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Abstract 
 
In this paper, we discuss the numerical integration with exponential fitting factor for singularly 
perturbed two-point boundary value problems.  It is based on the fact that: the given SPTPBVP 
is replaced by an asymptotically equivalent delay differential equation. Then, numerical 
integration with exponential fitting factor is employed to obtain a tridiagonal system which is 
solved efficiently by Thomas algorithm.  We discussed convergence analysis of the method.  
Model examples are solved and the numerical results are compared with exact solution. 

Keywords: Singular perturbation problem, boundary layer, delay differential equation, fitting 
factor, trapezoidal rule.   

 

1 Introduction 
 
Singular perturbation problems arise in various fields of engineering and applied sciences such as 
fluid dynamics, electrical networks, and many other areas. Typical examples of Singular 
Perturbation Problems include Navier-Stokes equation of fluid at high Reynolds number, heat 
transport problem with Peclet numbers, magneto-hydrodynamics duct problems with Hartman 
number.  A differential equation with a small positive parameter multiplying the highest derivative 
term is generally called the Singular Perturbation Problem.  The solution of singular perturbation 
problem exhibits boundary layers.  A boundary layer is a narrow region in which solution of the 
problem changes rapidly.  For these problems, the existing numerical methods produce good 
results only if we take ε<<h .  But this is costly and time consuming process.  If we take ε≥h
, the existing numerical methods produce oscillatory solution and pollute the solution in the entire 
interval, because of the boundary layer behavior.  For a detailed theoretical and analytical 
discussion on this topic, one may refer to the references [1-11].   
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The numerical treatment of singular perturbation problems is far from trivial because of the 
boundary layer behaviour of the solution. However, the area of singular perturbation problems is a 
field of increasing interest to applied mathematicians. Engineers and applied scientists want more 
efficient and simpler computational techniques which can be readily implemented on computer for 
solving both singular perturbation problems. Recently, Soujanya et al. [12] presented a numerical 
solution of singular perturbation problem using deviating argument and exponential fitting factor. 
 
In this paper, we modify/improve the idea/concept given in [12].  Here, we present the numerical 
integration with exponential fitting factor for singularly perturbed two-point boundary value 
problems.  It is based on the fact that: the given SPTPBVP is replaced by an asymptotically 
equivalent delay differential equation. Then, numerical integration with exponential fitting factor 
is employed to obtain a tridiagonal system which is solved efficiently by Thomas algorithm.  We 
also discussed convergence analysis of the method. Model examples are solved and the numerical 
results are compared with exact solution. 
 

2 Description of the Method 
 
To describe our method, let us consider singularly perturbed singular boundary value problems of 
the form 
 

1,x0    ),()()()()()( ≤≤=+′+′′ xfxyxbxyxaxyε       (1) 
 
with boundary conditions  
 
  )0(       α=y                              (2a) 
 
and   
 

 β=)1(y          (2b) 
 
where 10 <<< ε , , f(x) a(x), b(x) are bounded continuous functions in [0, 1] and βα,  are finite 

constants.  If we assume 0)( >≥ Mxa  throughout the interval [0, 1], where M is positive 

constant, then the boundary layer will be in the neighbourhood of 0 x = and if 0)( <≤ Mxa

throughout the interval [0, 1], where M is negative constant, then the boundary layer will be in the 
neighbourhood of left end point i.e., at . x 1=  
 
2.1 Left End Layer Problem   
 
By using Taylor series expansion in the neighbourhood of the point x and the small positive 

deviating argument ε , we have  
 

( ) )(
2

)()( xyxyxyxy ′′+′−=− εεε  
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( )
ε

εε )(2)(22
)(

xyxyxy
xy

′+−−=′′        (3) 

 
and consequently, equation (1) is replaced by the following first order delay differential equation: 

 

)()()()()()( xrxyxqxyxpxy ++−=′ ε , for 1≤≤ xε     (4) 

 
where  

 
)(2

)(
)(  and  

)(2

)(2
)(  ,

)(2

2
)(
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xf
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xb
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+
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+
−

=
+
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εεε

 

 

The transition from equation (1) to equation (4) is allowed, because of the condition that ε is 
small.  The validity of this transition can be found in El’sgol’ts and Norkin [4].  This replacement 
is significant from the computational point of view. 
 
