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Abstract

In this paper, necessary and sufficient conditions are obtained so that the neutral functional
difference equation

∆m(yn − yτ(n))+ qnG(yσ(n)) = fn, n ≥ n0,

admits a positive bounded solution, where m ≥ 1 is an odd integer, ∆ is the forward difference
operator given by ∆yn = yn+1 − yn; {fn}, {qn}, are sequences of real numbers with qn ≥ 0,
G ∈ C(R,R). The results of this paper improve and extend some recent work [6, 15].
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1 Introduction

In this paper, necessary and sufficient conditions are obtained so that the neutral functional
difference equation

∆m(yn − yτ(n))+ qnG(yσ(n)) = fn, n ≥ n0, (1.1)

admits a positive bounded solution, where m ≥ 1 is an odd integer, ∆ is the forward difference
operator given by ∆yn = yn+1 − yn; {fn}, {qn}, are sequences of real numbers with qn ≥ 0. It is
supposed that G ∈ C(R,R), is non-decreasing and xG(x) > 0. Moreover, it will be assumed that
τ(n) and σ(n) are increasing sequences of integers, such that they are less than n and approach
+∞ as n→∞.

All over the world, during the last decade or two a lot of research activity is undertaken on the
study of the oscillation of neutral delay difference equations(NDDEs in short). For recent results
and references see the monographs [1, 4, 5], the papers [2, 3], [6], [9]–[16] and the references cited
therein. In these papers the authors have studied the oscillation and non-oscillation of solutions of
the NDDE

∆(yn − pnyn−k) + qnG(yn−r) = fn (1.2)
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under the condition
∞∑

n=n0

nm−1qn =∞, (1.3)

or the condition
∞∑

n=n0

nm−2qn =∞. (1.4)

However, in this work we prove that the necessary and sufficient conditions for the oscillation of all
bounded solutions of

∆m(yn − yτ(n))+ qnG(yσ(n)) = 0, n ≥ n0, (1.5)

is
∞∑

n=n0

nmqn =∞, (1.6)

which is weaker than (1.3) and (1.4). Thus our results improve the following theorems, which are
particular cases of some of the results in [6] and [14].

Theorem 1.1. [6, Corollary 4.6] Let (1.3) holds. Further, assume that the following conditions
hold.

(H1) σ(n)/n ≥ µ > 0 for all n ≥ n0;

(H2) lim inf |u|→∞
G(u)
u
≥ δ > 0.

Then every bounded solution of (1.5) oscillates.

Theorem 1.2. [6, Theorem 4.9] Let τ(n) = n − k for some k. Assume that (H1), (H2) hold.
Further assume the following condition.

(H3) Suppose that for every subsequence {qnj} of {qn}, we have

∞∑
j=0

(nj)
m−1qnj =∞,

or equivalently lim infn→∞ n
m−1qn > 0.

Then every bounded solution of (1.5) oscillates or tends to zero as n→∞.

Note that (H3) implies (1.3).

Theorem 1.3. [14] Suppose that m is odd and the following condition holds.

∞∑
n=n0

qn =∞.

Then every bounded solution of (1.5) oscillates.

Let n0 be a fixed nonnegative integer. Let ρ = min{τ(n0), σ(n0)}. By a solution of (1.1) we
mean a real sequence {yn} which is defined for all integers n ≥ ρ and satisfies (1.1) for n ≥ n0.
Clearly if the initial condition

yn = an for ρ ≤ n ≤ n0 +m− 1, (1.7)

is given then the equation (1.1) has a unique solution satisfying the given initial condition (1.7).
A solution {yn} of (1.1) is said to be oscillatory if for every positive integer n0 > 0, there exists
n ≥ n0 such that ynyn+1 ≤ 0, otherwise {yn} is said to be non-oscillatory.
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2 SOME LEMMAS

For our main results we need the following definitions and lemmas.

