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Abstract
Let H be a graph on n vertices and let G be a collection of n subgraphs of H, one for each
vertex, G is an orthogonal double cover (ODC) of H if every edge of H is contained in exactly
two members of G and any two members share an edge whenever the corresponding vertices are
adjacent in H and share no edges whenever the corresponding vertices are non-adjacent in H. In
this paper, we are concerned with the symmetric starter vectors of the orthogonal double covers of
the complete bipartite graphs and using this method to construct ODCs by the disjoint union of path
and a complete bipartite graph. Here, we consider Pm the path on m vertices where 4 ≤ m ≤ 11.
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1 Introduction

For the definition of an orthogonal double cover (ODC) of the complete graph Kn by a graph G and
for a survey on this topic, see (1). In (2) this concept has been generalized to ODCs of any graph H
by a graph G.

While in principle any regular graph is worth considering (e.g., the remarkable case of hypercubes
has been investigated in (2)), the choice of H = Kn,n is quite natural, also in view of a technical
motivation: ODCs of such graphs are a helpful tool for constructing ODCs of Kn(see(3), p. 48).

In this paper, we assume thatH = Kn,n, the complete bipartite graph with partition sets of size
n each.
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An ODC ofKn,n is a collectionG = {G0, G1, . . . , Gn−1, F0, F1, . . . , Fn−1} of 2n subgraphs
(called pages) of Kn,n such that

(i) every edge of Kn,n is in exactly one page of {G0, G1, . . . , Gn−1} and in exactly one page
of {F0, F1, . . . , Fn−1};

(ii) for i, j ∈ {0, 1, 2, . . . , n − 1} and i 6= j, E(Gi) ∩ E(Gj) = E(Fi) ∩ E(Fj) = ∅;
and |E(Gi) ∩ E(Fj)| = 1 for all i, j ∈ {0, 1, 2, . . . , n− 1}.

If all the pages are isomorphic to a given graph G, then G is said to be an ODC of Kn,n by G.

Denote the vertices of the partition sets ofKn,n by {00, 10, . . . , (n−1)0} and {01, 11, . . . , (n−
1)1}. The length of an edge x0y1 of Kn,n is defined to be the difference y − x, where x, y ∈
Zn = {0, 1, 2, . . . , n− 1}. Note that sums and differences are calculated in Zn (that is, sums and
differences are calculated modulo n).

Throughout the paper we make use of the usual notation: Km,n for the complete bipartite graph
with partition sets of sizesm and n, Pn for the path on n vertices,K1 for an isolated vertex,G∪H
for the disjoint union of G and H , and mG for m disjoint copies of G.

An algebraic construction of ODCs via “symmetric starters” (see Section 2) has been exploited to
get a complete classification of ODCs ofKn,n byG for n ≤ 9: a few exceptions apart, all graphsG
are found by this way (see (3), Table 1). This method has been applied in (3) to detect some infinite
classes of graphsG for which there are ODCs ofKn,n byG. El shanawany and et al (4) studied the
orthogonal double covers ofKn,n by Pm+1 ∪∗ Sn−m, where n andm are integers, 2 ≤ m ≤ 10,
m ≤ n and Pm+1∪∗Sn−m is a tree obtained from the path Pm+1 withm edges and a star Sn−m
with n−m edges by identifying an end-vertex of Pm+1 with the center of Sn−m. Much of research
on this subject focused on the detection of ODCs with pages isomorphic to a given graph G. For a
summary of results on ODCs, see (1; 5). The other terminologies not defined here can be found in
(6) .

The paper is organized as follows. Section 2 describes the technique that will be used throughout
this paper. Section 3 offers some insights into the case on ODC of the complete bipartite graphs by
a special class of disjoint union of path and a complete bipartite graph.

1.1 Symmetric Starters

All graphs here are finite, simple and undirected. Let Γ = {γ0, . . . , γn−1} be an (additive) abelian
group of order n. The vertices of Kn,n will be labeled by the elements of Γ × Z2. Namely, for
(v, i) ∈ Γ × Z2 we will write vi for the corresponding vertex and define {wi, uj} ∈ E(Kn,n) if
and only if i 6= j, for all w, u ∈ Γ and i, j ∈ Z2. If there is no chance of confusion (w, u) will be
written instead of {w0, u1} for the edge between the vertices w0, u1.