Now we divide the interval [0, 1] into N equal subintervals of mesh size h = 1/N so that 

== iihxi   , 0, 1, 2,…, N.  
 
Here, for consolidations our ideas of the method, we assume that )(xa  and )(xb  are constants 

whereas in [12] authors considered)(xa , )(xb  and )(xf as constants.   Hence, here )(xp  and 

)(xq  are only the constants.  
 

Rewriting the equation (4) as )()()()( xrxpyxqyxy +−=−′ ε  

We then apply an integrating factor qxe− , producing (as in Brian J. McCartin [13]) 

 
[ ] [ ])()()( xrxpyexye

dx

d qxqx +−= −− ε  
 
Next, integrating from 1  to +ii xx ,  we get 
 

dxxredxxpyeyeye
ix

ix

qxix

ix

qx
i

iqx
i

iqx )()(
11

1
1 ∫+−∫=−

+ −+ −−
+

+− ε  

 
Using the Trapezoidal rule to evaluate the integrals and simplifying, we get 
 

( ) ( )111 2
)()(

2 +++ ++−+−+= ii
qh

ii
qh

i
qh

i rre
h

xyxye
hp

yey εε     (5) 

 
Approximating )(xy′ by linear interpolation, we get 
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11)( −+




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iii y
h

y
h

xy
εεε +







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


−≈− ++ 11 1)(        (7) 

 
Substituting (6), (7) in equation (5) and rearranging the terms we get the following three term 
relation 
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 for  i = 1,2,…,N-1. 

 
The above relation can be written as  
 

iiiiiii HyGyFyE =+− +− 11 , for i = 1, 2,…, N-1     (8) 
 
where 
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Equation (8) is a tridiagonal system. 
 
2.2 Right End Layer Problem   
 

By using the small positive deviating argument ε  and using Taylor series expansion in the 
neighbourhood of the point x , we have 
 

( ) )(
2

)()( xyxyxyxy ′′+′+=+ εεε       

 

( )
ε

εε )(2)(22
)(

xyxyxy
xy

′−−+=′′       (9) 

 
and consequently, equation (1) is replaced by the following first order delay differential equation: 
 

)()()()()()( xrxyxqxyxpxy +++=′ ε , for 1≤≤ xε               (10) 
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where  
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We divide the interval [0, 1] into N equal subintervals of mesh size h = 1/N so that == iihxi   , 0, 

1, 2,…, N.  
 
Here, for consolidations our ideas of the method, we assume that )(xa  and )(xb  are constants.   

Hence, )(xp  and )(xq  are constant.  
 

Rearranging equation (10) as )()()()( xrxpyxqyxy ++=−′ ε  

 

We then apply an integrating factor qxe− , producing  

 
[ ] [ ])()()( xrxpyexye

dx

d qxqx ++= −− ε  

 
Now, integrating from ii xx   to1− , we get 
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By making use of Trapezoidal rule to evaluate the integrals and simplifying, we get 
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Approximating )(xy′ by linear interpolation, we get 
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Substituting (12), (13) in equation (11) and rearranging the terms we get the following three term 
relation 
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for i = 1,2,…,N-1. 
 
The above relation can be written as 
 

iiiiiii HyGyFyE =+− +− 11 , for i = 1, 2,…, N-1.      (14) 
 
where 
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Equation (8) is a tridiagonal system. 
 
We solve the tridiagonal system (8) or (14) by using an efficient Thomas algorithm. 
 
 

3 Convergence Analysis 
 
Writing the tridiagonal system (8) in matrix-vector form, we get 

 
CAY =                    (15) 

 
in which ( )    1-,1  ,  njimA ji ≤≤= is a tridiagonal matrix of order N-1 , with 
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( )idC =   and  is a column vector with  ( )1i 2 ++= ii
qh rre
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We also have 
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ChTA =− )(Y
__

         (17) 
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Thus the error equation is      AE = T(h)                                                                            (19)  
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We can choose h sufficiently small so that the matrix A is irreducible and monotone.  It follows 

that 1−A  exists and its elements are non negative. 
 

