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ABSTRACT 

In this paper, we developed a new continuous block method using the approach of collocation of the differential system 
and interpolation of the power series approximate solution. A constant step length within a half step interval of integra- 
tion was adopted. We evaluated at grid and off grid points to get a continuous linear multistep method. The continuous 
linear multistep method is solved for the independent solution to yield a continuous block method which is evaluated at 
selected points to yield a discrete block method. The basic properties of the block method were investigated and found 
to be consistent and zero stable hence convergent. The new method was tested on real life problems namely: SIR model, 
Growth model and Mixture Model. The results were found to compete favorably with the existing methods in terms of 
accuracy and error bound. 
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1. Introduction 

We consider the numerical solution of first order initial 
value problems of the form: 

   0, ,y f x y y x y  0
           

(1) 

where f is continuous and satisfies Lipchitz’s condition 
that guarantees the uniqueness and existence of a solu- 
tion. 

Problem in the form (1) has wide application in physi- 
cal science, engineering, economics, etc. Very often, 
these problems do not have an analytical solution, and 
this has necessitated the deviation of numerical schemes 
to approximate their solutions. 

In the past, scholars have developed a continuous lin- 
ear multistep in solving (1). These authors proposed me- 
thods with different basis functions and among them 
were [1-6] to mention a few.  

These authors proposed methods ranging from predic- 
tor corrector method to discrete block method. 

Scholars later proposed block method. This block 
method has the properties of Runge-kutta method for 
being self-starting and does not require development of 
separate predictors or starting values. Among these au-  

thors are [7-12]. Block method was found to be cost ef- 
fective and gave better approximation. 

This paper is divided into sections as follows: Section 
1 is the introduction and background of the study; Sec- 
tion 2 contains the discussion about the methodology 
involved in deriving the continuous multistep method 
and the continuous block method. Section 3 considers the 
analysis of the block method in terms of the order, zero 
stability and the region of absolute stability. Section 4 
focuses on the application of the new method on some 
numeric examples and Section 5 is on the discussion of 
result. We tested our method on first order ordinary dif- 
ferential equations and compared our result with existing 
methods. 

2. Methodology 

Consider power series approximate solution in the form 
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                (2) 

where S and r are the number of interpolation and collo- 
cation points respectively. 
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The first derivative of (2) gives 
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                (3) 

Substituting (3) into (2) gives 
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(4) 

Collocating (3) at 
1 1

, 0
12 2n sx s
   
 

 and interpolating  

(2) at nx  gives a system of non-linear equation in the 
form 

AX U                  (5) 

where 
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Solving (5) for the ajs and substituting back into (4) 

gives a continuous multistep method in the form 
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, 0
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(6) 

where a0 = 1 and the coefficients of n jf   gives 
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where .nx x
t

h


  Solving (6) for the independent solu-  

tion gives a continuous block method in the form 
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   n jx f
     

(7) 

where   is the order of the differential equation s is the 
collocation points. Hence the coefficient of n jf   

in (7) 
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Evaluating (2.5) at 
1 1 1

12 12 2
t

   
 

 gives a discrete  

block formula of the form 

   m n n mY ey hdf y hdf Y  
        

(8) 

where , ,are e d r r  matrix  
where 

T
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3. Analysis of the Basic Properties of Our  

New Method 

3.1. Order of the Method 

Let the linear operator   :L y x h  associated with the 
block formular be defined as 

        0: m n n mL y x h A Y ey h df y h bF Y    
   

(9)
 

expanding in Taylor series and comparing the coeffi- 
cient of h gives 
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(10) 

Definition:-The linear operator L and the associated 
continuous linear multistep method (3.1) are said to be of 
o r d e r  p  i f  0 1 2 10 and 0p pc c c c c       i s  

called the error constant and implies that the local trun-
cation error is given by  

   1 1 2
2 0 .p p p

n k p nt C h y x h  
    
For our method; 
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Expanding in Taylor series expansion gives 
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Equating coefficients of the Taylor series expansion to 

zero yield 

0 1 6 0c c c     

Hence we arrived at a uniform order 6 for our method 
with error constants 

 

           7 3.78 09 2.53 09 3.49 09 1.85 09 1.68 08 5.56 08c         
 

 
3.2. Zero Stability 

Definition: The block (8) is said to be zero stable, if the 
roots Zs, 1, 2, ,s N 

 
 of the characteristic polynomial 

 defined by  satisfies  z   0detz zA E

exceeding the order of the differential equation. More-
over as    0, 1rh z z z

   
 
where   is the 

order of the differential equation, r is the order of the 
matrix  0A  and E.  1sz 

 
and every root satisfying 1sz   have multiplicity not  For our method 
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    5 1 .z z z    Hence our method is zero stable. 