Let G be a spanning subgraph of Kn,n and let a ∈ Γ. Then the graph G + a with E(G +
a) = {(u + a, v + a) : (u, v) ∈ E(G)} is called the a-translate of G. The length of an edge
e = (u, v) ∈ E(G) is defined by d(e) = v − u.

G is called a half starter with respect to Γ if |E(G)| = n and the lengths of all edges in G are
mutually distinct, i.e. {d(e) : e ∈ E(G)} = Γ. The following three results were established in (3).

391



British Journal of Mathematics and Computer Science 3(3), 390–396, 2013

Theorem 1.1. IfG is a half starter, then the union of all translates ofG forms an edge decomposition
of Kn,n i.e. ∪a∈ΓE(G+ a) = E(Kn,n).

Hereafter, a half starter G will be represented by the vector v(G) = (vγ0 , . . . , vγn−1), where
vγi ∈ Γ and (vγi)0 is the unique vertex ((vγi , 0) ∈ Γ× {0}) that belongs to the unique edge of
length γi in G.

Two half starter vectors v(G0) and v(G1) are said to be orthogonal if {vγ(G0) − vγ(G1) :
γ ∈ Γ} = Γ.

Theorem 1.2. If two half starter vectors v(G0) and v(G1) are orthogonal, then G = {Ga,i :
(a, i) ∈ Γ× Z2} with Ga,i = Gi + a is an ODC of Kn,n.

The subgraph Gs of Kn,n with E(Gs) = {(u0, v1) : (v0, u1) ∈ E(G)} is called the
symmetric graph of G. Note that if G is a half starter, then Gs is also a half starter.

A half starterG is called a symmetric starter with respect to Γ if v(G) and v(Gs) are orthogonal.

Theorem 1.3. Let n be a positive integer and let G be a half starter represented by the vector
v(G) = (vγ0 , . . . , vγn−1). Then G is a symmetric starter if and only if {vγ − v−γ + γ : γ ∈
Γ} = Γ.

2 Main Results

In the following, if there is no danger of ambiguity, wiuj will be written instead of {wi, uj} for the
edge between the vertices wi, uj where i, j ∈ Z2.

Theorem 2.1. Let m, p, n > 3 be positive integers such that mp = n − 3. Then there is a
symmetric starter vector of an ODC of Kn,n by G = P4 ∪Km,p ∪ (2n− (4 +m+ p)K1.

Proof. For a positive integer n > 3, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if i = n− 1,
vi = x0 if 2 ≤ i ≤ p+1, vi = x1 if p+2 ≤ i ≤ 2p+1, . . . , vi = xm−1 if (m−1)p+2 ≤ i ≤ mp+1.
Where xj = 1− jp ; 0 ≤ j ≤ m−1. By definition of v(G), for any i ∈ Zn, the ithgraph is isomorphic
to the graph G = P4 ∪Km,p has edges E(G) = {(0 + i)1(0 + i)0, (0 + i)0(1 + i)1, (1 + i)1(2 + i)0}
∪p+2
j =3{(xα + i)0(j + i)1 : 0 ≤ α ≤ m − 1} and hence G ∼= P4 ∪ Km,p ∪ (2n − (4 +m + p)K1. For

i = 0, vi − v−i + i = 0, for i ∈ {1, n − 1}, vi − v−i + i = −i and for jp + 2 ≤ i ≤ (j + 1)p + 1,
vi − v−i + i = xj − xm−(j+1) + i. By theorem 1.3, v(G) is a symmetric starter vector.

Lemma 2.2. Let n > 3 be a positive integer. Then there is a symmetric starter vector of an ODC
of Kn,n by G = P4 ∪K1,n − 3 ∪ (n− 2)K1.

