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Abstract

Apicomplexan parasites invade host cells in an active process involving their ability to move

by gliding motility. While the acto-myosin system of the parasite plays a crucial role in the

formation and release of attachment sites during this process, there are still open questions

regarding the involvement of other mechanisms in parasite motility. In many eukaryotes, a

secretory-endocytic cycle leads to the recycling of receptors (integrins), necessary to form

attachment sites, regulation of surface area during motility, and generation of retrograde

membrane flow. Here, we demonstrate that endocytosis operates during gliding motility in

Toxoplasma gondii and appears to be crucial for the establishment of retrograde membrane

flow, because inhibition of endocytosis blocks retrograde flow and motility. We demonstrate

that extracellular parasites can efficiently incorporate exogenous material, such as labelled

phospholipids, nanogold particles (NGPs), antibodies, and Concanavalin A (ConA). Using

labelled phospholipids, we observed that the endocytic and secretory pathways of the para-

site converge, and endocytosed lipids are subsequently secreted, demonstrating the opera-

tion of an endocytic-secretory cycle. Together our data consolidate previous findings, and

we propose an additional model, working in parallel to the acto-myosin motor, that recon-

ciles parasite motility with observations in other eukaryotes: an apicomplexan fountain-flow-

model for parasite motility.

Introduction

The intracellular protozoan parasite Toxoplasma gondii infects nearly 2 billion people glob-

ally. This apicomplexan can cause severe disease in immunocompromised people and can

lead to miscarriage or malformation of the foetus in pregnant women [1]. During the

acute phase of infection, the tachyzoite rapidly replicates inside the host cell within a

specialised compartment, the parasitophorous vacuole, which itself is formed during active

invasion [2].

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000060 June 24, 2019 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gras S, Jimenez-Ruiz E, Klinger CM,

Schneider K, Klingl A, Lemgruber L, et al. (2019)

An endocytic-secretory cycle participates in

Toxoplasma gondii in motility. PLoS Biol 17(6):

e3000060. https://doi.org/10.1371/journal.

pbio.3000060

Academic Editor: Michael T. Laub, HHMI,

Massachusetts Institute of Technology, UNITED

STATES

Received: September 26, 2018

Accepted: June 14, 2019

Published: June 24, 2019

Copyright: © 2019 Gras et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files. All data are compiled in the excel data file.

Gene accession numbers correspond to the Toxo

DB: https://toxodb.org/toxo/.

Funding: This work was supported by an ERC-

Starting grant (ERC-2012-StG 309255-EndoTox)

and a Wellcome Trust 087582/Z/08/Z Senior

Fellowship for MM. The Wellcome Trust Centre for

http://orcid.org/0000-0003-2695-0947
http://orcid.org/0000-0003-2832-6806
http://orcid.org/0000-0002-4816-5221
https://doi.org/10.1371/journal.pbio.3000060
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000060&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000060&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000060&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000060&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000060&domain=pdf&date_stamp=2019-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000060&domain=pdf&date_stamp=2019-07-05
https://doi.org/10.1371/journal.pbio.3000060
https://doi.org/10.1371/journal.pbio.3000060
http://creativecommons.org/licenses/by/4.0/
https://toxodb.org/toxo/


Like all apicomplexans, T. gondii invades host cells in an active process involving both the

parasite’s ability to move by gliding motility and invasion factors derived from the unique

secretory organelles localised at the parasite’s apical pole (micronemes and rhoptries) [3,4].

According to the linear motor model, micronemal transmembrane proteins are secreted at the

apical tip of the parasite and act as force transmitters by interacting with both the substrate at

the surface and the acto-myosin system of the parasite. While this motor system fulfils an

important role for motility and invasion, recent studies highlighted that parasites are still capa-

ble of moving, despite the disruption of core components of the glideosome [5–11], leading to

the question of whether, similar to other eukaryotes, parasites are able to use different motility

mechanisms. In other eukaryotes, depending on the environments the cell has to move in, sev-

eral (actin dependent and actin independent) motility mechanisms have been described, such

as osmotic engines, blebbing motility, pressure-driven protrusions, or the well-understood

amoeboid motility [12]. Apicomplexan parasites are masters of motility in different environ-

ments, allowing them to disseminate within and between their hosts, migrate through different

tissues, and to invade virtually any host cell [3]. It would therefore not be surprising if apicom-

plexans, akin to other eukaryotes, can use more than one motility system, depending on the

environment they need to move in. In fact, it is likely that these mechanisms can operate syn-

ergistically, which might explain observations that parasites are still able to move and invade,

albeit at highly reduced rates, when the glideosome is disrupted [5–11].

During motility, most eukaryotic cells show a capping activity of surface ligands, which is

dependent on actin, microtubules, and a secretory-endocytic cycle, leading to the establish-

ment of a retrograde membrane flow [13,14]. A recent study on Dictyostelium provided direct

evidence for the fluid flow model during cell migration [15]. This study demonstrated that,

during migration of Dictyostelium, the membrane volume of the cell remains constant due to

the occurrence of a secretory-endocytic cycle. This circulation follows a fountain-flow model,

in which new membrane lipids are delivered to the anterior cell membrane, whereas excess

membrane is recycled. Interestingly, in this study a direct relationship between cell migration

and membrane turnover rate was observed, suggesting that the cells establish a fluid drive that

contributes to the generation of force required for motility, as suggested previously [14].

Importantly, it appears that myosin and actin have only a supporting function in the establish-

ment of the fluid drive, because treatment with actin- or myosin-disrupting drugs, such as

latrunculin B or blebbistatin, did not significantly affect membrane movement [15]. Similarly,

a recent study by O’Neill and colleagues [16] demonstrated that membrane flow itself can facil-

itate amoeboid migration of immune cells in diverse environments in the absence of specific

molecular interactions with the surrounding medium.

In good agreement, the generation of retrograde membrane flow in apicomplexan parasites

is not strictly dependent on parasite actin, as shown for Plasmodium sporozoites [11,17] and

Toxoplasma tachyzoites [5]. In the case of Plasmodium [11,17], it was demonstrated that beads

bound to the surface are translocated to the posterior at the same speed, even after disrupting

actin, and parasites’ motility could be correlated to the generation of retrograde flow. How-

ever, if the bead is kept in place with a laser trap, disruption of F-actin results in reduced force

pulling at the bead, leading to the conclusion that retrograde membrane flow and force pro-

duction can be uncoupled. Similarly, in the case of Toxoplasma, disruption of actin results in

significantly less association of beads to the surface of the parasite, but bound beads are trans-

located at a similar speed to the posterior of the parasite [5]. Together these data support an

interpretation in which retrograde membrane flow can occur independently of parasite actin.

However, strong attachment and force generation require the parasite’s glideosome under

these conditions, leading to the question of how retrograde membrane flow is generated.

A link between T. gondii motility and endocytosis
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It is well accepted that motility of apicomplexans depends on the regulated secretion of the

apically localised micronemes [4,18]. While this dependency was previously attributed to the

secretion of surface ligands, such as the microneme protein 2 (MIC2), that are required as

force transmitters, it is also possible that polarised secretion is required for the generation of

retrograde membrane flow, akin to the fountain-flow model [15] and as previously suggested

for T. gondii [5,19]. However, to date, it is not fully understood how apicomplexan parasites

maintain a constant cell surface during motility by removing excess membrane deposited on

the surface due to microneme secretion. While the shedding of membrane trails during motil-

ity [20–22] might contribute to a constant membrane content and cell surface, it appears likely

that, as suggested by the fountain-flow model [15], excess membrane could also be internalised

and recycled during motility.

Here, we set out to determine if extracellular parasites are capable of efficiently recycling

membrane and taking up exogenous material via endocytosis. To date, uptake of exogenous

material has been demonstrated during the intracellular stages of the parasite [23–26]. In other

eukaryotes, endocytic processes play key roles in membrane dynamics, making it an important

participant in cell motility [27,28]. Endocytosis can occur via different mechanisms and is

roughly defined as clathrin-dependent endocytosis (CDE) or clathrin-independent endocyto-

sis (CIE) [29]. Apicomplexan genomes lack many factors known to be involved in the endocy-

tic system, such as endosomal sorting complexes required for transport (ESCRT) complexes,

and previous reverse genetic analysis suggested that the remaining factors were repurposed to

contribute to the biogenesis and maintenance of unique organelles, such as the inner mem-

brane complex (IMC) or the secretory organelles [30–35].

Here, we demonstrate the implication of endocytosis in the maintenance of retrograde

membrane flow and provide a link between this process and gliding motility, in good agree-

ment with the fountain-flow model [14,15]. We demonstrate the capacity of extracellular

tachyzoites to take up phospholipids, nanogold particles (NGPs), antibodies directed against

parasite surface proteins, and Concanavalin A (ConA). Interestingly, endocytic uptake of

material follows the known secretory pathway of the parasite, with accumulation of material in

the rhoptries but also vacuolar-like compartment (VAC; or plantlike vacuole [PLV] [36,37]).

Together our data demonstrate the existence of a secretory-endocytic cycle during parasite

motility that appears to be critical for motility and therefore fully supports the hypothesis that

a fountain-flow model operates, as suggested for other motile eukaryotic cells [15].

Results

Fountain-flow model and evidence of endocytosis implication in T. gondii
motility

The fountain-flow model has been recently demonstrated to operate during eukaryotic cell

motility, such as in Dictyostelum discoideum [15]. This model predicts the establishment of a

retrograde membrane flow by localised secretion (at the anterior end of the cell), followed by

endocytic recycling to ensure membrane balance. In this respect, apicomplexan parasites are a

prime example of highly polarised cells, in which the micronemes are secreted at the apical tip

during gliding (Fig 1A), which, in analogy to D. discoideum, should result in retrograde mem-

brane flow.