Definition 2.1. For any positive integer n ≥ n0, define

τ−1(n) = {m : m is an integer ≥ n and τ(m) = n}.

Remark 2.2. The function τ−1 defined above is the inverse function of τ(n). Since τ(n) is
increasing, it is one-one. If n is a positive integer greater than or equal to n0 then τ−1(τ(n)) = n.

Definition 2.3. Define

τ0−1(n) = n, τ1−1(n) = τ−1(n), τ2−1(n) = τ−1(τ−1(n)).

For any positive integer i > 2 we define

τ i−1(n) = τ−1(τ i−1
−1 (n)).

Definition 2.4. Define the factorial function(See[7, page-20]) by

n(k) := n (n− 1) . . . (n− k + 1) ,

where k ≤ n and n ∈ Z and k ∈ N. Note that n(k) = 0, if k > n.

Lemma 2.5. [6, Lemma 2.4] Let p ∈ N and x (n) be a non oscillatory sequence which is positive
for large n. If there exists an integer p0 ∈ {0, 1, . . . , p− 1} such that ∆p0w (∞) exits(finite) and
∆iw (∞) = 0 for all i ∈ {p0 + 1, . . . , p− 1}. Then

∆pw (n) = −x (n) (2.1)

implies

∆p0w (n) = ∆p0w (∞) +
(−1)p−p0−1

(p− p0 − 1)!

∞∑
i=n

(i+ p− p0 − 1− n)(p−p0−1) x (i) (2.2)

for all sufficiently large n.

Lemma 2.6. [1] Let zn be a real valued function defined for n ∈ N(n0) = {n0, n0 + 1, ...}, n0 ≥ 0
and zn > 0 with ∆mzn of constant sign on N(n0) and not identically zero.Then there exists an
integer p0, 0 ≤ p0 ≤ m− 1, with m+ p0 odd for ∆mzn ≤ 0 and (m+ p0) even for ∆mzn ≥ 0, such
that

∆izn > 0 for n ≥ n0, 0 ≤ i ≤ p0,

and

(−1)p0+i∆izn > 0, for n ≥ n0, p0 + 1 ≤ i ≤ m− 1.

Lemma 2.7. [8] If
∑
un and

∑
vn are two positive term series such that

limn→∞
(
un
vn

)
= l, where l is a non-zero finite number, then the two series converge or diverge

together. If l = 0 then convergence of
∑
vn implies the convergence of

∑
un. If l = ∞ then

divergence of
∑
vn implies the divergence of

∑
un.

Lemma 2.8 (Schauder Fixed Point Theorem [5]). Let S be a closed, convex and nonempty subset
of a Banach space X. Let B : S → S be a continuous mapping such that B(S) be a relatively
compact subset of X. Then B has at least one fixed point in S. This means there is an x ∈ S such
that Bx = x.
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Further, the following Lemma, that can be easily proved, generalizes [9, Lemma 2.1].

Lemma 2.9. Let {fn} and {gn} be sequences of real numbers for n ≥ 0 such that

fn = gn − pgτ(n), n ≥ n0

where p ∈ R, p 6= 1 and τ(n) ≤ n,∀n, with limn→∞ τ(n) = ∞. Suppose that limn→∞ fn = λ ∈ R
exists. Then the following statements hold.

(i) If lim infn→∞ gn = a ∈ R then λ = (1− p)a.

(ii) If lim supn→∞ gn = b ∈ R, then λ = (1− p)b.

Remark 2.10. In the above lemma, if p = 1 then (see [5, Corollary 1.5.1, page 19]) λ = 0.