Proof. For a positive integer n > 3, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if i = n− 1
and vi = 1 otherwise. By definition of v(G), for any i ∈ Zn, the ithgraph is isomorphic to the graph
G = P4 ∪K1,n− 3 has edges E(G) = {(0 + i)1(0 + i)0, (0 + i)0(1 + i)1, (1 + i)1(2 + i)0} ∪n−1

j =3 {1 +
i)0(j + i)1} and hence G ∼= P4 ∪K1,n− 3 ∪ (n − 2)K1. For i ∈ {1, n − 1}, vi − v−i + i = −i and
for otherwise, vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter vector.

Theorem 2.3. Let t, n be positive integers such that 1 ≤ t ≤ 10 and t < n. Then there is a
symmetric starter vector of an ODC of Kn,n by G = Pt +1 ∪K1,n − t ∪ (n− 2)K1.
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Proof. For t ∈ {1, 2} , the theorem was already proved using direct construction in (3). For t = 3, see
lemma 2.2. In what follows we find a suitable symmetric strater vector of Zn in each of the remaining
cases:

Case 1. t = 4

For n = 2m and m > 2, define the vector v(G) as vi = 0 if i ∈ {0,m}, vi = 2m − 1 if
i ∈ {1, 2m−1} and vi = 2m−1− i otherwise. By definition of v(G), for any i ∈ Z2m, the ithgraph
is isomorphic to the graph G = P5 ∪ K1,2m− 4 has edges E(G) = {(2m − 2 + i)1(2m − 1 + i)0,
(2m − 1 + i)0(0 + i)1, (0 + i)1(0 + i)0, (0 + i)0(m + i)1} ∪ {(2m − 1 + i)1(j + i)0 : 1 ≤ j ≤ m − 2,
m ≤ j ≤ 2m − 3} and hence G ∼= P5 ∪ K1,2m− 4 ∪ (2m − 2)K1. For i ∈ {0, 1,m, 2m− 1} ,
vi − v−i + i = i and for otherwise, vi − v−i + i = −i. By theorem 1.3, v(G) is a symmetric starter
vector.

For n = 2m+ 1 and m > 2, define the vector v(G) as vi = 0 if i = 1, vi = 2 if i ∈ {m, 2m},
vi = 1 if i = m+1 and vi = m+1 otherwise. By definition of v(G), for any i ∈ Z2m+1, the ithgraph
is isomorphic to the graph G = P5 ∪K1,2m− 3 has edges E(G) = {(0 + i)0(1 + i)1, (1 + i)1(2 + i)0,
(2 + i)0(m + 2 + i)1, (m + 2 + i)1(1 + i)0} ∪ {(m + 1 + i)0(j + i)0 : 2 ≤ j ≤ m − 1, j = m + 1,
m + 3 ≤ j ≤ 2m} and hence G ∼= P5 ∪ K1,2m− 3 ∪ (2m − 1)K1. For i ∈ {1, m, m + 1, 2m},
vi − v−i + i = −i and for otherwise, vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter
vector.

Case 2. t = 5

For n = 2m and m > 2, define the vector v(G) as vi = m − 1 if i ∈ {1, 2m − 1}, vi = 0
if i ∈ {m − 1,m}, vi = 2m − 2 if i = m + 1 and vi = 2m − 1 otherwise. By definition of
v(G), for any i ∈ Z2m, the ithgraph is isomorphic to the graph G = P6 ∪ K1,2m− 5 has edges
E(G) = {(2m− 2+ i)0(m− 1+ i)1, (m− 1+ i)1(0+ i)0, (0+ i)0(m+ i)1, (m+ i)1(m− 1+ i)0, (m−
1 + i)0(m− 2 + i)1} ∪ {(2m− 1 + i)0(j + i)1 : 1 ≤ j ≤ m− 3, j = 2m− 1, m+ 1 ≤ j ≤ 2m− 3}
and hence G ∼= P6 ∪K1,2m− 5 ∪ (2m − 2)K1. For i ∈ {m − 1,m + 1}, vi − v−i + i = −i and for
otherwise, vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter vector.