Hence from Eq. (19), we get  )(1 hTAE −=                                 (20) 

 
Also, from the theory of matrices we have 
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From (16), (20) and (22), we get 
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where k is a constant independent of h, that is 
a

y
k
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ε
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Therefore,            ( )hoEi =  

 
i.e., our method gives a first order convergent for uniform mesh.    
  

4 Numerical Examples 
 
In this section, we have applied our method on three linear singular perturbation problems with 
left-end boundary layer and two with right-end boundary layer.  We have presented numerical 
results as well as maximum absolute errors of the examples. These examples have been chosen 
because they have been widely discussed in literature.  
 
Example 1.  Consider the following homogeneous singular perturbation problem  

        
0)()()( =−′+′′ xyxyxyε ; x ∈[0, 1]     

 
with y(0) =1 and y(1) =1.        
  
The exact solution is given by   
 

]/[])1()1[()( 12]2112 mmxmmxmm eeeeeexy −−+−=     
 

where )2/()411(1 εε++−=m  and )2/()411(2 εε+−−=m    

 
The numerical results are given in Tables 1 and 2 for different values of ε .  
 
Example 2.  Now consider the following non-homogeneous singular perturbation problem 

 
xxyxy 21)()( +=′+′′ε ; x ∈[0,1]     
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with y(0) = 0 and y(1) = 1.        
 
Clearly this problem has a boundary layer at x = 0.  The exact solution is given by 
  

( )
( )ε

ε

/11
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(x) −−

−−

−
−=

ee

ee
y

xx
 

 
The numerical results are presented in Tables 3 and 4 for different values of ε . 
 
Example 3.  Consider the following singular perturbation problem   

 
2)()( =′+′′ xyxyε ; x ∈[0,1]    

 
with y(0) = 0 and y(1) = 1.      

The exact solution is given by 
( )

( )
1

1
2)(

1
−

−+=
−

−

ε

ε

e

e
xxy

x

. 

 
The numerical results are presented in Tables 5 and 6 for different values of ε . 
 
 
Example 4.  Consider the following singular perturbation problem   
 

0)()( =′−′′ xyxyε ; x ∈[0, 1]    
 
with y (0) =1 and y (1) =0.      
 
Clearly, this problem has a boundary layer at x = 1 i.e., at the right end of the underlying interval.    
  

The exact solution is given by  
( )

( )1

1
)(

/1

/)1(

−
−= −

−

ε

ε

e

e
xy

x
 

 
The numerical results are presented in Tables 7 and 8 for different values of ε . 
 
Example 5. Consider the following singular perturbation problem 
     

0)()1()()( =+−′−′′ xyxyxy εε ; x ∈[0, 1]    
 
with y(0) = 1+exp(-(1+ε)/ε);  and y(1) = 1+1/e.     
  
Clearly this problem has a boundary layer at x = 1.  The exact solution is given by                 
 

( )( ) xx eexy −−+ += εε /11)(  
 
The numerical results are presented in Tables 9 and 10 for different values of ε .  
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We compare the maximum absolute errors of these examples with the proposed method and 
second order central finite difference scheme to show the advantage of the method. The maximum 
absolute errors of the examples are presented in Tables 11 and 12. 
 