3.3 Region of Absolute Stability 

The block formulated as a general linear method 
where it is partition in the form 

 1 1

2 2n i n

Y A B hf y

Y A B y

   
    
     

 

The elements of 1A  and 2A  are obtained from the 
coefficients of the collocation points,  and  are 
obtained from the interpolation points. 

1B 2B

Applying the test equation y y   leads to the re- 

currence equation 

 1 ,  ,  1,2, , 1i iy M Z y Z h i        

The stability function is given by  

    1

2 2 1

B
M Z B ZA I ZA

    

and the stability polynomial of the method is given as  

   , det Z I M Z     

The region of absolute stability of the method is de- 
fined as  , 1,   Z   1.   

For our method, writing the block in partition form 
gives          
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4. Real Life Problems 

4.1. Problem 1: (SIR MODEL) 

The SIR model is an epidemiological model that com- 
putes the theoretical numbers of people infected with a 
contagious illness in a closed population over time. The 
name of this class of models derives from the fact that 
they involves coupled equations relating the number of 
susceptible people S(t), number of people infected I(t) 
and the number of people who have recovered R(t). This 
is a good and simple model for many infectious diseases 
including measles, mumps and rubella [13-15]. The SIR 
model is described by the three coupled equations. 

 d
1

d

s
S I

t
S   

                        
(11) 

d

d

I
I I I

t
S     

                      
 (12) 

d

d

s
R

t
I                                (13) 

where , and    are positive parameters. Define  
to be  

y

y S I R  
              

(14) 

Adding Equations (11)-(13), we obtain the following 
evolution equations for  y

 1y   

Taking 0.5   and attaching an initial condition 
 0y  0.5  (for a particular closed population), we ob- 

tain,  

     0.5 1 , 0 0.5y t y y   
        

(16) 

whose exact solution is, 

  0.51 0.5e ty t  
            

(17) 

Applying our new half step numerical scheme (8) to 
solve SIR model simplified as (17) gives results as 
shown in Table 1. 

4.2. Problem 2 (Growth Model) 

Let us consider the differential equation of the form; 

   d
,  0 1000,  0,1

d

N
N N t

t
  

      
(18) 

Equation (18) represents the rate of growth of bacteria 
in a colony. We shall assume that the model grows con- 
tinuously without restriction. One may ask; how many 
bacteria are in the colony after some minutes if an indi- 
vidual produces an offspring at an average growth rate of 
0.2? We also assume that  N t  is the population size at 
time  (Table 2). t

The theoretical solution of (18) is given by; 

s            
 (19) 

y
 

             (15) Note that, growth rate 0.2   in (18).       
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Table 1. Showing results for SIR model problem. 

X Exact Result Computed Solution Error in half step method Error in Sunday et al. 

0.1 0.5243852877496430 0.5243852877496429 1.110223e−016 5.574430e−012 

0.2 0.5475812909820202 0.5475812909820202 0.000000e+000 3.946177e−012 

0.3 0.5696460117874711 0.5696460117874710 1.110223e−016 8.183232e−012 

0.4 0.5906346234610092 0.5906346234610089 2.220446e−016 3.436118e−011 

0.5 0.6105996084642976 0.6105996084642973 3.330669e−016 1.929743e−010 

0.6 0.6295908896591411 0.6295908896591410 1.110223e−016 1.879040e−010 

0.7 0.6476559551406433 0.6476559551406429 4.440892e−016 1.776835e−010 

0.8 0.6648399769821805 0.6648399769821799 5.551115e−016 1.724676e−010 

0.9 0.6811859241891134 0.6811859241891132 2.220446e−016 1.847545e−010 

1.0 0.6967346701436834 0.6967346701436828 5.551115e−016 3.005770e−010 

 
Table 2. Showing results for growth model problem. 