For n = 2m + 1 and m > 2, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if
i ∈ {m, 2m}, vi = 1 if i = m + 1 and vi = m + 1 otherwise. By definition of v(G), for
any i ∈ Z2m+1, the ithgraph is isomorphic to the graph G = P6 ∪ K1,2m− 4 has edges E(G) =
{(0 + i)1(0 + i)0, (0 + i)0(1 + i)1, (1 + i)1(2 + i)0, (2 + i)0(m + 2 + i)1, (m + 2 + i)1(1 + i)0}
∪ {(m+ 1 + i)0(j + i)1 : 2 ≤ j ≤ m− 1, m+ 3 ≤ j ≤ 2m} and hence G ∼= P6 ∪K1,2m− 4 ∪(2m−
1)K1. For i ∈ {1, m, m+ 1, 2m}, vi − v−i + i = −i and for otherwise, vi − v−i + i = i. By theorem
1.3, v(G) is a symmetric starter vector.

Case 3. t = 6

For n = 2m and m > 3, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if i ∈
{m, 2m − 1}, vi = 1 if i ∈ {m − 1, m + 1} and vi = m + 1 otherwise. By definition of v(G),
for any i ∈ Z2m, the ithgraph is isomorphic to the graph G = P7 ∪ K1,2m− 6 has edges E(G) =
{(0 + i)1(0 + i)0, (0 + i)0(1 + i)1, (1 + i)1(2 + i)0, (2 + i)0(m + 2 + i)1, (m + 2 + i)1(1 + i)0,
(1 + i)0(m + i)1} ∪{(m + 1 + i)0(j + i)1 : 3 ≤ j ≤ m − 1, m + 3 ≤ j ≤ 2m − 1} and hence
G ∼= P7 ∪ K1,2m− 6 ∪ (2m − 2)K1. For i ∈ {1, 2m − 1}, vi − v−i + i = −i and for otherwise,
vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter vector.

For n = 2m+1 and m > 2, define the vector v(G) as vi = 0 if i = 1, vi = 1 if i ∈ {m−1,m+1},
vi = 2 if i ∈ {m, 2m}, vi = 2m − 1 if i = m + 2 and vi = m + 1 otherwise. By definition of
v(G), for any i ∈ Z2m+1, the ithgraph is isomorphic to the graph G = P7 ∪ K1,2m− 5 has edges
E(G) = {(0+ i)0(1+ i)1, (1+ i)1(2+ i)0, (2+ i)0(m+2+ i)1, (m+2+ i)1(1+ i)0, (1+ i)0(m+ i)1,
(m+ i)1(2m− 1)0} ∪ {(n+1+ i)0(j + i)1 : 3 ≤ j ≤ m− 1, j = m+1, m+3 ≤ j ≤ 2m− 1} and
hence G ∼= P7 ∪K1,2m− 5 ∪ (2m− 1)K1. For i ∈ {1,m− 1,m,m+1,m+2, 2m}, vi − v−i + i = −i
and for otherwise, vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter vector.

Case 4. t = 7

For n = 2m and m > 3, define the vector v(G) as vi = 0 if i = 1, vi = 2 if i ∈ {m, 2m− 1},
vi = 1 if i ∈ {m − 1,m + 1}, vi = m + 2 if i ∈ {2, 2m − 2} and vi = m + 1 − i otherwise.
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By definition of v(G), for any i ∈ Z2m, the ithgraph is isomorphic to the graph G = P8 ∪ K1,2m− 7

has edges E(G) = { (0 + i)0(1 + i)1, (1 + i)1(2 + i)0, (2 + i)0(m + 2 + i)1, (m + 2 + i)1(1 + i)0,
(1+i)0(m+i)1, (m+i)1(m+2)0, (m+2)0 (m+4)1}∪ {(m+1+i)1(j+i)0 : 3 ≤ j ≤ m−2, j = m+1,
m+4 ≤ j ≤ 2m−1} and hence G ∼= P8∪K1,2m− 7 ∪(2m−2)K1. For i ∈ {2,m−1,m,m+1, 2m−2},
vi − v−i + i = i and for otherwise, vi − v−i + i = −i. By theorem 1.3, v(G) is a symmetric starter
vector.