Table 1.  Numerical results of example 1 with  10,10 42 −− == εh  
 

x Numerical solution Exact solution 
0.00 1.00000000 1.00000000 
0.01 0.37795437 0.37161347 
0.02 0.37543377 0.37534787 
0.03 0.37914317 0.37911980 
0.04 0.38295237 0.38292963 
0.05 0.38680048 0.38677775 
0.10 0.40662887 0.40660624 
0.20 0.44938713 0.44936490 
0.30 0.49664155 0.49662005 
0.40 0.54886492 0.54884455 
0.50 0.60657973 0.60656098 
0.60 0.67036343 0.67034685 
0.70 0.74085418 0.74084044 
0.80 0.81875725 0.81874712 
0.90 0.90485206 0.90484646 
1.00 1.00000000 1.00000000 

Maximum error = 6.3409e-003 
 

Table 2.  Numerical results of example 1 with  10,10 52 −− == εh  
 

x            Numerical solution           Exact solution 
0.00 1.00000000 1.00000000 
0.01 0.37362461 0.37158036 
0.02 0.37535308 0.37531477 
0.03 0.37911862 0.37908671 
0.04 0.38292844 0.38289656 
0.05 0.38677656 0.38674469 
0.10 0.40660505 0.40657331 
0.20 0.44936373 0.44933255 
0.30 0.49661892 0.49658877 
0.40 0.54884348 0.54881492 
0.50 0.60655999 0.60653369 
0.60 0.67034598 0.67032272 
0.70 0.74083971 0.74082044 
0.80 0.81874659 0.81873239 
0.90 0.90484617 0.90483832 
1.00 1.00000000 1.00000000 

Maximum error = 2.0442e-003 
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Table 3.  Numerical results of example 2 with  10,10 42 −− == εh  
 

x Numerical solution Exact solution 
0.00 0.00000000 0.00000000 
0.01 -0.97981098 -0.98970200 
0.02 -0.97940951 -0.97940400 
0.03 -0.96900981 -0.96890600 
0.04 -0.95831213 -0.95820800 
0.05 -0.94741346 -0.94731000 
0.10 -0.88991988 -0.88982000 
0.20 -0.75993184 -0.75984000 
0.30 -0.60994274 -0.60986000 
0.40 -0.43995270 -0.43988000 
0.50 -0.24996186 -0.24990000 
0.60 -0.03997033 -0.03991999 
0.70 0.190021742 0.190060000 
0.80 0.440014242 0.440040000 
0.90 0.710007037 0.710020000 
1.00 1.000000000 1.000000000 

Maximum error = 9.8910e-003 
 

Table 4.  Numerical results of example 2 with  10,10 52 −− == εh  
 

x Numerical solution Exact solution 
0.00 0 0 
0.01 -0.98676244 -0.98988020 
0.02 -0.97963626 -0.97958040 
0.03 -0.96914631 -0.96908060 
0.04 -0.95844628 -0.95838080 
0.05 -0.94754620 -0.94748100 
0.10 -0.89004563 -0.88998200 
0.20 -0.76004359 -0.75998400 
0.30 -0.61004049 -0.60998600 
0.40 -0.44003645 -0.43998800 
0.50 -0.25003162 -0.24999000 
0.60 -0.04002611 -0.03999199 
0.70 0.189979936 0.190006000 
0.80 0.439986392 0.440004000 
0.90 0.709993124 0.710002000 
1.00 1.000000000 1.000000000 

Maximum error = 3.1178e-003 
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Table 5.  Numerical results of example 3 with  10,10 42 −− == εh  
 

x Numerical solution Exact solution 
0.00 0.00000000 0.00000000 
0.01 -0.97019349 -0.98000000 
0.02 -0.96009095 -0.96000000 
0.03 -0.94018736 -0.94000000 
0.04 -0.92018579 -0.92000000 
0.05 -0.90018326 -0.90000000 
0.10 -0.80017073 -0.80000000 
0.20 -0.60014663 -0.60000000 
0.30 -0.40012381 -0.40000000 
0.40 -0.20010228 -0.20000000 
0.50 -8.20329e-05 4.44089e-16 
0.60 0.199936937 0.200000000 
0.70 0.399954625 0.400000000 
0.80 0.599971032 0.600000000 
0.90 0.799986156 0.800000000 
1.00 1.000000000 1.000000000 