To analyse retrograde membrane flow in T. gondii tachyzoites, we previously adapted a

translocation assay [38] that follows the transport of fluorescent beads to the posterior end of

the parasite. This ‘capping’ has been directly implicated in the motility of T. gondii and, impor-

tantly, can occur in the absence of the acto-myosin motor [5]. Three phenotypes are observable

during this assay: ‘Unbound’ parasites without beads, ‘Bound’ parasites with beads distributed

A link between T. gondii motility and endocytosis
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Fig 1. Evidence for involvement of endocytosis in T. gondii motility. (A) Fountain-flow model described for

Dictyostelium by Takana and colleagues 2017 [13], applied to T. gondii. While it was demonstrated that motility

depends on the apical secretion of micronemes, the role of endocytosis to ensure membrane balance and recycling is

unclear. (B) Representative pictures of the three phenotypes observed in the bead translocation experiment. Unbound:

parasite without beads, that either did not interact or lost its interaction with the beads; Bound: parasite with beads

around the plasma membrane; Capped: parasite that translocated bound beads to its basal pole. Scale bar, 1 μm. (C)

Time-lapse analysis of bead translocation. Parasites were incubated with latex beads. Capping was recorded by live

microscopy to determine the average time required for capping. Scale bar, 1 μm. (D) Quantification of motility in

capped and bound parasites. Capped: n = 175; Bound: n = 166. (E) Quantification of gliding parasites in combination

with bead translocation. Only parasites with unbound (no beads) and capped beads (beads accumulated at the

posterior end) were observed gliding. No instances in which beads were bound at the plasma membrane, but not

capped, were observed; n = 38. (F) Time-lapse illustration of a parasite that translocated beads and initiates gliding

motility. Scale bar, 5 μm. The white arrow indicates the initial position of the basal pole of the parasite. The blue arrow

indicates the actual position of the basal pole of the parasite. Capping occurred within the first 26 seconds, and then the

parasite initiated motility. (G) Quantification of bead translocation using indicated inhibitors or parasite mutants.

A link between T. gondii motility and endocytosis
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along the plasma membrane, and ‘Capped’ parasites that have translocated the bead to their

basal pole (Fig 1B).

We performed live imaging of the capping process in the presence and absence of different

inhibitors or proteins that interfere with the acto-myosin system, secretion, or endocytic pro-

cesses in other eukaryotes (Fig 1C and S1 Video). We incubated parasites with 40-nm latex

beads at 4 ˚C to allow binding of the beads to the parasites surface. Upon a temperature shift

to 37 ˚C, capping occurs rapidly, and beads accumulate at the posterior pole of the parasite

within approximately 25 seconds (Fig 1C). Importantly, we found that parasite gliding corre-

lates with bead translocation (Fig 1D, 1E and 1F and S2 Video), because approximately 84% of

motile parasites showed translocation, while approximately 16% of motile parasites did not

have any beads on the surface (Fig 1E), indicating that no initial binding of the beads occurred

or that beads were shed after translocation, as seen in S3 Video. Importantly, no gliding para-

sites were identified in which beads remained immobile while bound to the parasite plasma

membrane (Fig 1D and 1E). Interestingly, parasites can translocate beads without moving,

demonstrating that retrograde flow can occur in the absence of gliding, while gliding does not

occur in the absence of retrograde flow.

The mechanism underlying parasite membrane balance is unknown and suggested to

depend exclusively on membrane shedding and processing of micronemal transmembrane

proteins [39]. We hypothesised that, akin to other eukaryotes, membrane balance is also

ensured by endocytic recycling of excess membrane and proteins [15]. To determine if T. gon-
dii retrograde flow could be dependent on a similar mechanism, we tested conditions that

inhibit or alter secretion/exocytosis using established inhibitors of endocytosis or parasite

strains, such as parasites expressing the dominant negative (DN) version of dynamin-related

protein B (DrpB) [33], in which micronemes organelles are absent (Fig 1G).

Parasites incubated on ice bound beads (93% ± 3%), but no translocation was observed; a

temperature shift to 37 ˚C resulted in translocation in approximately 27% of parasites. Inter-

estingly, incubation of parasites in the presence of 0.5 μM Cytochalasin D (CD; a drug used to

disrupt F-actin) did not result in significant reduction of bead translocation (Fig 1G), confirm-

ing that retrograde membrane flow can occur in the absence of a functional acto-myosin sys-

tem, as reported previously [5]. In sharp contrast, abrogation of microneme secretion, either

by incubation of parasites in endo buffer [2] or depletion of the microneme organelles (by

inducing DrpB-DN with shield in intracellular parasites for a full lytic cycle before experimen-

tation), abolishes bead translocation, demonstrating that retrograde flow depends on polarised

secretion, as predicted by the fountain-flow model (Fig 1A; [15]). To evaluate if capping could

depend on endocytosis, we used well-established inhibitors of endocytosis, such as Phenylar-

sine oxide [40] and trifluoroperazine [41], as well as a DN strain for clathrin heavy chain

(CHC-DN) [31]. While the endocytosis inhibitors abrogated capping (2% ± 1% and 10% ± 1%

Unbound (white), bound (grey), and capped (black). Parasites expressing dominant negative versions of DrpB-DN or

CHC-DN were induced with 1 μM Shield-1, as described previously [31,33]. Inhibitors were used at the following

concentrations: 0.5 μM CD, 10 μM phenyl arsine oxide, or 50 μM TFDC. Mean values of three independent assays are

shown ± SD. ���p< 0.001 in a two-tailed Student t test compared with RH without inhibitors. �Data extracted from

Whitelaw and colleagues, 2017 [4]. (H) Analysis of the average time required for capping under the conditions shown

in (G). Analysis in the presence of endocytosis inhibitors was not possible, because no capping could be observed

under these conditions. (I-K) Trail deposition assay of WT parasites compared with motor mutants (act1 cKO, mlc1
cKO, and myoA KO) and endocytosis inhibitors (phenylarsine and TFDC). (I) Representative pictures, scale bar, 5 μm.

(J) Quantification of the trail deposition. Mean values of three independent assays are shown ± SD. (K) Analysis

of average gliding speed. Mean values of three independent assays are shown ± SD. For each bar graph, the

corresponding data can be found in S1 Data. CD, Cytochalasin D; CHC, clathrin heavy chain; cKO, conditional

knockout; Ctrl, control non-induced; DN, dominant negative; DrpB, dynamin-related protein B; Endo, endo buffer;

KO, knockout; TFDC, trifluoperazine dihydrochloride; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3000060.g001
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capping, respectively), expression of DN CHC did not result in significant reduction of cap-

ping (−Shield: 21% ± 3%, +Shield: 29% ± 3% capping). Together, these results suggest that ret-

rograde membrane flow depends on an endocytic mechanism, which might be a form of CIE.

In good agreement, to date, no clathrin-coated vesicles have been identified at the parasite sur-

face, and a previous study did not implicate CHC in endocytosis in T. gondii [31].

Next, we determined the average time required for capping under the same conditions as

above (Fig 1H). In control parasites, capping occurs within 26 ± 7 seconds. Interference of

F-actin using CD did not have a significant effect on capping time (29 ± 22 seconds). In con-

trast, interfering with secretion of micronemes by expression of DrpB-DN resulted in a signifi-

cantly longer capping time of 63 ± 36 seconds (in the few instances when capping could be

observed). Incubation of parasites with endocytosis inhibitors (phenylarsine or trifluorpera-

sine) resulted in a complete block of capping. No difference was observed upon expression of

CHC-DN (−Shield: 31 ± 18 seconds versus +Shield: 35 ± 14 seconds), again suggesting CIE.

When motility was analysed using the same conditions, we found a clear correlation

between capping and motility. We confirmed previous findings [5,42], demonstrating that

interference with the acto-myosin system of the parasite results in significantly reduced overall

gliding motility (Fig 1I and 1K). Importantly, the few parasites still capable of gliding did so at

similar speeds as control parasites (Fig 1J), as described previously [5]. In contrast, conditions

that resulted in less and/or slower capping resulted in both fewer parasites capable of initiating

gliding motility (Fig 1I and 1J) and parasites moving significantly slower (Fig 1K), when com-

pared with controls.

Together these data strongly suggest a link between parasite motility and retrograde mem-

brane flow, which appears to rely on secretion and endocytosis, as proposed by the fountain-

flow model (Fig 1A).