For n = 2m +1 and m > 3, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if
i ∈ {m, 2m}, vi = 1 if i ∈ {m− 1,m+ 1}, vi = 2m− 1 if i = m+ 2 and vi = m+ 1 otherwise. By
definition of v(G), for any i ∈ Z2m+1, the ithgraph is isomorphic to the graph G = P8 ∪K1,2m− 6. has
edges E(G) = {(0+i)1(0+i)0, (0+i)0(1+i)1, (1+i)1(2+i)0, (2+i)0(m+2+i)1, (m+2+i)1(1+i)0,
(1+i)0(m+i)1, (m+i)1(2m−1+i)0}∪{(m+1+i)0(j+i)1 : 3 ≤ j ≤ m−1, m+3 ≤ j ≤ 2m−1} and
henceG ∼= P8∪K1,2m− 6.∪(2m−1)K1. For i ∈ {1,m−1,m,m+1,m+2, 2m}, vi−v−i+i = −i and
for otherwise, vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter vector.

Case 5. t = 8

For m > 4 and n = 2m, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if i ∈
{m, 2m−1}, vi = 1 if i ∈ {m−1, m+1}, vi = m+2 if i ∈ {2, 2m−2} and vi = m+1−i otherwise.
By definition of v(G), for any i ∈ Z2m, the ithgraph is isomorphic to the graphG = P9∪K1,2m− 8 has
edges E(G) = {(0+i)1(0+i)0, (0+i)0(1+i)1, (1+i)1(2+i)0, (2+i)0(m+2+i)1, (m+2+i)1(1+i)0,
(1 + i)0(m + i)1, (m + i)1(m + 2 + i)0, (m + 2 + i)0((m + 4 + i)1} ∪{(m + 1 + i)1(j + i)0} :
3 ≤ j ≤ m − 2, m + 4 ≤ j ≤ 2m − 1} and hence G ∼= P9 ∪ K1,2m− 8 ∪ (2m − 2)K1. For
i ∈ {0, 2,m− 1,m, m+ 1, 2m− 2} , vi − v−i + i = i and for otherwise, vi − v−i + i = −i. By
theorem 1.3, v(G) is a symmetric starter vector.

Case 6. t = 9

For n = 2m and m > 6, define the vector v(G) as vi = 0 if i = 1, vi = 2 if i ∈ {m, 2m− 1},
vi = 1 if i ∈ {m − 1,m + 1}, vi = m − 2 if i ∈ {2, 2m − 2}, vi = 2m − 7 if i ∈ {m − 3,m + 3}
and vi = 2m− 1 otherwise. By definition of v(G), for any i ∈ Z2m, the ithgraph is isomorphic to the
graph G = P10 ∪K1,2m− 9 has edges E(G) = { (0+ i)0(1+ i)1, (1+ i)1(2+ i)0, (2+ i)0(m+2+ i)1,
(m+ 2 + i)1(1 + i)0, (1 + i)0(m+ i)1, (m+ i)1(m− 2)0, (m− 2)0 (m− 4)1, (m− 4)1(2m− 7 + i)0,
(2m − 7 + i)0(m − 10)1} ∪ {(2m − 1 + i)0(j + i)1 : 2 ≤ j ≤ m − 5, m + 3 ≤ j ≤ 2m − 4,
j ∈ {m − 3,m + 1, 2m − 1}} and hence G ∼= P10 ∪K1,2m− 9 ∪(2m − 2)K1. For i ∈ {1, 2m − 1},
vi − v−i + i = −i and for otherwise, vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter
vector.

For n = 2m + 1 and m > 4, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if
i ∈ {m, 2m}, vi = 1 if i ∈ {m− 1,m+ 1}, vi = 2m− 1 if i ∈ {m+ 2,m+ 3}, vi = 3 if i = m− 2
and vi = m + 1 otherwise. By definition of v(G), for any i ∈ Z2m+1, the ithgraph is isomorphic to
the graph G = P10 ∪K1,2m− 8 has edges E(G) = {(0 + i)1(0 + i)0, (0 + i)0(1 + i)1, (1 + i)1(2 + i)0,
(2+i)0(m+2+i)1, (m+2+i)1(1+i)0, (1+i)0(m+i)1, (m+i)1(2m−1+i)0, (2m−1+i)0(m+1+i)1,
(m + 1 + i)1(3 + i)0} ∪{(m + 1 + i)0(j + i)1 : 4 ≤ j ≤ m − 1, m + 3 ≤ j ≤ 2m − 2} and hence
G ∼= P10 ∪ K1,2m− 8 ∪ (2m − 1)K1. For i ∈ {1, m − 2, m − 1, m, m + 1, m + 2, m + 3, 2m},
vi − v−i + i = −i and for otherwise, vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter
vector.