Maximum error = 9.8065e-003 
 

Table 6.  Numerical results of example 3 with  10,10 52 −− == εh  
 

x Numerical solution Exact solution 
0.00 0 0 
0.01 -0.97701164 -0.98000000 
0.02 -0.96018336 -0.96000000 
0.03 -0.94019085 -0.94000000 
0.04 -0.92018828 -0.92000000 
0.05 -0.90018570 -0.90000000 
0.10 -0.80017296 -0.80000000 
0.20 -0.60014847 -0.60000000 
0.30 -0.40012530 -0.40000000 
0.40 -0.20010345 -0.20000000 
0.50 -8.29226e-05 4.44089e-16 
0.60 0.199936295 0.200000000 
0.70 0.399954196 0.400000000 
0.80 0.599970781 0.600000000 
0.90 0.799986049 0.800000000 
1.00 1.000000000 1.000000000 

Maximum error = 2.9884e-003 
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Table 7.  Numerical results of example 4 with  10,10 42 −− == εh  
 

x Numerical solution Exact solution 
0 1 1 
0.10 1.00000640 1 
0.20 1.00001281 1 
0.30 1.00001922 1 
0.40 1.00002563 1 
0.50 1.00003204 1 
0.60 1.00003844 1 
0.70 1.00004485 1 
0.80 1.00005126 1 
0.90 1.00005767 1 
0.95 1.00006087 1 
0.96 1.00006151 1 
0.97 1.00006116 1 
0.98 0.99996283 1 
0.99 0.99006474 1 
1 0 0 

Maximum error = 9.9353e-003 
 

Table 8.  Numerical results of example 4 with  10,10 52 −− == εh  
 

x Numerical solution Exact solution 
0 1 1 
0.10 1.00000658 1 
0.20 1.00001316 1 
0.30 1.00001975 1 
0.40 1.00002633 1 
0.50 1.00003291 1 
0.60 1.00003950 1 
0.70 1.00004608 1 
0.80 1.00005266 1 
0.90 1.00005925 1 
0.95 1.00006254 1 
0.96 1.00006320 1 
0.97 1.00006382 1 
0.98 1.00005438 1 
0.99 0.99688111 1 
1 0 0 

Maximum error = 3.1189e-003 
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Table 9.  Numerical results of example 5 with  10,10 42 −− == εh  
 

x Numerical solution Exact solution 
0 1 1 
0.10 0.90484301 0.90483741 
0.20 0.81874087 0.81873075 
0.30 0.74083196 0.74081822 
0.40 0.67033662 0.67032004 
0.50 0.60654941 0.60653065 
0.60 0.54883200 0.54881163 
0.70 0.49660680 0.49658530 
0.80 0.44935119 0.44932896 
0.90 0.40659228 0.40656965 
0.95 0.38676374 0.38674102 
0.96 0.38291562 0.38289288 
0.97 0.37910677 0.37908303 
0.98 0.37543376 0.37531109 
0.99 0.38159532 0.37157669 
1 1.36787944 1.36787944 

Maximum error = 1.0019e-002 
 

Table 10.  Numerical results of Example 5 with  10,10 52 −− == εh  
 

x Numerical solution Exact solution 
0 1 1 
0.10 0.90484526 0.90483741 
0.20 0.81874495 0.81873075 
0.30 0.74083749 0.74081822 
0.40 0.67034330 0.67032004 
0.50 0.60655696 0.60653065 
0.60 0.54884019 0.54881163 
0.70 0.49661545 0.49658530 
0.80 0.44936014 0.44932896 
0.90 0.40660139 0.40656965 
0.95 0.38677288 0.38674102 
0.96 0.38292476 0.38289288 
0.97 0.37911496 0.37908303 
0.98 0.37535313 0.37531109 
0.99 0.37479214 0.37157669 
1 1.36787944 1.36787944 

Maximum error = 3.2155e-003 
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Table 11.  Maximum absolute errors of the examples by the proposed method 
___________________________________________________________________ 

h                             32−                  42−                         52−                         62−  
___________________________________________________________________ 

 
Example 1 

 
610−=ε       4.5865e-003           1.6473e-003          9.0044e-004        7.0621e-004 
710−=ε       4.0854e-003           1.1772e-003          4.4882e-004        2.6450e-004 
810−=ε       3.9267e-003           1.0284e-003          3.0579e-004        1.2461e-004 