Extracellular T. gondii tachyzoites can take up labelled lipids

To investigate if membrane balance could be, akin to other eukaryotes, maintained by endocy-

tic recycling of excess membrane [15], we assessed the capacity of T. gondii to take up different

fluorescent lipids, such as FM-dyes, Cell-Mask, Top-Fluor lysophosphatidyl choline (Tf-LPC),

Top-Fluor lysophosphatidic acid (Tf-LPA), or the fluorophore Bodipy (Fig 2A and S1 Fig). In

all cases, we observed efficient uptake of the dyes/lipids, with a clear difference between 4 and

37 ˚C. In cases of FM-dyes and Cell-Mask, the signals obtained appeared rather diffuse within

the parasite (S1 Fig). In contrast, uptake of labelled phospholipids was characterised by the

occurrence of sharp, discernible vesicles inside the parasite that might be associated with the

parasite’s secretory system (Fig 2A and 2B and S1C Fig). These lipids were taken up at compa-

rable rates (Bodipy: 83% ± 10%, Tf-LPC: 66% ± 9%, Tf-LPA: 68% ± 6%; S1 Fig), and uptake

only occurred when parasites were incubated at 37 ˚C, while no similar uptake was observed at

4 ˚C or when dead parasites were incubated with these lipids (Fig 2A and 2B). No toxic effect

or alteration in invasion, replication, or parasite morphology was observed in parasites incu-

bated with Tf-LPA (S2 Fig). Together, these data demonstrate an active uptake of phospholip-

ids in the majority of extracellular parasites. Next, we analysed the uptake of Tf-LPA over time

(Fig 2C and 2D). Interestingly, intracellular Tf-LPA can be detected rapidly (from 17% ± 2%

after 1 minute to 68% ± 2% 30 minintes after addition; Fig 2C). Furthermore, the average

number of intracellular vesicles increases over time, from approximately 2 at 1 minute to

approximately 6 at 30 minutes after addition of Tf-LPA (Fig 2D).

As described above, we were able to observe a link between the capping of beads and motil-

ity. To determine if a similar correlation between retrograde membrane flow and lipid uptake

exists, we co-incubated parasites with 40-nm beads and Tf-LPA (Fig 2E, 2F and 2G). The

A link between T. gondii motility and endocytosis
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Fig 2. A link between retrograde flow and phospholipid uptake. (A-B) Uptake of phospholipids: Tf-LPA was analysed at 37 ˚C and 4 ˚C. Pre-fixed

parasites with PFA were also incubated with Tf-LPA at 37 ˚C. Incubation at 37 ˚C demonstrates a strong uptake with vesicle formation. Uptake is

inhibited at 4 ˚C or when the parasites were fixed prior to incubation. (A) Left panel: percentage of Tf-LPA–positive parasites in each of the tested

conditions. Right panel: average number of Tf-LPA–positive vesicles per parasite in each of the tested conditions. Mean values of three independent

assays are shown ± SD. ���p< 0.001 obtained in a two-tailed Student t test when comparing Tf-LPA at 37 ˚C versus 4 ˚C and live parasites plus Tf-LPA

versus fixed parasites plus Tf-LPA at 37 ˚C. (B) Example images obtained for the quantification as shown in (A). Scale bar, 1 μm. (C-D) Dynamics of

uptake were analysed in a time point assay from 0 to 30 minutes after addition of Tf-LPA. (C) Average number of parasites that show overall uptake and

(D) average number of vesicles per positive parasite were determined. Mean values of three independent assays are shown ± SD. (E-G) Association of

retrograde flow and endocytosis was analysing by adding Tf-LPA during the bead translocation experiment. (E) Representative picture of capping and

A link between T. gondii motility and endocytosis
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addition of lipids did not significantly increase the overall capping activity of T. gondii (per-

centage of capped parasites: −Tf-LPA, 31% ± 6% versus +Tf-LPA, 33% ± 6%; Fig 2F). Interest-

ingly, we observed a strong correlation between uptake of Tf-LPA and bead translocation,

because almost all capped parasites (86% ± 9%) also presented Tf-LPA–positive vesicles, as

illustrated in Fig 2E. In contrast, parasites that only bound latex beads to their surface did not

show a high percentage of Tf-LPA uptake (12% ± 8%, Fig 2E and 2F). This correlation between

capping and Tf-LPA uptake was also demonstrated using live microscopy (Fig 2G and S4

Video). Taken together, these data clearly illustrate that T. gondii is able to take up labelled lip-

ids, which accumulate within vesicles. Moreover, this uptake correlates with the generation of

retrograde flow.

Lipid uptake converges with the secretory pathway

We were interested in defining the pathway followed by incorporated lipids in detail. To this

end, we performed colocalisation assays of Tf-LPA–positive vesicular structures with previ-

ously described markers of the parasite secretory pathway (S1 Table 1, Fig 3, and S3 Fig). The

highest accumulation of Tf-LPA could be observed in the VAC (31% ± 9%), a plantlike vacuole

in the parasite [36,37]. The second-highest colocalisation was observed with RAB18 (27 ± 4), a

marker of the endoplasmic reticulum (ER) [32]. Tf-LPA also accumulated, to a lesser extent,

with other organelles such as endosomes (vacuolar protein sorting-associated protein [VPS]

53: 12% ± 5%), Golgi (Rab4: 9% ± 3% and CHC: 9% ± 3%), rhoptries (ROP1: 10% ± 3%), and

the endosome-like compartment (ELC) (pro-M2AP 3% ± 1%). No colocalisation was observed

with Rab2 (ER), VPS35 (ELC), MIC2 (micronemes), and GRA1 (dense granules; S3 Fig). With

a time course analysis of the colocalisation rate with the VAC, we observe that it is increased

over time (Fig 3C), suggesting a trafficking of labelled vesicles to the VAC as described for

intracellular parasites [23]. Together, these data demonstrate that Tf-LPA accumulates in vesi-

cles that are trafficked through the secretory pathway, with a certain accumulation in the VAC.

A link between endocytosis and exocytosis of lipids

If a secretory-endocytic cycle operates within the parasite, it is possible that material entered

via the endocytic route could be recycled and secreted. To test this hypothesis, parasites were

pretreated with Tf-LPA for 30 minutes before excess material was washed away and parasites

transferred to new dishes containing minimal media (MM), complete media (CM), or host

cells with CM for 30 minutes before fixation (Fig 4A, 4B and 4C and S4 Fig). In MM, the per-

centage of parasites containing Tf-LPA was as high as before washing (t = 0 68% ± 2% versus

MM 64% ± 5%). In contrast, when the parasites were placed in CM or in the presence of host

cells, a drastic reduction was detected both in the percentage of parasites containing Tf-LPA

(t = 0, 68% ± 2% versus CM 49% ± 7% versus invaded 32% ± 2% or attached parasites 30% ±
3%, Fig 4A), as well as the average number of vesicles per positive parasites (Fig 4B).

Furthermore, under these conditions a different distribution of Tf-LPA became evident

(Fig 4C and 4E and S3 Fig), in which LPA localised to the apical pole, as confirmed by colocali-

sation with α-ROP1 (Fig 4E), the basal end of the parasite and the parasite surface (Fig 4C1-3).

Tf-LPA was also observed in trails when parasites were incubated with host cells, suggesting

Tf-LPA uptake. An example of each phenotype can be observed: capped (1); bound (2). Scale bar, 1 μm. (F): Left panel: quantification of the percentage

of capped and bound parasites that also took up Tf-LPA; right panel: percentage of capped or bound beads only in parasites showing Tf-LPA uptake.

Most parasites that translocated beads also endocytosed Tf-LPA. Mean values of three independent assays are shown ± SD. (G): Time-lapse analysis of

bead translocation in the presence of Tf-LPA. Examples of a parasite in which translocation occurred (top) and did not occur (bottom) are shown. Scale

bar, 1 μm. For each bar graph, the corresponding data can be found in S1 Data. PFA, paraformaldehyde; Tf-LPA, Top-Fluor lysophosphatidic acid.

https://doi.org/10.1371/journal.pbio.3000060.g002
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Fig 3. Endocytosed lipids traverse the secretory system. (A-B) Tf-LPA vesicle localisation was determined using indicated

parasite strains expressing markers for the parasite trafficking system: dd-RAB18-myc: ER, dd-RAB4-myc: Golgi, VPS53-HA:

TGN, VPS35-HA: Retromer/ELC, CHC-HA: Golgi, TGN, AP2α-HA parasites [31,32,43,44]. Antibodies against the VAC (α-

CPL [37]), rhoptries (α-ROP1), micronemes (α-MIC2), and dense granules (α-GRA1) were used after fixation on RH parasites.

(A) Representative pictures of colocalisations are shown (see also S4 Fig); scale bar, 1 μm. (B) Quantification of colocalisations.

Mean values of three independent assays are shown ± SD. (C) Accumulation of Tf-LPA in the VAC over time. Percentage of

colocalisation between Tf-LPA and CPL was determined from 0 to 30 minutes after Tf-LPA addition. Mean values of three

independent assays are shown ± SD. For each bar graph, the corresponding data can be found in S1 Data. CHC, clathrin heavy

chain; CPL, cathepsin L; dd, destabilisation domain; ELC, endosome-like compartment; ER, endoplasmic reticulum; Tf-LPA,

Top-Fluor lysophosphatidic acid; TGN, Trans-Golgi network; VAC, vacuolar-like compartment; VPS, vacuolar protein sorting-

associated protein.

https://doi.org/10.1371/journal.pbio.3000060.g003
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Fig 4. Tf-LPA follow an endocytic-exocytic pathway. (A-E) Exocytosis of Tf-LPA was evaluated 30 minutes after

placing parasites under three conditions: MM, CM, and CM with host cells. In the latter case, invaded and attached

parasites were analysed separately. A clear diminishing of the signal is observed over time in stimulating conditions,

demonstrating secretion of previously endocytosed Tf-LPA. (A) Percentage of Tf-LPA–positive parasites and (B)

average number of vesicles were calculated. Mean values of three independent assays are shown ± SD. ���p< 0.001

in a two-tailed Student t test. (C) Illustration of parasites transferred onto host cells. SAG1 staining (prior to

permeabilisation) was used to differentiate intra- from extracellular parasites. Scale bar, 1 μm. From top to bottom:

attached parasites: (1) parasite with apical accumulation of Tf-LPA, (2) parasite with partial membrane labelling with

Tf-LPA, (3) parasite with Tf-LPA accumulated at the basal pole, (4) parasite with Tf-LPA left in the trail. Asterisk (�)

indicates the apical pole of the parasite. (D) Quantification of Tf-LPA signal intensity between attached and invaded

parasites. (E) IFA using α-ROP1 confirming the apical presence of Tf-LPA. (F, G) Secretion of Tf-LPA inside evacuoles

was tested. Colocalisation between Tf-LPA (green) and α-ROP1 (red), as observed in evacuoles. (H-I) Impact of

secretion stimulation on the accumulation of Tf-LPA vesicles. Exocytosis was stimulated using the calcium ionophore

A23187. (H) The uptake Tf-LPA under the presence or absence of A23187 was quantified. Mean values of three
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secretion of the Tf-LPA–positive vesicles (Fig 4C-4). The hypothesis of secretion of Tf-LPA

was also supported by a decreased intensity of the Tf-LPA signal in attached and invaded para-

sites (Fig 4D).