3 MAIN RESULTS

We need the following two assumptions for our results in this section.

|
∞∑
i=1

∞∑
j=τi−1(n0)

jm−1fj | <∞. (3.1)

∞∑
i=1

∞∑
j=τi−1(n0)

jm−1qj <∞. (3.2)

Remark 3.1. We may recall the well known factorial function n(r) = (n− 1)(n− 2)...(n− r + 1),
if r ≤ n, otherwise it is zero. Since (n− r + 1)r < n(r) < nr, then from Lemma 2.7, it follows that
(3.2) implies and implied by the condition

|
∞∑
i=1

∞∑
j=τi−1(n0)

(j − τ i−1(n0) +m− 1)(m−1)qj | <∞ (3.3)

and (3.1) implies and implied by

|
∞∑
i=1

∞∑
j=τi−1(n0)

(j − τ i−1(n0) +m− 1)(m−1)fj | <∞. (3.4)

Our first result reads as follows.

Theorem 3.2. Suppose that for each positive integer n ≥ n0, fn ≤ 0, and that (3.1) holds. Then
(1.1) admits a positive bounded solution if and only if (3.2) holds.

Proof. Assume that (3.2) holds. We show that (1.1) admits a positive bounded solution. Using the
continuity of G, we set

µ = max
{
|G(x)| : 2 ≤ x ≤ 6

}
. (3.5)

Then by (3.2) and (3.1) and Remark 3.1, we find a positive integer N1 ≥ n0 such that n ≥ N1

implies

| µ

(m− 1)!

∞∑
i=1

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)qj | < 1 (3.6)
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and

| µ

(m− 1)!

∞∑
i=1

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)fj | < 1. (3.7)

Choose N2 ≥ N1 such that k ≥ N1, where k = min{τ(N2), σ(N2)}. Let X = lN1
∞ , the Banach

space of bounded real sequences x = {xn}, with the supremum norm

‖x‖ = sup{|xn| : n ≥ N1}.

In this space, we define the closed and convex set

S =
{
y ∈ X : 2 ≤ yn ≤ 6, n ≥ N1

}
. (3.8)

Now we define the operator B, from S to X, such that fixed points of B are solutions of (1.1). For
y ∈ S, define

(By)n =


(By)N2 , N1 ≤ n ≤ N2,

(−1)m

(m−1)!

∑∞
i=1

∑∞
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)qjG(yσ(j))

+ (−1)m−1

(m−1)!

∑∞
i=1

∑∞
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)fj + 4, n ≥ N2 .

For y = {yn} ∈ S, we have (By)n ≤ 6 and (By)n ≥ 2. Hence, By ∈ S. Then using (3.3) and (3.4)
and proceeding as in the proof of [6, Theorem 5.4] we prove BS is relatively compact. By Lemma
2.8, there is a fixed point y0 in S such that By0n = y0n, for n ≥ N2, writing yn for y0n we obtain

yn =
(−1)m

(m− 1)!

∞∑
i=1

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)qjG(yσ(j))

+
(−1)m−1

(m− 1)!

∞∑
i=1

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)fj + 4.

For n ≥ N2, it follows that

yn − yτ(n) =
(−1)m−1

(m− 1)!

∞∑
j=n

(j − n+m− 1)(m−1)qjG(yσ(j))

+
(−1)m

(m− 1)!

∞∑
j=n

(j − n+m− 1)(m−1)fj

Applying ∆ to both sides of the above equation for m times, we arrive at (1.1). This solution is
bounded below by 2 which is a positive constant.

Conversely assume that (1.1) admits a positive bounded solution {yn}. Then we find a positive
integer n0 such that n ≥ n0 implies

yn > 0, yτ(n) > 0, yσ(n) > 0.

Note that (3.4) follows from (3.1) by Remark 3.1. If we set

Fn =
(−1)m

(m− 1)!