 
Example 2 

 
610−=ε       1.4680e-002           3.8650e-003          9.8088e-004        7.7618e-004 
710−=ε       1.5668e-002           3.9500e-003          1.0230e-003        2.5626e-004 
810−=ε       1.5981e-002           4.0618e-003          1.0365e-003        2.6296e-004 

 
Example 3 

 
610−=ε       2.5365e-002           6.5616e-003         1.7900e-003         5.3799e-004 
710−=ε       2.6204e-002           6.8541e-003         1.7934e-003         4.6781e-004 
810−=ε       2.6469e-002           7.0894e-003         1.7942e-003         4.6810e-004 

 
Example 4 

 
610−=ε       8.0531e-003           2.2763e-003         6.0739e-004        8.5536e-004 
710−=ε       8.8667e-003           2.2836e-003         6.1002e-004        1.6114e-004 
810−=ε       9.1243e-003           2.3422e-003         6.1064e-004        1.5764e-004 

 
 

Example 5 
 

610−=ε      5.0063e-003            2.0391e-003        1.2797e-003        1.0795e-003 
710−=ε      4.2183e-003            1.3013e-003        5.6886e-004        3.8264e-004 
810−=ε      3.9687e-003            1.0676e-003        3.4376e-004        1.6198e-004 

_________________________________________________________________________ 
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Table 12.  Maximum absolute errors of the examples with central difference scheme 
_____________________________________________________________________ 

h                             32−                   42−                              52−                         62−  
____________________________________________________________________ 

 
Example 1 

 
610−=ε       1.2221e+000           1.3394e+000             1.3992e+000       1.4271e+000 
710−=ε       1.2222e+000           1.3396e+000             1.4002e+000       1.4306e+000 
810−=ε       1.2222e+000           1.3397e+000             1.4003e+000       1.4310e+000 

 
Example 2 

 
610−=ε        7.8124e+003          1.9531e+003             4.8825e+002       1.2206e+002 
710−=ε       7.8125e+004           1.9531e+004             4.8828e+003       1.2207e+003 
810−=ε       7.8125e+005           1.9531e+005             4.8828e+004       1.2207e+004 

 
Example 3 

 
610−=ε       7.8124e+003           1.9531e+003             4.8825e+002       1.2206e+002 
710−=ε       7.8125e+004           1.9531e+004             4.8828e+003       1.2207e+003 
810−=ε       7.8125e+005           1.9531e+005             4.8828e+004       1.2207e+004 

 
Example 4 

 
610−=ε       7.8124e+003           1.9531e+003             4.8825e+002       1.2206e+002 
710−=ε       7.8125e+004           1.9531e+004             4.8828e+003       1.2207e+003 
810−=ε       7.8125e+005           1.9531e+005             4.8828e+004       1.2207e+004 

 
Example 5 

 
610−=ε        1.1979e+000          1.2526e+000             1.2808e+000       1.2914e+000 
710−=ε       1.1980e+000           1.2530e+000             1.2822e+000       1.2969e+000 
810−=ε       1.1981e+000           1.2530e+000             1.2824e+000       1.2975e+000 

______________________________________________________________________ 
 

5 Discussions and Conclusions 
 
We have discussed the numerical integration with exponential fitting factor for singularly 
perturbed two-point boundary value problems.  Here, we replaced the given SPTPBVP by an 
asymptotically equivalent delay differential equation using deviating argument. Then, numerical 
integration with exponential fitting factor is employed to obtain a tridiagonal system which is 
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solved efficiently by Thomas algorithm.  We presented the convergence analysis of the proposed 
method and it is proved as first order convergence. Model examples are solved and the numerical 
results are compared with exact solution. We also presented the maximum absolute errors of the 
examples with the proposed method and second order central difference scheme. We observed 
that our method gives good results when h<<ε . This method is conceptually simple, easy to use 
and is readily adaptable for computer implementation with a modest amount of problem 
preparation. Further, it is also observed that the accuracy predicted can always be achieved with a 
little computational effort. 
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