To further evaluate if Tf-LPA could be secreted, we tested the presence of Tf-LPA in eva-

cuoles [45]. Indeed, LPA-positive evacuoles could be identified, as evidenced by costaining

with ROP1 antibodies, when parasites were allowed to attach to host cells in the presence of

CD ([45], Fig 4F and 4G), demonstrating that internalised Tf-LPA can be secreted.

Finally, to investigate secretion of internalised Tf-LPA in more detail, we tested the accu-

mulation of Tf-LPA in vesicles in the presence or absence of 2 μM calcium ionophore A23187,

which triggers microneme secretion (Fig 4I and 4J). The addition of calcium ionophore led to

a significant reduction of Tf-LPA accumulation inside the parasites. Taken together, these data

illustrate that labelled lipids follow an endocytosis-secretion cycle.

Endocytosis of exogenous material

After investigating lipid uptake, we wondered if extracellular parasites, like intracellular para-

sites [23], are capable of taking up bulkier material. In the absence of well-established protein

markers for endocytosis, we first decided to analyse the uptake of 10-nm NGPs that are regu-

larly used to analyse endocytosis in other eukaryotes [46]. These inert particles are dragged

passively with the membrane flow but will not be specifically trafficked to certain destinations,

once inside the parasite. When wild-type parasites were incubated with NGPs, it was possible

to detect NGP uptake in vesicular structures (Fig 5A and 5B and S5A Fig) that appeared to be

similar to the structures observed with Tf-LPA (Fig 5B, S4 Fig and S5 Video). To investigate

whether NGPs and Tf-LPA colocalise in the same compartments, we performed correlative

light and electron microscopy (CLEM). Parasites were incubated with Tf-LPA and NGPs for

30 minutes before fixation and indeed we observed NGPs in Tf-LPA–positive vesicles (Fig

5C). As observed in the case of Tf-LPA vesicles, NGPs were found in different locations within

extracellular tachyzoites, because electron microscopy demonstrated that NGPs accumulated

within vesicles of varied density (Fig 5D). They were found in at least three types of vesicles:

large translucent vesicles (300–500 nm, Fig 5D panel 1), medium-sized dense vesicles (215–

375 nm, Fig 5D panel 2), and small vesicles (80–200 nm, Fig 5D panel 3 and 30). In good agree-

ment with the Tf-LPA colocalisation experiments, NGPs were observed inside the VAC (Fig

5E) but also inside the rhoptries, supporting our observation that internalised Tf-LPA could be

detected in evacuoles (Fig 4F and 4G). This indicates that internalised membranes are recycled

towards the secretory organelles (Fig 5F). In contrast, NGPs were never seen in dense granules

or micronemes. We also identified potential invaginations at the surface of the parasite that

contain NGPs, probably representing the point of uptake (Fig 5G). These structures are delin-

eated by the plasma membrane, demonstrating that NGPs are actively taken up in an endocy-

tic-like process. Importantly, these invaginations are not electron dense, and a classical

clathrin cage could never be detected, suggesting a CIE mechanism (Fig 5G).

While the inert nature of NGPs is advantageous to visualise uptake using electron micros-

copy, they do not represent a physiological substrate for endocytosis. Therefore, we were inter-

ested if surface protein and other external material is taken up by the parasite in a similar way.

We analysed the internalisation of the major surface antigen 1 (SAG1) and microneme

independent assays are shown ± SD. ���p< 0.001 in a two-tailed Student t test. (I) Representative pictures of both

uptake conditions. Scale bar, 1 μm. For each bar graph, the corresponding data can be found in S1 Data. AFU,

arbitrary fluorescent unit; CM, complete media; Ctrl, control; IFA, immunofluorescence assay; MM, minimal media;

P.C., phase contrast; Tf-LPA, Top-Fluor lysophosphatidic acid.

https://doi.org/10.1371/journal.pbio.3000060.g004
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Fig 5. NGPs are taken up by T. gondii. (A-B) Uptake of NGPs was tested on RH- and RH Tf-LPA–treated parasites

with 10-μm Cy5 conjugated gold beads. Parasites were imaged using 3D-SIM microscopy. NGPs were found to

accumulate below GAP45, as illustrated by either maximum intensity projection (A) or ortho-view (B). Scale bar,

1 μm. (C) CLEM imaging of Tf-LPA and NGP uptake. After the uptake experiment, parasites were imaged using

super-resolution microscopy (scale bar, 1 μm) before imaging by EM to evaluate if NGPs and Tf-LPA are inside the

same vesicles. White square: close-up illustrated by the first TEM image; black square, TEM close-up. (D-G) TEM

localisation of NGP. Scale bar size is indicated on the images. (D) Representative images of the different types of

vesicles observed: (1) large translucent vesicles (300–500 nm), (2) medium-sized dense vesicles (215–375 nm), and (3)

small vesicles (80–200 nm). (E) Localisation of the NGPs in the VAC, (F) localisation of the NGPs in rhoptry bulbs

(labelled with R) by TEM. (G) Image of a potential entry point as an invagination of the plasma membrane containing

NGP. CLEM, correlative light and electron microscopy; EM, electron microscopy; NGP, nanogold particle; TEM,

transmission electron microscopy; Tf-LPA, Top-Fluor lysophosphatidic acid; VAC, vacuolar-like compartment;

3D-SIM, three-dimensional structure illumination microscopy.

https://doi.org/10.1371/journal.pbio.3000060.g005
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proteins 6 and 8 (MIC6 and MIC8 present in different subsets of micronemes [32]). We incu-

bated extracellular parasites in the presence of α-SAG1 at 4 ˚C and then coupled them directly

with the secondary antibodies before placing the parasites at 37 ˚C. After 30 minutes, parasites

were fixed and analysed for uptake of the antibodies. Incubation of parasites at 4 ˚C for 30

minutes or direct fixation after labelling showed no visible uptake (Fig 6A and 6B), with the

majority of parasites exhibiting a labelling of the plasma membrane (92% ± 4%). In contrast,

upon treatment of parasites for 30 minutes at 37 ˚C, we observed three different conditions

(Fig 6A and 6B): (1) membrane labelling: antibodies were at the plasma membrane and/or can

be concentrated at different areas of the plasma membrane other than the basal pole; (2)

capped: antibodies accumulated at the basal pole of the parasite or are found in trails; (3)

uptake: antibodies are detected inside the parasite, demonstrating their uptake. Membrane

labelling was predominantly observed, followed by capping (33% ± 3%). In contrast, endocyto-

sis could only be observed in 11% ± 4% of the parasites. It was noticed that some parasites

presented two or three of the described labelling at the same time (S5B Fig). Interestingly,

treatment of parasites with Tf-LPA leads to a significant increase in the internalisation of α-

SAG1 (from 11% ± 4% to 41% ± 8%), concomitant with a reduction of the capped signal (from

33% ± 4% to 24% ± 3%) (Fig 6A and 6C and S5C Fig). Importantly, internalised SAG1 coloca-

lises with Tf-LPA (approximately 90%), but not in the classical, very bright vesicles as illus-

trated in Fig 6C, indicating that it follows the same pathway or that both pathways are

convergent.

Next, we performed analogous experiments to analyse the uptake of the micronemal pro-

teins MIC6 (Fig 6D and 6E and S5D Fig) and MIC8 (Fig 6F and 6G and S5E Fig). Because

micronemal proteins are stored within their organelles, we stimulated their secretion using cal-

cium ionophore A23187 prior to shifting parasites to 4 ˚C and addition of the respective anti-

bodies. Interestingly, the behaviour of both MIC6 and MIC8 appears to be almost identical

(Fig 6D–6G), although they were previously shown to be present in different subsets of micro-

nemes [32]. Upon incubation of parasites at 37 ˚C, the majority of parasites lost their antibody

staining, relative to SAG1 or the 4 ˚C control, indicating that micronemal proteins (or micro-

nemal proteins bound by an antibody) are efficiently removed from the surface, probably by

the activity of rhomboid proteases [47,48]. Under these conditions, internalisation of MIC6 or

MIC8 was only seen in a few parasites (approximately 5% and 2%, respectively). Similarly to

the effect observed for SAG1 uptake, we found that addition of Tf-LPA significantly stimulated

uptake of MIC6 and MIC8 (Fig 6D–6G).