∞∑
j=n

(j − n+m− 1)(m−1)fj

then ∆mFn = fn. Since m is odd and fn ≤ 0,

Fn ≥ 0 and lim
n→∞

Fn = 0, (3.9)
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due to (3.4). Setting
zn = yn − yτ(n) and wn = zn − Fn (3.10)

for n ≥ n0, we obtain
∆mwn = −qnG(yσ(n)) ≤ 0. (3.11)

Since wn is bounded then limn→∞ wn = l exists. From (3.9) and (3.10), we obtain limn→∞ zn = l.
From Lemma 2.9 and the following remark, it follows that l = 0. Here, in this case p0 = 0 by
Lemma 2.6. Then (−1)i∆iwn > 0 for 1 ≤ i ≤ m − 1. Hence wn > 0 for n ≥ n1 ≥ n0 as
it is decreasing. From (3.10) we obtain yn > yτ(n) for n ≥ n1 because Fn > 0. This implies
lim infn→∞ yn > 0. Thus there exists γ > 0 such that yn > γ for n ≥ n2 ≥ n1. Applying Lemma 2.5
to (3.11) (Here p0 = 0) we obtain for n ≥ n3 ≥ n2,

wn =
(−1)m−1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)qiG(yσ(i)).

Then it follows that

yτ(n) < yn −
G(γ)

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)qi +
1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)fi. (3.12)

Replacing n by τ−1(n) in (3.12), we get

yn <yτ−1(n) −
G(γ)

(m− 1)!

∞∑
i=τ−1(n)

(i− τ−1(n) +m− 1)(m−1)qi

+
1

(m− 1)!

∞∑
i=τ−1(n)

(i− τ−1(n) +m− 1)(m−1)fi.

(3.13)

From (3.12) and (3.13) it follows that,

yτ(n) <yτ−1(n) −
G(γ)

(m− 1)!

1∑
i=0

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)qj

+
1

(m− 1)!

1∑
i=0

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)fj .

(3.14)

Hence repeating the above process k times, we obtain

yτ(n) <yτk−1(n)
− G(γ)

(m− 1)!

k∑
i=0

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)qj

+
1

(m− 1)!

k∑
i=0

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)fj .

(3.15)

Hence

G(γ)

(m− 1)!

k∑
i=0

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)qj

< yτk−1(n)
− yτ(n) +

1

(m− 1)!

k∑
i=0

∞∑
j=τi−1(n)

(j − τ i−1(n) +m− 1)(m−1)fj .

(3.16)

335



British Journal of Mathematics and Computer Science 3(3), 330-340, 2013

Taking limit k →∞, using (3.4) and that yn is bounded, we obtain (3.3), from which (3.2) follows
by Remark 3.1. Thus, the proof of the theorem is complete.

The following corollary could be proved, proceeding as in the proof of the above theorem.

Corollary 3.3. Suppose that fn ≥ 0, for each positive integer n ≥ n0 and (3.1) holds. Then (1.1)
admits a negative bounded solution if and only if (3.2) holds.

Next, our objective is to prove a theorem which shows that (3.2) is equivalent to the condition
(1.6)

Theorem 3.4. Consider the delay difference equation

∆m+1xn + qnxσ(n) = 0, n > 0. (3.17)

Then the following conditions are equivalent.

(a) Every bounded solution of (3.17) oscillates.

(b) The condition (1.6) holds.

(c) The condition
∞∑
i=0

∞∑
j=n0+ik

jm−1qj =∞, (3.18)

holds for any fixed positive integer k and n0 > 0.

Proof. We show that (a) ⇔ (c) and (a) ⇔ (b). Hence (b) ⇔ (c). First let us prove (a) ⇔ (c).
Suppose that (a) holds. For the sake of contradiction, assume that (c) does not hold. Then

∞∑
i=0

∞∑
j=n0+ik

jm−1qj <∞.

Hence we can find an integer n1 > 0, large enough such that

k

(m− 1)!

∞∑
i=n1

∞∑
j=n0+ik

jm−1qj < 1/3. (3.19)

Let n2 = n0 + n1k. Then from (3.19), we obtain

k

(m− 1)!

∞∑
i=0

∞∑
j=n+ik

jm−1qj < 1/3 for n ≥ n2.

Using Remark 3.1, we obtain

k

(m− 1)!

