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ABSTRACT

Aims: This paper describes a fast-lock, low-power, low-jitter and good duty-cycle
correction capability delay locked loop with double edge synchronization which is mainly
used in clock alignment process. A clock aligner’s task is to phase-align a chip internal
clock with a reference clock. The main advantage of delay locked loop rather than phase
locked loop is related to good jitter performance of it. Double edge synchronization method
leads to more power consumption and it can increase rms and peak-to-peak jitter therefore,
in this work rms jitter, peak-to-peak jitter and power consumption are implemented to
understand if this statement is always true or not. So, this case became one of our aims.
Study Design: Double edge synchronization delay locked loop.

Place and Duration of Study: Department of Electrical Engineering (Islamic Azad
University, Central Tehran Branch), between February 2012 and September 2012.
Methodology: Comparing with single edge synchronization delay locked loops, double
edge synchronization method has its own advantages and disadvantages. Using two
phase frequency detectors, two charge pumps and two loop filters in double edge delay
locked loops, increases the jitter and power consumption. In this paper, to overcome these
challenges for the introduced delay locked loop circuit, proper blocks with suitable
characteristic for each MOSFET were used which took a lot of time to find ones with the
help of HSPICE simulator.

Results: All the simulation results are based on 0.18um CMOS technology with 1.8V
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supply voltage. The HSPICE simulation results show the proposed delay locked loop circuit
generates clock signals ranging from 750MHz to 1GHz. The maximum power consumption
of the DLL circuit at 1GHz is 3.4mW. The maximum and minimum of rms jitters are 9.12
and 0.463ps and the maximum and minimum of peak-to-peak jitters are 124.89 and
2.52ps, respectively. The locking time of proposed delay locked loop is less than 20ns
within the operating frequency band. Another feature of this architecture is that it has good
duty cycle correction capability (50+0.9%). It should be note that, in double edge DLL it is
so important to find a balance between duty cycle (should be around 50%), jitter and power
consumption. Rms jitter, peak-to-peak jitter, power consumption and also duty cycle error
are calculated by HSPICE simulator. (Cosmosscope program in HSPICE simulator can be
used for these measurements).

Conclusion: Although designing double edge synchronization method in delay locked
loops is challenging and it takes more area than single edge delay locked loops (which is
mentioned as the main disadvantages of double edge delay locked loops and we all agree
on this), by choosing suitable blocks it can be used without jitter performance or power
consumption challenges. In other word, the results of this paper shows that all the effective
and important items of introduced double edge delay locked loop (such as power
consumption, rms jitter and peak-to-peak jitter) are as well as single edge delay locked
loops in most articles. So when it is suitable to use double edge delay locked loop instead
of single edge delay locked loop, it should be no concern about these items.

Keywords: Delay locked loop (DLL); phase locked loop (PLL); jitter; multistage clock buffer;
voltage controlled delay line (VCDL).

1. INTRODUCTION

In the past decades, PLLs and DLLs have been widely used in high-speed applications,
such as memory ICs, communication ICs, microprocessors, network processors, etc.

Ordinarily, if there is no frequency multiplication, using DLL for signal synchronization would
be the better choice than PLL. Because DLL is a first order control system, it's more stable
and easier to design. Moreover, PLL suffers from a later locking time and jitter accumulation
due to the closed loop Voltage Controlled Oscillator (VCO). On the other hand, the DLL
using the VCDL instead of the VCO does not accumulate over many clock cycles therefore,
DLL exhibits better jitter performance than PLL. In addition, DLL have smaller area and
faster locking time than the PLL [1]. Low power, wide lock range, short locking time, and low
jitter are focuses of the DLL design. In order to achieve low jitter operation, DLL designs
require delay stage design with low supply and substrate noise sensitivity and good
matching between the up/down CP currents [2].

In this work, a DLL structure with double edge synchronization with clock alignment
capability of both rising and falling edges is proposed. In the rest of the paper, Section 2 of
the paper describes architecture of DLL with clock alignment capability of both rising and
falling output pulse edges and also concentrates on implementation of proposed structure.
Section 3 includes simulation results by HSPICE simulation, and conclusions are given in
Section 4.
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2. MATERIALS AND METHODS

The building block of a conventional analog delay loop with double edge synchronization is
shown in Fig. 1. This structure of a DLL circuit has clock alignment capability of both leading
and trailing output pulse edges. A clock aligner’s task is to phase align a chip internal clock
with a reference clock, effectively removing the variable buffer delay and reducing
uncertainty in clock phase between communicating VLSI IC constituents [3].