Next, we wished to evaluate if endocytosis of surface proteins occurs in a more general

manner. To that end, we used ConA, an excellent marker for membrane-bound endocytic

activity in Trypanosoma [49]. When parasites were kept at 4 ˚C, no significant labelling could

be detected. However, upon shifting to 37 ˚C, we observed membrane-bound, capped, and

internalised ConA, similar to the situation seen for surface proteins (Fig 6H and 6I and S5F

Fig). Internalised ConA could be detected in 30% ± 7% of parasites (Fig 6H and 6I). Interest-

ingly, addition of Tf-LPA led only to a minor increase in ConA uptake (37% ± 11%), indicating

that it is not a general stimulator of bulk endocytosis.

Taken together, these data show that surface proteins can be endocytosed by extracellular

parasites and that addition of Tf-LPA stimulates the uptake of some membrane proteins. LPA

is a phospholipid that is naturally present in serum [50] and has been reported to be an endo-

cytosis stimulator in mammalian cells [51,52]. While it is possible that LPA acts as a physiolog-

ical stimulator for endocytosis in T. gondii, future experiments are required to clarify the

mechanism of stimulation.

Finally, to confirm the results obtained with NGPs (Fig 5), we performed transmission

electron microscopy (TEM) on SAG1 uptake using the conditions described above, using
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Fig 6. Uptake of surface proteins by T. gondii extracellular tachyzoites. (A-C) Uptake of SAG1 was analysed by

labelling live parasite with αSAG1 and secondary antibodies at 4 ˚C before an additional incubation at 4 ˚C, 37 ˚C, or

37 ˚C with Tf-LPA for 30 minutes. (A) Quantification of the uptake of αSAG1 after 30 minutes. Parasites were divided

into three categories: Membrane labelling, Capped, and Uptake. Mean values of three independent assays are

shown ± SD. (B) Representative pictures of the αSAG1 labelling in indicated conditions. Blue, αSAG1; red, αGAP45;

green, Tf-LPA. In RH, clear αSAG1 signal could be observed below GAP45. Scale bar, 1 μm. (C) Uptake of αSAG1 and

Tf-LPA imaged by 3D-SIM microscopy. αSAG1 (blue); Tf-LPA (green). Scale bar, 1 μm. (D-E) MIC6 uptake: similar

experiment to that for SAG1 uptake was performed for MIC6. (D) Quantification of parasites with membrane

labelling, capped, and MIC6 uptake at 4˚C, 37˚C, or 37˚C with Tf-LPA. Mean values of three independent assays are

shown ± SD. (E) Representative pictures of MIC6 labelling after 30 minutes in the indicated conditions. Blue, αMIC6;

red, αSAG1; green, Tf-LPA. Scale bar, 1 μm. (F-G) MIC8 uptake: conditions were analogous to MIC6 and SAG1. (F)

Quantification of parasites with membrane labelling, capped, and MIC8 uptake at 4˚C, 37˚C, or 37˚C with Tf-LPA.

Mean values of three independent assays are shown ± SD. (G) Representative pictures of the αMIC8 labelling after 30

minutes in the different tested conditions. Blue, αMIC8; red, αSAG1; green, Tf-LPA. Scale bar, 1 μm. (H-I) ConA

uptake was measured by the addition of Alexa-350 conjugated ConA to parasites at 4 ˚C and performing a temperature

shift. (H) Quantification of parasites with membrane labelling, capped, and uptake of ConA at 37 ˚C. Mean values of
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secondary antibodies coupled to 15-nm nanogold beads (secondary α-NGP; Fig 7). In good

agreement with the results obtained above, three types of labelling were observed, with second-

ary α-NGP at the membrane (Fig 7A), accumulated (capped) at the basal pole of the parasite

(Fig 7B), and endocytosed (Fig 7C and 7D). Consistent with the IFA quantification, membrane

labelling was observed more regularly, followed by capped and then endocytosed SAG1. When

internalised, secondary α-NGP were observed in translucent vesicles, as observed previously

with NGP alone (Figs 5D3, 7C and 7D). As described for IFA, multiple areas on a single para-

site could be labelled with the antibody, as illustrated in Fig 7E. Here, we can observe second-

ary α-NGP bound to the plasma membrane (panel 2), in very close contact with the plasma

membrane, with a potential membrane invagination below (panel 5), endocytosed near the

plasma membrane (panel 1), near the ER (panel 4), and inside small vesicles connected to the

plasma membrane (panel 3).

Discussion

Extracellular parasites are capable of internalising exogenous material

Many proteins involved in endocytic uptake in other eukaryotes have been implicated in

essential roles for trafficking of proteins to the unique secretory organelles of the parasite, giv-

ing rise to the hypothesis that apicomplexans repurposed their limited repertoire of trafficking

factors to adapt to a parasitic lifestyle [53]. However, recent reports convincingly demonstrated

uptake of host material during the intracellular development of the parasite and suggested that

the endocytic pathway merges with the secretory pathway of the parasite [23,25]. This endocy-

tic process occurs rapidly, with endocytosed proteins eventually reaching the T. gondii VAC

[36,37] or Plasmodium food vacuole [25], in which they are digested [24]. In fact, McGovern

and colleagues highlight an important point in their study [23]: endocytosis was always pres-

ent, but fast protein degradation prevented classical methods of detection to work without

using inhibitors. Here, we demonstrate that extracellular parasites, like intracellular parasites,

are well capable of endocytosis and that the parasite appears to recycle surface proteins, such

as SAG1 or micronemal proteins. Previous reports suggested that extracellular parasites are

also capable of endocytosis, although only a minority of parasites within a population appear

to take up material [54,55]. In good agreement, we demonstrate here that uptake of exogenous

material, including surface proteins, occurs at a relatively low rate without stimulation, while

lipid dyes are efficiently taken up, indicating efficient membrane recycling. Our attempts to

perform live-cell imaging to measure the rate of uptake were so far unsuccessful due to photo-

toxicity. All experiments had to be performed in the dark, before fixation and visualisation of

uptake.

Similar to the situation in intracellular parasites [24], we found that endocytosed material

(NGP, phospholipids, or SAG1) colocalises with established markers of the endomembrane

system of the parasite, such as ER, Golgi, VAC/PLV, and rhoptries, with a clear accumulation

in the VAC/PLV. This strongly suggests that the same system is employed in intra- and extra-

cellular parasites and that it converges with the secretory system of the parasite. In ultrastruc-

tural analysis, we validated this analysis and also identified several invaginations, where NGPs

appear to enter the parasite. These invaginations are morphologically distinct from the previ-

ously identified micropore of the parasite [55] and were seen at different locations along the

three independent assays are shown ± SD. (G) Representative pictures of the ConA labelling after 30 minutes. Blue,

ConA; Red, αGAP45. Uptake of ConA occurred more frequently than capping of ConA labelling. Scale bar, 1 μm. For

each bar graph, the corresponding data can be found in S1 Data. ConA, Concanavalin A; Tf-LPA, Top-Fluor

lysophosphatidic acid; 3D-SIM, three-dimensional structure illumination microscopy.

https://doi.org/10.1371/journal.pbio.3000060.g006
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Fig 7. SAG1 uptake analysed by TEM. Uptake of SAG1 was also analysed by TEM. Secondary antibodies were

coupled with 15-nm gold beads to label the parasites before incubation at 37 ˚C with Tf-LPA. (A-D) The three

different labels observed by immunofluorescence assays (Fig 6) were also observed by TEM. (A) Parasite with αSAG1

bound to the membrane. (B) Parasite with αSAG1 capped. (C-D) Parasite with αSAG1 endocytosed at different

locations. As for the NGP, the gold-coupled antibodies seem to be in translucent vesicles. (E) Transversal cut of a

parasite, illustrating that labelling in different parts of the parasite can be observed at the same time even in TEM. Five

close-up images are showing the different types of interactions. (1) Beads below the plasma membrane, (2) beads at the

surface of the plasma membrane, (3) beads located on a budding vesicle, (4) bead located near the ER, (5) bead in very

tight interaction with the membrane. ER, endoplasmic reticulum; NGP, nanogold particle; TEM, transmission electron

microscopy; Tf-LPA, Top-Fluor lysophosphatidic acid.

https://doi.org/10.1371/journal.pbio.3000060.g007
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surface of the parasite, suggesting a dynamic system, in which the point of endocytosis can

fluctuate. It is also worth mentioning that we failed to detect clathrin-coated pits at the point

of entry.

To date, our attempts to obtain mechanistic insights regarding the endocytic process have

been unsuccessful. While established endocytosis inhibitors show the expected effects, i.e.,

marked decrease in uptake of material, analysis of different DN mutants, such as dynamin,

clathrin, or Rab-GTPases, did not show significant effects on endocytosis. While this might

suggest that the analysed factors are not involved in endocytosis, it is possible that the condi-

tional mutants used do not have the right kinetics for down-regulation of the respective

genes, because this might already cause parasite death within the host cell, before extracellu-

lar endocytosis can be analysed. Therefore, faster conditional regulation systems should be

used in future studies to re-analyse these factors, such as the auxin-inducible degron system

[56].

A link between gliding motility, retrograde membrane flow, secretion, and

endocytosis

Retrograde membrane flow is implicated in many different motility modes of eukaryotic cells,

and recent evidence demonstrates important roles for membrane trafficking in the regulation

of cell migration in a variety of contexts. Indeed, findings made more than two decades ago

demonstrated that all motile cells demonstrate the capping of surface antigens and, although

sometimes regarded as artificially induced [57], recent studies demonstrated different impor-

tant roles of the endocytic-secretory cycle. For example, the endocytic-secretory cycle is

required for the internalisation and recycling of adhesion receptors, such as integrins or synde-

cans [58]. Another critical role is the maintenance of a constant cell surface [59,60], and recent

studies demonstrated that the secretory-endocytic cycle can generate force for cell motility in

an adhesion-independent way [15,16]. Importantly, amoeboid cells demonstrate rapid migra-

tion accompanied by rearward membrane flow, which was caused by increased endocytosis

and membrane trafficking from back to front. O’Neill and colleagues, 2018, demonstrated that

perturbation of polarised trafficking inhibited migration, and the ratio of cell migration and

membrane flow was closely correlated [16].