X Exact Result Computed Solution Error in half step method Error in Sunday et al. 

0.1 1020.2013400267558 1020.201340026755 0.000000e+000 1.830358e−011 

0.2 1040.8107741923882 1040.8107741923882 0.000000e+000 1.250555e−011 

0.3 1061.8365465453596 1061.8365465453596 0.000000e+000 1.227818e−011 

0.4 1083.2870676749587 1083.2870676749585 2.273737e−013 3.137757e−011 

0.5 1105.1709180756477 1105.1709180756475 2.273737e−013 2.216893e−010 

0.6 1105.1709180756477 1127.4968515793755 2.273737e−013 2.060005e−010 

0.7 1150.2737988572273 1150.2737988572271 2.273737e−013 2.171419e−010 

0.8 1173.5108709918102 1173.5108709918102 0.000000e+000 2.216893e−010 

0.9 1197.2173631218102 1197.2173631218102 0.000000e+000 2.744400e−010 

1.0 1221.4027581601699 1221.4027581601699 0.000000e+000 4.899903e−010 

 
Applying our new half step numerical scheme (8) to 

solve the Growth model (17) gives results as shown in 
Table 2 [16]. 

4.3. Problem 3 (Decay Model) 

A certain radioactive substance is known to decay at the 
rate proportional to the amount present. A block of this 
substance having a mass of 100 g originally is observed. 
After 40 mins, its mass reduced to 90 g. Find an expres- 
sion for the mass of the substance at any time and test for 
the consistency of the block integrator on this problem 
for  0,1t . 

The problem has a differential equation of the form; 

   d
,  0 100,  0,1

d

N
N N t

t
   

    
  (21) 

where N represents the mass of the substance at any time 
andt   is a constant which specifies the rate at which 

this particular substance decays. Note that, 

   0 100 g,  40 mins,  40 90 gf t f    

Since for any growth/decay problem,  

   0 e tf t f   

4090 100e   

 ln 9 ln10
0.0026

40



    

Thus, the theoretical solution to (20) is given by, 

  0.0026100e tf t 
           

 (22) 

which is also the expression for the mass of the substance 
at any time t. 

Applying our new half step numerical scheme (8) to 
solve the Growth model (22) gives results as shown in 
Table 3 [16,17] (Table 3). 

5. Discussion of the Result 

We have considered three real-life model problems to 
test the efficiency of our method. Problems 1 and 2 and 3 
were solved by Sunday et al. [17]. They proposed an 
order six block integrator for the solution of first-order 
ordinary differential equations. Our half-step block 
method gave better approxi ation as shown in Tables  m      
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Table 3. Showing results for decay model problem. 

X Exact Result Computed Solution Error in half step method Error in Sunday et al. 

0.1 99.9740033797070850 99.9740033797070850 0.000000e+000 0.000000e+000 

0.2 99.9480135176568470 99.9480135176568330 1.421085e−014 1.421085e−014 

0.3 99.9220304120923400 99.9220304120923400 0.000000e+000 0.000000e+000 

0.4 99.8960540612571460 99.8960540612571460 0.000000e+000 0.000000e+000 

0.5 99.8700844633952300 99.8700844633952440 1.421085e−014 0.000000e+000 

0.6 99.8441216167510670 99.8441216167510820 1.421085e−014 0.000000e+000 

0.7 99.8181655195695610 99.8181655195695750 1.421085e−014 0.000000e+000 

0.8 99.7922161700960970 99.7922161700960970 0.000000e+000 0.000000e+000 

0.9 99.7662735665764730 99.7662735665764730 0.000000e+000 0.000000e+000 

1.0 99.7403377072569700 99.7403377072569700 0.000000e+000 0.000000e+000 

 

 

Figure 1. Showing region of absolute stability of our 
method. 
 
1-3 because the iteration per step in the new method was 
lower than the method proposed by [17]. Our method 
was found to be zero stable, consistent and converges. 
Figure 1 shows the region of absolute stability. From the 
numerical examples, we could safely conclude that our 
method gave better accuracy than the existing methods. 
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