Case 7. t = 10

For n = 2m and m > 5, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if
i ∈ {m, 2m − 1}, vi = 1 if i ∈ { m − 1, m + 1}, vi = m + 2 if i ∈ {2, 2m − 2}, vi = m + 1 if i ∈
{3, 2m − 3} and vi = m + 1 − i otherwise. By definition of v(G), for any i ∈ Z2m, the ithgraph is
isomorphic to the graph G = P11 ∪K1,2m− 10 has edges E(G) = {(0 + i)1(0 + i)0, (0 + i)0(1 + i)1,
(1 + i)1(2 + i)0, (2 + i)0(m + 2 + i)1, (m + 2 + i)1(1 + i)0, (1 + i)0(m + i)1, (m + i)1(m + 2 + i)0,
(m+2+ i)0(m+4+ i)1, (m+4+ i)1(m+1+ i)0, (m+1+ i)0(m− 2+ i)1} ∪ {(m+1+ i)0(j+ i)1 :
3 ≤ j ≤ m − 3, m + 5 ≤ j ≤ 2m − 1} and hence G ∼= P11 ∪ K1,2m− 10∪ (2m − 2)K1. For
i ∈ {0, 2, 3,m− 1,m,m+ 1, 2m− 3, 2m− 2}, vi − v−i + i = i and for otherwise, vi − v−i + i = −i.
By theorem 1.3, v(G) is a symmetric starter vector.
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Theorem 2.4. Let n > 3 be a positive integer. Then there is a symmetric starter vector of an
ODC of K2n,2n by G = 2P4 ∪K1,2n − 6 ∪ (2n− 3)K1.

Proof. For a positive integer n > 3, define the vector v(G) as vi = 0 if i ∈ {0, 1}, vi = 2 if
i = 2n − 1, vi = 1 if i ∈ {n, n + 1}, vi = 3 if i = n − 1 and vi = n + 1 otherwise. By definition
of v(G), for any i ∈ Z2n, the ithgraph is isomorphic to the graph G = 2P4 ∪ K1,2n− 6 has edges
E(G) = {(0+ i)1(0+ i)0, (0+ i)0(1+ i)1, (1+ i)1(2+ i)0}∪{(3+ i)0(n+2+ i)1, (n+2+ i)1(1+ i)0,
(1 + i)0(n + 1 + i)1} ∪ {(n + 1 + i)0(j + i)1 : 3 ≤ j ≤ n − 1, n + 3 ≤ j ≤ 2n − 1} and hence
G ∼= 2P4∪K1,2n− 6∪ (2n−3)K1. For i ∈ {1, n−1, n+1, 2n−1}, vi−v−i+ i = −i and for otherwise,
vi − v−i + i = i. By theorem 1.3, v(G) is a symmetric starter vector.

3 Conclusions

In conclusion, we conjecture that if m,n are positive integers and n > m, there is a symmetric
starter vector of an ODC of a complete bipartite graph Kn,n by the disjoint union of Pm +1 and
K1,n−m.

We can summrize our results in the following table

H G

Kn,n P4∪Km,p∪(2n− (4 +m+ p)K1

Kn,n P5 ∪K1,n−4 ∪(n− 2)K1

Kn,n P6 ∪K1,n−5 ∪(n− 2)K1

Kn,n P7 ∪K1,n−6 ∪(n− 2)K1

Kn ,n P8∪K1,n−7.∪(n− 2)K1

K2n,2n P9∪K1,2n−8∪(2n− 2)K1

Kn ,n P10 ∪K1,n−9 ∪ (n− 2)K1

K2n,2n P11 ∪K1,2n−10∪ (2n− 2)K1

K2n,2n 2P4 ∪K1,2n−6 ∪ (2n− 3)K1
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