The situation in T. gondii appears similar, and our results suggest that in addition to the

acto-myosin motor complex, a fountain-flow-like model operates to generate retrograde

membrane flow [57]. Previous studies implicated the generation of a retrograde membrane

flow in parasite motility [5,11,17,61]. Surprisingly, interference with the acto-myosin system

of the parasite did not abrogate bead translocation in T. gondii [5] or Plasmodium sporozo-

ites [11,17], leading to the conclusion that retrograde membrane flow and force production

can be uncoupled and that retrograde membrane flow can occur independently of parasite

actin.

Using pharmacological and genetic disruption of the secretory-endocytic cycle, we demon-

strate here a link between endocytosis, secretion, generation of retrograde membrane flow,

and ultimately the gliding motility of the parasite, strongly suggesting that the fountain-flow

model applies to T. gondii.
It is still unclear how the latex beads interact with the surface of the parasite. In our experi-

ments, the latex beads have not been pretreated, because no specific receptor-ligand interac-

tions are known. Again, these results correlate well with Quadt and colleagues, 2018, in which

no differences between naked and streptavidin-coated beads were observed when analysing

pulling forces using a laser trap [17].
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The impact of Endo-buffer and DrpB DN on bead binding (Fig 2G) suggests that this

interaction is dependent on micronemal proteins/material present at the plasma membrane.

However, the exact mechanisms involved in this interaction(s) have still to be elucidated.

The fountain-flow model and motility systems in apicomplexan parasites

Just like other eukaryotes, apicomplexan parasites have to move in different environments that

exert different strains that the parasites need to overcome. It is possible that under some condi-

tions (for example, 2D surfaces) the parasites’ glideosome is the main mode of action to ensure

gliding motility, while in 3D or constricted environments, other motility modes become more

important. Recent studies on cell migration in other eukaryotes combined reverse genetics,

biophysics, mathematical modelling, and biomimetics to describe several novel mechanisms

for cell motility, from more traditional amoeboid systems that depend on actin-myosin gener-

ated force, to fountain-flow, which depends on secretion-endocytosis or osmotic engines that

depend on water permeation within a constricted environment [15,16,58,62–65]. Here, we

provide compelling evidence that apicomplexans can, in addition to the glideosome, employ at

least one alternative motility system that depends on secretion and endocytosis, strongly sup-

porting the fountain-flow model [15]. However, it would not be surprising if future studies

would discover additional motility mechanisms for apicomplexans. In fact, using mathemati-

cal modelling, we previously suggested that a gelsolation model is, in principle, a possible

mode of motility [9], but to date, experimental evidence supporting this mode of action is

missing. Furthermore, we do not believe that the different motility modes are mutually exclu-

sive within the same environment, which is also reflected by the fact that residual motility is

observed upon disruption of T. gondii’s acto-myosin system, both in 2D and 3D environments

[5]. Indeed, it is likely that fountain-flow and acto-myosin act highly synergistically during

parasite motility and might very well depend on each other. Both motility models depend on

the secretion of micronemes—in one case, to generate membrane flow, and in the other case,

to deposit micronemal proteins that act as force transmitters for the glideosome.

Regarding the apicomplexan fountain-flow system, we propose the following mode of

action, based on the presented data (Fig 8A): apical microneme secretion (1) initiates retro-

grade membrane flow (2), where excess membrane (and proteins) needs to be either recycled

(2) or shed in surface trails (30). The endocytosed vesicles converge with the parasites’ secretory

system and are transported to different organelles, including the secretory organelles, closing

the cycle (Fig 8B).

Outlook and summary

While we demonstrate here an important role of secretion and endocytosis for the generation

of retrograde membrane flow, which is required during gliding motility of apicomplexan para-

sites, we see this study as the first scratch on the surface and think the following questions

need to be addressed in future studies: (1) we believe that apicomplexans—like other eukary-

otes—can employ different modes of motility, depending on the environment in which they

have to move. (2) At this point, we are not able to discriminate between the relative involve-

ment of the acto-myosin system versus fountain-flow during motility, which will require

future biophysical studies. (3) It is unclear which surface molecules, apart from SAG1, are

recycled during motility. (4) The activation of endocytosis by LPA needs to be further ana-

lysed. (5) The trafficking factors involved in endocytosis need to be identified. It is likely that

the parasite evolved specific structures for endocytic uptake, as suggested by the presence of

the invagination seen in TEM analysis. A recent genome-wide screen [66] demonstrated the

essentiality of hundreds of hypothetical genes. Many of them might well be involved in an
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essential uptake pathway, required for gliding motility and host cell invasion. Therefore, with

the establishment of a reliable uptake assay, it is now possible to phenotypically screen for

essential genes involved in this process, which will not only result in a fundamental under-

standing of this process but also in the identification of novel intervention strategies.

Fig 8. Fountain-flow model suggested for T. gondii. (A) General overview model of the fountain-flow applied to T.

gondii. (1) Secretion from the secretory organelles at the apical end. (2) Retrograde flow allows bead translocation

along the plasma membrane. (3, 30) After translocation, membrane material can be either recycled (3) or left in a trail/

cleaved (30). (4) Endocytosed material is trafficked inside the parasite along the secretory system and accumulates in

the VAC. (5) Incorporated lipids can be secreted in a complete endocytic-secretory cycle. (B) Summary of the different

locations observed in TEM. (1) Entry from the plasma membrane via an invagination. (2) Perinuclear localisation,

likely to be ER or Golgi. (3) Trafficking to the VAC. (4) Trafficking to the secretory organelles (rhoptry, R). ER,

endoplasmic reticulum; TEM, transmission electron microscopy; VAC, vacuolar-like compartment.

https://doi.org/10.1371/journal.pbio.3000060.g008
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Materials and methods

Cloning DNA constructs

All primers used in this study are listed in S2 Table and were synthesised by Eurofins (Wolver-

hampton, United Kingdom).

Culturing of parasites and host cells

Human foreskin fibroblasts (HFFs) were grown on TC-treated plastics and maintained in Dul-

becco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM

L-glutamine, and 25 mg/mL gentamycin. Parasites were cultured on HFFs and maintained at

37 ˚C and 5% CO2.

T. gondii transfection and selection

To generate stable parasite lines, 1 × 107 freshly lysed RH Δhxgprt or RH-DiCre Δku80 para-

sites were transfected with 20 μg of DNA by AMAXA electroporation. Drug selection was car-

ried out with either mycophenolic acid and xanthine, as described in [67], or with bleomycin.

Generation of parasite lines

The following strains have been previously produced and published: CHC-HA, destabilisation

domain (dd)-DrpBDN, dd-CHCDN, act1 conditional knockout (cKO), mlc1 cKO, myoA KO,

dd-Rab18-myc, dd-Rab4-myc, and dd-RAB2-myc [5,31–33].

VPS35-HA (TGGT1_242660), VPS53-HA (TGGT1_297230)

C-terminal 3 × HA epitope endogenous tagging of the vps35 and vps53 genes was carried out

by the ligation-independent cloning (LIC) strategy, as previously described [68]. Briefly, 15 μg

of each plasmid was linearised by EcoRV (LIC vps35-HA) or PstI (LIC vps53-HA) within the

homologous region for efficient homologous recombination and was transfected into Δku80
parasites. The resultant transfectants were selected for clonal lines expressing VPS35-HA or

VPS53-HA in the presence of 25 μg/mL mycophenolic acid and 40 μg/mL xanthine and subse-

quently cloned by limiting dilution. Specific integration was confirmed by analytical PCR on

genomic DNA using primers upstream the homology region inserted in the LIC vector and a

reverse primer binding the LIC HA region (S2 Table).

Internal tagging of AP2α (TGGT1_272600) by transient CRISPR-Cas9

expression

sgRNA plasmids were generated by PCR amplification of the guide RNA into a pU6-DHFR

plasmid using Q5 mutagenesis kit and following manufacturer procedures (NEB, Ipswich,

MA). RH Δku80Δhxgpt parasites were transiently transfected using an AMAXA 4D Nucleofec-

tor (Lonza, Basel, Switzerland) with Cas9-YFP, each sgRNA plasmid, and reparation template

PCR product. Briefly, a total of 10 μg of precipitated plasmid DNA and PCR product and

approximately 9 × 105 parasites were resuspended in 20 μL of Buffer P3 (P3 Primary Cell 4D

Nucleofector X kit S [32 RCT], Lonza, Basel, Switzerland). Parasites were transfected in a

multi-well format using programme FI-158, transferred to an HFF monolayer, and fixed at 24

and 48 hours post transfection. Parasites were considered transfected if expressing GFP-Cas9

in the nucleus. Checking of the integration was made as described above.
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Inducing conditional knockdown lines and protein expression

dd-DrpBDN, dd-CHCDN, dd-DrpBDN, dd-Rab18-myc, dd-Rab4-myc, and dd-RAB2-myc para-

sites (S1 Table) were grown until the vacuoles were ready to lyse. Shield was added 6 hours

prior to the parasites being used for experiments. act1 cKO and mlc1 cKO were induced as

previously described [5].