∞∑
i=0

∞∑
j=n+ik

(j − n− ik +m− 1)(m−1)qj < 1/3 (3.20)

for n ≥ n2. Choose N0 ≥ n2 and N1 > N0 such that σ(N1) ≥ N0. Let X = lN0
∞ be the Banach

space of bounded real sequences x = {xn}, n ≥ N0 with supremum norm ||x|| = sup{|xn| : n ≥ N0}.
Define S to be a closed subset of X such that S = {y ∈ X : 1 ≤ yn ≤ 3/2, n ≥ N0}. Then S is a
metric space , where the metric is induced by the norm on X. For x ∈ S, define

Axn =

{
1, N0 ≤ n ≤ N1,

1 + 1
(m−1)!

∑n−1
i=N1

∑∞
j=i(j − i+m− 1)(m−1)qjxσ(j), n ≥ N1.
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Then for n ≥ N1,

1 ≤ Axn < 1 +
1

(m− 1)!

∞∑
i=N1

∞∑
j=i

(j − i+m− 1)(m−1)qjxσ(j)

≤ 1 +
1

(m− 1)!

∞∑
p=0

N1+pk+k−1∑
i=N1+pk

∞∑
j=i

(j − i+m− 1)(m−1)qjxσ(j)

≤ 1 +
k

(m− 1)!

∞∑
p=0

∞∑
j=N1+pk

(j −N1 − pk +m− 1)(m−1)qjxσ(j)

≤ 1 +
3k

2(m− 1)!

∞∑
p=0

∞∑
j=N1+pk

(j −N1 − pk +m− 1)(m−1)qj

≤ 1 + 1/2 ≤ 3/2.

Hence AS ⊂ S. Further, it may be shown that, for x, y ∈ S, ||Ax−Ay|| ≤ 1
3
||x− y||. Hence A is a

contraction. Consequently A has a unique fixed point x in S. It is a positive bounded solution of
(3.17) for n ≥ N2, a contradiction. Hence (a)⇒ (c) holds.

Next, suppose that (c) holds. Let x = {xn} be a bounded non-oscillatory solution of (3.17).
We may take, without any loss of generality xn > 0, xσ(n) > 0 for n ≥ n0 > 0. Then

∆m+1xn = −qnxσ(n) ≤ 0 (3.21)

for n ≥ n1 ≥ n0. Hence xn,∆xn, ...,∆
mxn are monotonic and are of constant sign for n ≥ n2 ≥ n1.

Since xn is bounded and m is odd, ∆xn > 0, by Lemma 2.6. This implies {xn} is non- decreasing.
Since xn > 0, we find α > 0 such that xn > α > 0 for n ≥ n3 ≥ n2. Applying Lemma 2.5 to (3.21),
(Here p0 = 1) we obtain

∆xn = lim
n→∞

∆xn +
(−1)m−1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)qixσ(i)

≥ (−1)m−1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)qixσ(i)

(3.22)

Hence taking summation on both sides of the above equation we obtain

j∑
p=0

n3+pk+k−1∑
n=n3+pk

∆xn ≥
1

(m− 1)!

j∑
p=0

n3+pk+k−1∑
n=n3+pk

∞∑
i=n

(i− n+m− 1)(m−1)qixσ(i). (3.23)

This implies

xn3+(j+1)k − xn3 ≥
1

(m− 1)!

j∑
p=0

n3+pk+k−1∑
n=n3+pk

∞∑
i=n

(i− n+m− 1)(m−1)qixσ(i)

≥ αk

(m− 1)!

j∑
p=0

∞∑
i=n3+pk+k−1

(i− n3 − pk − k +m)(m−1)qi.

