open loop system with FO-PD 
controller. 
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Figure 7. Closed loop responses considering ±50% gain 
uncertainty with a FO-PD controller. 
 

As expected from the Bode plot, the overshoot is 
maintained in all three case scenarios at the value of 25%, 
while the settling time varies between 0.3-0.6 seconds. 

4. Conclusions 

The purpose of the present paper was to present a simple 
and efficient optimization algorithm for tuning fractional 
order PI and PD controllers. For specific performance 
criteria, the existing graphical methods may not yield an 
exact solution. Thus, optimization routines need to be 
used in order to tune the fractional order controllers. The 
paper shows that even in the case of no exact solution, 
the graphical methods may still be employed with a 
slight modification that implies computing and selecting 
the minimum distance between the possible solutions. It 
is shown through simulations that the fractional order 
controllers designed using the proposed method yield 
satisfactorily results in terms of closed loop performance 
and robustness. 

5. Acknowledgements 

This work was supported by a grant of the Romanian 
National Authority for Scientific Research, CNCS – UE- 
FISCDI, project number PN-II-RU-TE-2012-3-0307. 

REFERENCES 
[1] C.A. Monje, Y. Chen, B. M. Vinagre, D. Xue and V. 

Feliu, “Fractional-order Systems and Controls: Funda-
mentals and Applications,” Springer, London, 2010. 
doi:10.1007/978-1-84996-335-0 

[2] C. I. Pop (Muresan), C. M. Ionescu, R. De Keyser, E. H. 
Dulf, “Robustness Evaluation of Fractional Order Control 
for Varying Time Delay Processes,” Signal, Image and 

Copyright © 2013 SciRes.                                                                                AJCM 

http://dx.doi.org/10.1007/978-1-84996-335-0


C. I. MURESAN 

Copyright © 2013 SciRes.                                                                                AJCM 

12 

Video Processing, Vol. 6, 2012, pp. 453-461.  

doi:10.1007/s11760-012-0322-4 

[3] A. Oustaloup,” La Commande CRONE: Commande Ro-
bust d’ordre non entiere,” Hermes, Paris, France, 1991  

[4] C. A. Monje, B. Vinagre, Y. Chen and V. Feliu, “On 
Fractional PIλcontrollers: Some Tuning Rules for Ro-
bustness to Plant Uncertainties,” Nonlinear Dynam, Vol. 
38, 2004, pp. 369-381. doi:10.1007/s11071-004-3767-3 

[5] C. I. Muresan, E. H. Dulf, R. Both, A. Palfi and M. Ca-
prioru, “Microcontroller Implementation of a Multivari-
able Fractional Order PI Controller,” The 9th Interna-
tional Conference on Control Systems and Computer 
Science (CSCS19-2013), 29-31 May, Bucharest, Romania, 
Vol. 1, 2013, pp. 44-51. 

[6] Y. Luo and Y. Chen, “Fractional Order Motion Controls,” 
John Wiley & Sons, 2012. doi:10.1002/9781118387726 

[7] Y. Luo, Y. Chen, C.Y. Wang and Y. G. Pi, “Tuning Frac-
tional Order Proportional Integral Controllers for Frac-
tional Order Systems,” Journal of Process Control, Vol. 
20, 2010, pp. 823-831.  

doi:10.1016/j.jprocont.2010.04.011 

[8] C.A. Monje, B. Vinagre, Y. Chen and V. Feliu, “On Frac-
tional PIλcontrollers: Some Tuning Rules for Robustness 
to Plant Uncertainties,” Nonlinear Dynam, Vol. 38, 2004, 
pp. 369-381. doi:10.1007/s11071-004-3767-3 

[9] Y. Q. Chen and K. L. Moore, “Discretization Schemes for 
Fractional-order Differentiators and Integrators,” IEEE T. 
Circuits.-I., Vol. 49, 2002, pp. 363-367. 

[10] Y. Q. Chen, H. Dou, B. M. Vinagre and C. A. Monje, “A 
Robust Tuning Method for Fractional Order PI Control-
lers,” Proceedings of the 2nd IFAC Workshop on Frac-
tional Differentiation and its Applications, Portugal, 
2006. 

 

http://dx.doi.org/10.1007/s11760-012-0322-4
http://dx.doi.org/10.1007/s11071-004-3767-3
http://dx.doi.org/10.1002/9781118387726
http://dx.doi.org/10.1016/j.jprocont.2010.04.011
http://dx.doi.org/10.1007/s11071-004-3767-3