Phenotypic characterisations

Trail deposition assay. Gliding assays were performed as described before [5]. Briefly,

freshly lysed parasites were allowed to glide on FBS-coated glass slides for 30 minutes before

they were fixed with 4% paraformaldehyde (PFA) and stained with α-SAG1 under nonper-

meabilising conditions. The mean values of three independent experiments ± SD were deter-

mined. Where drugs were used, parasites were pre-incubated for 10 minutes in the respective

concentration before the start of the assay: 0.5 μM CD (Sigma, St. Louis, MO), 10 μM phenyl

arsine oxide (Sigma, St. Louis, MO), or 50 μM trifluoperazine dihydrochloride (TFDC)

(Sigma, St. Louis, MO). The same concentrations were used in the different assays.

Secretion assays. Microneme secretion was analysed by monitoring the release of MIC2

into the culture medium, as described previously (Huynh and colleagues, 2006). The effect of

Tf-LPA on both constitutive and induced secretion was evaluated.

Two-dimensional motility assay. Time-lapse video microscopy was used to analyse the

kinetics over a 2D surface, similarly as previously described [6]. Briefly, Ibidi μ-dish35mm-high

was coated in 100% FBS for 2 hours at room temperature. Freshly egressed parasites were

added to the dish. Time-lapse videos were taken with a 40× objective at 1 frame per second

using a DeltaVision Core microscope. Analysis was made using ImageJ wrMTrckr tracking

plugin. For analysis, 20 parasites were tracked during both helical and circular trails, with the

corresponding distance travelled and average and maximum speeds determined. Mean values

of three independent experiments ± SD were determined.

Invasion assay. For the assay, 5 × 104 freshly lysed parasites were allowed to invade a con-

fluent layer of HFFs for 1 hour after 30 minutes of treatment with or without Tf-LPA. Subse-

quently, five washing steps were performed for removal of extracellular parasites. Cells were

then incubated for a further 24 hours before fixation with 4% PFA. Afterwards, parasites were

stained with the α-IMC1 antibody [9]. The number of vacuoles in 15 fields of view was

counted. Mean values of three independent experiments ± SD were determined.

Capping assays. Capping assays were performed as previously described [5]. Briefly, Ibidi

live cell dishes (29 mm) were coated with 0.1% poly-L-Lysine for 30 minutes and washed with

MilliQ water. Fluorescent latex beads (FluoSpheres, 0.04 μm, Invitrogen, Carlsbad, CA) were

diluted at 5 μL in 400 μL of a mixture of Hanks Balanced Salt Solution (HBSS) and HEPES (25

mM; described hereafter as H-H buffer). After a short spin (10 seconds, 6,000g), the superna-

tant was recovered and left on ice for 30 minutes before use. Parasites were harvested, pelleted,

and resuspended in cold H-H buffer to achieve 107 parasites/mL. Parasites were then trans-

ferred to poly-L-Lysine coated dishes and left on ice for 10 minutes. A total of 5 μL of diluted

beads was added to 250 μL of H-H buffer and added to the parasites. Immediately, the dish

was incubated at 37 ˚C for 30 minutes. The experiment was stopped by the addition of 2 mL of

4% PFA and incubated at 4 ˚C for 10 minutes. The PFA was washed gently and parasite nuclei

stained with Hoechst 0.01%. For time course analysis, parasites were fixed at different time

points after the addition of the beads. For the drug and buffer assays, parasites were incubated

for 10 minutes in the buffer of interest before their incubation on the coated dish. In these

cases, all other experimental components were also diluted using the same buffer. For each

experiment (n), an average of 1,000 parasites were analysed. Total numbers of parasites,
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number of parasites without beads, with beads bound, and with beads capped were quantified.

Mean values of three independent experiments ± SD were determined.

Live capping assays. Capping assays were adapted for live microscopy. Parasites were pre-

pared as described above. After the addition of the diluted beads (5 μL of beads in 250 μL of

H-H buffer) to the parasites, the dish was incubated for 10 minutes on ice. After incubation,

the media was exchanged for 500 μL of ice-cold H-H buffer without beads. The dish was then

directly transferred to the microscope. Time-lapse videos were taken with a 60× objective at 1

frame per second using a DeltaVision Core microscope. Analysis was made using ImageJ.

Tf-LPA, Tf-LPC, Bodipy, and NGP uptake. Tf-LPA (Avanti Polar Lipids, Alabaster,

AL), Tf-LPC (Avanti Polar Lipids, Alabaster, AL), bodipy (BODIPY 493/503, Thermo Fisher,

Waltham, MA), and NGPs (Gold Nanoparticles 10 nM Cy5.5 labelled, Nanocs, New York,

NY) uptake assays were derived from the capping assays. Briefly, Ibidi live cell dishes (29 mm)

were coated with 0.1% poly-L-Lysine for 30 minutes and washed with MilliQ water. NGPs

were diluted at 8 μL in 400 μL H-H buffer and left on ice for 30 minutes before use. Tf-LPA,

Tf-LPC, and Bodipy were diluted to a concentration of 4 μM in H-H buffer. Parasites were

harvested, pelleted, and resuspended in cold H-H Buffer to achieve 107 parasites/mL. Parasites

were then transferred to poly-L-Lysine–coated dishes and left on ice for 20 minutes. A total of

250 μL of H-H buffer (±4 μM Tf-LPA, Tf-LPC, or Bodipy), with or without 8 μL of diluted

beads, was added to the parasites. Immediately, the dish was incubated at 37 ˚C for 30 minutes.

The experiment was stopped by addition of 2 mL of 4% PFA and incubated at 4 ˚C for 10 min-

utes. The PFA was washed gently and parasite nuclei stained with Hoechst 0.01%. For time

course analysis, parasites were fixed at different time points (0, 1, 5, 10, 15, 20, and 30 minutes)

after the addition of the beads. For the drug and buffer assays, parasites were incubated for 10

minutes in the buffer of interest before their incubation on the coated dish. Mean values of

three independent experiments ± SD were determined.

αSAG1/MIC6/MIC8 uptake. RH parasites were incubated with α-SAG1 on Ibidi live cell

dishes (29 mm) coated with neat FBS for 1 hour at 4 ˚C. After that, three washes with ice-cold

PBS were performed, and the secondary antibodies (Alexa-350) were incubated with the para-

sites for 1 hour at 4 ˚C. After washing again, Tf-LPA was or was not added as described above.

After 30 minutes of incubation at 37 ˚C/4 ˚C, parasites were fixed and uptake evaluated. Mean

values of three independent experiments ± SD were determined. For MICs, the same experi-

ment was done with a stimulation with 2 μM of calcium ionophore for 5 minutes at 37 ˚C

prior the incubation with the primary antibodies. For αSAG1 uptake TEM, secondary antibod-

ies were coupled with 15-nm gold beads instead of Alexa dye.

Tf-LPA secretion evaluation. RH parasites were treated for 30 minutes with Tf-LPA

(2 μM final) with or without particles, as described above. After 30 minutes, the media was

exchanged twice and parasites washed thoroughly to collect and transfer them to a new dish

with either H-H buffer (MM), DMEM supplemented with 10% fetal bovine serum, 2 mM L-

glutamine and 25 mg/mL gentamycin (CM), or coverslips with host cell in CM (Host cell).

After 30 minutes of incubation, parasites were fixed and the presence of Tf-LPA and NGP

was evaluated. For parasites on host cells, a dual SAG1 (without permeabilisation) and

GAP45 (with permeabilisation) was carried out to differentiate invaded from extracellular

parasites. Mean values of three independent experiments ± SD were determined and com-

pared to a control fixed at the end of the first 30 minutes of incubation with Tf-LPA and

NGP (t = 0).

Evacuoles formation. Assay performed as previously described [45]. Briefly, after incu-

bating parasites with Tf-LPA for 30 minutes as described above and washing with ice-cold

PBS, parasites were treated with 1 μM CytD for 10 minutes at room temperature. They were
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then transferred to an HFF monolayer for 10 minutes at 37 ˚C in the presence of 1 μM CytD;

the monolayers were rinsed in PBS prior to PFA fixation. IFA using ROP1 antibodies was

done to detect the formation of evacuoles.

Plaque assay. Parasites were treated for 30 minutes with or without Tf-LPA (2 μM Final).

A total of 1 × 103 parasites were inoculated on a confluent layer of HFFs and incubated for 5

days, after which the HFFs were washed once with PBS and fixed with ice-cold MeOH for 20

minutes. HFFs were stained with Giemsa, with plaque area measured using Fiji software.

Mean values of three independent experiments ± SD were determined.

Immunofluorescence analysis. Immunofluorescence analysis was carried out as previ-

ously described [9]. Briefly, parasites were fixed in 4% paraformaldehyde for 10 minutes at

4 ˚C. Afterwards, coverslips were blocked and permeabilised in 2% BSA and 0.2% Triton X–

100 in PBS for 20 minutes. The staining was performed using the indicated combinations of

primary antibodies for 1 hour, followed by the incubation with secondary AlexaFluor 350,

AlexaFluor 488, AlexaFluor 594, or AlexaFluor 633 conjugated antibodies (1:3,000, Invitrogen,

Carlsbad, CA) for another 45 minutes, respectively. For quantification, the mean values of

three independent experiments ± SD were determined. For time course IFA, parasites were

fixed at different time points (5, 10, 15, 20, and 30 minutes) after the addition of the beads and

imaged as described above.