Taking the limit j →∞ and using the fact that {xn} is bounded, we obtain

∞∑
p=0

∞∑
i=n3+pk+k−1

(i− n3 − pk − k +m)(m−1)qi <∞,

a contradiction. Hence (c)⇒ (a) is proved.
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Next, to show (a) ⇒ (b). Suppose that (a) holds. For the sake of contradiction, assume
(b) does not hold. That is

∑∞
i=n0

(i − n0 + m)(m)qi < ∞. Hence for any n ≥ n0, we have
1
m!

∑∞
i=n(i− n+m)(m)qi <∞. Then proceeding as in the proof of the case (a)⇒ (c), we find N0

such that n ≥ N0 implies 1
m!

∑∞
i=n(i−n+m)(m)qi < 1/4. Let N1 > N0 such that σ(N1) ≥ N0. Set

S = {xn ∈ X : 3/4 ≤ xn ≤ 1, n ≥ N0} and for x ∈ S, define

Axn =

{
AxN1 , N0 ≤ n ≤ N1,

1− 1
m!

∑∞
i=n(i− n+m)(m)qixσ(i), n ≥ N1.

Clearly, 3/4 ≤ A(xn) ≤ 1. Hence A(S) ⊂ S and A is a contraction. Hence A has a unique fixed
point in S which is a positive bounded solution of (3.17), a contradiction. Hence (a) implies (b).

Next, suppose (b) holds. Let {xn} be a bounded non-oscillatory solution of (3.17) for n ≥
n0 > 0. Proceeding as in the proof of the case (c)⇒ (a), we obtain limn→∞ xn = l > 0 exists. By
Lemma 2.6 we have p0 = 1. Then due to the boundedness of xn it follows that limn→∞∆xn = 0.
From (3.17), using Lemma 2.5, for p = m+ 1 and p0 = 0, we get

xn = l +
(−1)m

m!

∞∑
i=n

(i− n+m)(m)qixσ(i).

This implies ∣∣∣ (−1)m

m!

∞∑
i=n

(i− n+m)(m)qixσ(i)

∣∣∣ <∞.
On the other hand,

1

m!

∞∑
i=n

(i− n+m)(m)qixσ(i) >
l

2(m!)

∞∑
i=n

(i− n+m)(m)qi =∞.

a contradiction. Hence (b)⇒ (a). Thus the theorem is completely proved.

Remark 3.5. If τ(n) = n− k then τ−1(n) = n+ k for some k, and τ i−1(n) = n+ ik. Using this in
(3.2), and further using Theorem 3.4, one may conclude that (3.2)⇔ (1.6).

From Remark 3.5 and Theorem 3.2 the following result follows.

Theorem 3.6. Every bounded solution of (1.5) with τ(n) = n − k for some k, oscillates if and
only if (1.6) holds.

Remark 3.7. The above theorem improves theorems 1.1, 1.2 and 1.3.

At the end we would like to present an example which illustrates our results and establishes
the importance of this work.

Example
Consider the neutral difference equation

∆3(yn − yn−1) + qnG(yn−2) = 0, (3.24)

where G(u) = u
1
5 . Consider

yn =

{
1
n5 ; n is odd

− 1
n5 ; n is even.

Then
∆3(yn − yn−1) = yn+3 − 4yn+2 + 6yn+1 − 4yn + yn−1.
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If n is odd then

∆3(yn − yn−1) = − 1

(n+ 3)5
− 4

(n+ 2)5
− 6

(n+ 1)5
− 4

n5
− 1

(n− 1)5

= −16n20 + ...

n25 + ...

= −A.

G(yn−2) = 1
n−2

. On the other hand if n is even then

∆3(yn − yn−1) = A and G(yn−2) = − 1

n− 2
.

In either case, we take

qn = (n− 2)A ≈ 1

n4
for large n.

Note that qn satisfies the condition (1.6) of this paper. Clearly, {yn} is a bounded solution of the
(3.24) which oscillates. However, it does not satisfy any one of the conditions (1.3), (1.4)or (H3).
Hence the results of [6, 15] or any other paper in the reference cannot be applied to the neutral
equation (3.24).
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