SIM imaging. Super-resolution structure illumination microscopy (SR-SIM) was carried

out using an ELYRA PS.1 microscope (Zeiss, Oberkochen, Germany). Images were acquired

using a Plan Apochromat 63×, 1.4 NA oil immersion lens, recorded with a CoolSNAP HQ

camera (Photometrics, Tucson, AZ), and analysed using ZEN Black software (Zeiss, Oberko-

chen, Germany) and ImageJ software.

TEM of NGP. Extracellular parasites (±Tf-LPA/NGP, see NGP uptake above) were fixed

with 2.5% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4, after the indicated incubation.

Samples were processed for routine electron microscopy as described previously [69] and

examined in a JEOL 1200EX electron microscope.

CLEM. Uptake assays were carried out in gridded glass bottom petri dishes (MatTek, Ash-

land, MA). Parasites presenting clear Tf-LPA and NGP uptake were imaged with SR-SIM in

an ELYRA PS.1 microscope (Zeiss, Oberkochen, Germany), and the material was fixed in

2.5% glutaraldehyde and 4% paraformaldehyde in 0.1 M phosphate buffer and processed for

TEM, as described previously [69]. Thin sections of the same areas imaged in three-dimen-

sional structure illumination microscopy (3D-SIM) were imaged in a Tecnai T20 transmission

electron microscope (FEI, the Netherlands).

TEM of SAG1 labelling with secondary antibody conjugated to 15-nm gold beads.

Extracellular parasites (±LPA/αSAG1, see αSAG1 uptake above) were fixed with 2.5% (v/v)

glutaraldehyde in 0.1 M phosphate buffer, pH 7.4, after the indicated incubation. The parasites

were washed three times at room temperature with PBS (137 mM NaCl2, 2.7 mM KCl, 10 mM

Na2HPO4, 1.8 mM KH2PO4, pH 7.4) and postfixed with 1% (w/v) osmium tetroxide for 1

hour. Subsequent to washing with PBS and water, the samples were stained en bloc with 1%

(w/v) uranyl acetate in 20% (v/v) acetone for 30 minutes. Samples were dehydrated in a series

of graded acetone and embedded in Epon 812 resin. Ultrathin sections (thickness, 60 nm)

were cut using a diamond knife on a Reichert Ultracut-E ultramicrotome. Sections were

mounted on collodium-coated copper grids, post-stained with lead citrate (80 mM, pH 13),

and examined with an EM 912 transmission electron microscope (Zeiss, Oberkochen, Ger-

many) equipped with an integrated OMEGA energy filter operated in the zero-loss mode at 80

kV. Images were acquired using a 2k × 2k slow-scan CCD camera (Tröndle Restlichtverstär-

kersysteme, Moorenweis, Germany).
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Supporting information

S1 Fig. Uptake of FM-dyes, Cell-Mask, and phospholipids. (A) Representative pictures of

FM-dye 64FX uptake upon a temperature shift from 4 ˚C to 37 ˚C. The experiment was done

on RH parasites expressing cytosolic GFP. (B) Representative pictures of Cell-Mask uptake

upon a temperature shift from 4 ˚C to 37 ˚C. The experiment was done on RH parasites

expressing cytosolic GFP. (C) Uptake of phospholipids: extended version of Fig 2A. Tf-LPA,

Tf-LPC, and Bodipy were analysed at 37 ˚C and 4 ˚C. Incubation at 37 ˚C demonstrates the

uptake of all tested molecules. Mean values of three independent assays are shown ± SEM.
���p< 0.001 in a two-tailed Student t test. (Right panels) Examples of images obtained for the

quantification, as shown in the graph. Scale bar, 1 μm. For each bar graph, the corresponding

data can be found in S1 Data. GFP, green fluorescent protein; Tf-LPA, Top-Fluor lysopho-

sphatidic acid; Tf-LPC, Top-Fluor lysophosphatidyl choline.

(TIF)

S2 Fig. Tf-LPA does not impact T. gondii morphology and fitness. (A) TEM comparison of

RH- and Tf-LPA–treated parasites. No difference was observed between Tf-LPA− and Tf-

LPA+ parasites. (B) Constitutive secretion assay. Secretion of MIC2 was tested for both RH

and RH Tf-LPA parasites in CM after 30 minutes. Treatment with Tf-LPA does not impact

secretion or processing of MIC2. (C) Induced secretion assay. Secretion of MIC2 was tested

for both RH, RH + Tf-LPA, and RH + calcium ionophore A23187 in MM for 5 minutes. Treat-

ment with Tf-LPA does not impact secretion of MIC2 in opposition to calcium ionophore,

which stimulates the secretion, as expected. (D) Invasion rate of parasites treated with or with-

out Tf-LPA. Tf-LPA did not impact parasite invasion. (E) Treatment with Tf-LPA did not

impact parasite growth, as determined by plaque assay. Incubation of the parasite with Tf-LPA

did not impact the number or the size of the plaques, illustrating that the molecule is not toxic.

For each bar graph, the corresponding data can be found in S1 Data. TEM, transmission elec-

tron microscopy; Tf-LPA, Top-Fluor lysophosphatidic acid.

(TIF)

S3 Fig. Supplementary IFA localisations and control. (A) Extended colocalisation analysis,

as shown in Fig 4. Here, examples of ‘no-colocalisation’ are shown. No colocalisation was

observed with Rab2, MIC2, or GRA-1. Scale bar, 1 μm. (B) Comparison of the tested IFA con-

ditions between RH and RH + Tf-LPA. Scale bar, 1 μm. No signal alteration was observed by

Tf-LPA addition. (C) IFA of an invaded parasite using anti-ROP1 antibodies. Tf-LPA, Top-

Fluor lysophosphatidic acid.

(TIF)

S4 Fig. Tf-LPA can be secreted. (A) Representative images of parasites transferred into MM

or CM. t = 0 represents the parasite after the initial 30-minute uptake. At t = 30 minutes, MM

led to a phenotype similar to t = 0. In the case of CM, the number of positive vesicles was

clearly reduced (CM1), and some parasites showed a different labelling (CM2). Scale bar,

1 μm. (B) Illustration of parasites transferred onto host cells. SAG1 staining (prior to permea-

bilisation) was used to differentiate intra- from extracellular parasites. Two intracellular para-

sites are shown: (1) Parasite invaded with internal Tf-LPA vesicles, (2) parasite invaded

without internal Tf-LPA vesicles. Scale bar, 1 μm. CM, complete media; MM, minimal media;

Tf-LPA, Top-Fluor lysophosphatidic acid.

(TIF)

S5 Fig. Uptake material is observed below the plasma membrane. Illustration of the uptake

of NGP in RH without Tf-LPA stimulation. Parasites were imaged by 3D-SIM microscopy.
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Scale bar, 1 μm. Green, αGAP45; red, NGP; blue, nucleus. Z-slice of a parasite showing NGP

uptake and its respective Ortho-view clearly showing the accumulation below IMC (αGAP45)

and therefore the uptake in NGP in unstimulated parasites. Scale bar, 1 μm. (B) Illustration of

the simultaneous presence of different types of the labelling (membrane, capped, uptake)

observed during αSAG1 uptake assay. Scale bar, 1 μm. (C) Z-slice of a parasite showing

αSAG1 (blue) uptake and its respective Ortho-view clearly showing the accumulation below

IMC (αGAP45, red). Green Tf-LPA. Scale bar, 1 μm. (D) Z-slice of a parasite showing αMIC6

(blue) uptake and its respective Ortho-view clearly showing the accumulation below the

plasma membrane (αSAG1, red). Green Tf-LPA. Scale bar, 1 μm. (E) Z-slice of a parasite

showing αMIC8 (blue) uptake and its respective Ortho-view clearly showing the accumulation

below the plasma membrane (αSAG1, red). Green Tf-LPA. Scale bar, 1 μm. (F) Z-slice of a

parasites showing ConA (blue) uptake and its respective Ortho-view clearly showing the accu-

mulation below IMC (αGAP45, red). ConA, Concanavalin A; IMC, inner membrane complex;

NGP, nanogold particle; Tf-LPA, Top-Fluor lysophosphatidic acid; 3D-SIM, three-dimen-

sional structure illumination microscopy.

(TIF)

S1 Table. Markers used to characterise the nature of the vesicles labelled with Tf-LPA and/

or NGP. We used different antibodies or parasite strains to localise different organelles within

the cell. Parasite strains with overexpressed marker are highlighted in blue (second copy tagged)

and endogenously tagged proteins in orange. Parasite strains reported for the first time are indi-

cated with an asterisk (�). NGP, nanogold particle; Tf-LPA, Top-Fluor lysophosphatidic acid.

(XLSX)

S2 Table. List of primers. List of primers used in the cloning and confirmation of integration

for the strains VPS35-HA (Retromer complex), VPS53-HA (GARP complex), and Adaptor

protein AP2-HA.

(XLSX)

S1 Video. Capping in wild-type parasites.

(AVI)

S2 Video. Gliding of parasites after translocation of beads.

(AVI)

S3 Video. Loss of capped beads in gliding parasites.

(AVI)

S4 Video. Accumulation of Tf-LPA in capped parasites. Tf-LPA, Top-Fluor lysophosphati-

dic acid.

(WMV)

S5 Video. Localisation of NGP within vesicles. NGP, nanogold particle.

(AVI)

S1 Data. Raw data were regrouped in a single excel file. Each sheet is named after its corre-

sponding figure.

(XLSX)
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