Constituents of Fig. 1 are: a VCDL, two differential Charge Pumps (CPs), CP1 and CP2, two
first order low pass filters (LPFs), LPF1 and LPF2, and a multistage clock buffer (MCB). The
reference clock, CLKref, is propagated through VCDL and MCB. The output signal, CLKout,
is compared through with the reference input. If the delay difference from integer multiples of
clock period is detected, the closed loop will automatically correct it by changing the delay
time of the VCDL [4].

According to Fig. 1, in first stage two Phase Frequency Detectors (PFDs) are shown. Their
function is to compare phase frequency of rising or falling edges between the input (CLKref)
and output (CLKout). Note that the PFD1 is sensitive to a rising and PFD2 is sensitive to a
falling pulse edge. These PFDs are high speed and have small dead zone. Hence, the DLL
circuit has very fast lock feature compared to other dynamic Phase Detectors (PDs) [3, 5]. In
the next stage, two ideal CPs and two LPFs are sketched in Fig. 1 UP1 and UP2 pulses
cause Ip to add charge to the capacitors of LPF1 and LPF2, while DN1 and DN2 function is
to discharge the capacitors. The output of CP1 and CP2 are Vctrl1 and Vctrl2, and they are
connected to the VCDL control input (Vbn and Vbp). In the last stage of this figure, VCDL
and MCB blocks are shown. The control input voltages of VCDL (Vbn and Vbp) can regulate

the rising or falling clock pulse edge.

@ Voltage Control led Delay Line Multistage Clock ’@
Vbn Vbp Buffers

T a c2
Vetri1 ] |—||. vetriz |- |—||.
CP1 LPF1 LPF2 CP2
Vi H |V -1
Ip Ip Ip Ip
UP1 DN1 UP2 DN2
Phase Frequency Phase Frequency
Detectorl Detector2
11 1

Fig. 1. DLL’s structure with double edges synchronization
Circuit structure is discussed in Section 2.1, 2.2 and 2.3.

2.1 Phase-Frequency Detector
The PD function is to detect the phase difference between the reference clock signal and the
feedback clock. PD can detect the skew of the clock, and it can be analog or digital as well.

Nowadays digital phase detectors have become more popular. As its hame indicates, PDs
are sensitive to the phase difference between two signals, but they are not sensitive to
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frequency. Practically PD can work as frequency detector but with limited range. Thus, it is
preferred to replace the PD with PFD. On the other hand, many PFDs have a large dead
zone. As we know, dead zone occurs when the loop does not respond to small phase errors.
Each width of the dead zone directly feeds to jitter in the DLL and should be avoided. Hence,
this kind of PFDs cannot be used at high frequencies.

To overcome the speed limitation and reduce the dead zone, we proposed high speed PFDs
which are sketched in Fig. 2. These schematics have fast lock loop feature. In this work,
PFD1 [6] is used to detect a rising pulse edge. We needed another PFD for falling edge,
therefore, we proposed new PFD (PFD2) to detect a falling pulse edge. Hence, PFD1 (Fig. 2
(a)) is sensitive to rising clock pulse edge, while PFD2 (Fig. 2 (b)) is sensitive to the falling
edge. The width of UP and DN signals are proportional to the phase difference of the input
signals [7]. PFD1 and PFD2 have three states. Compare to both PDs in reference [3], our
proposed PFDs for rising and falling edge have smaller dead zone and they can also work
as frequency detector since they can work in higher frequencies. As shown in Fig. 3(a), (b)
and 4(a), (b) both reference and output have the same frequency but with phase difference,
while in Fig. 5(a), (b) and 6(a), (b) both signals have different frequencies and phases. There
is another state, which is when both signals have the same frequency and phase (Fig. 7). As
can be seen in Fig. 3 and 5, CLKref leads and CLKout lags while in Fig. 4 and 6 CLKref lags
and CLKout leads. In Fig. 7, both CLKref and CLKout are started from the same point and
they are equal. Behaviour of up and down are shown in these figures. The point of sketching
these figures is to make sure that our proposed PFDs work properly.

UP1

CLKref CLKref

CLKout

CLKout

DN1

Fig. 2. PFDs for (a) raising and (b) falling edges
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2.2 Charge Pump and Loop Filter

CP design is one of the most complicated parts of the DLL structure. The CP controls the
charging/discharging current by UP/DN signal from PFD, and uses the phase difference
between the up and down signals from the PFD to convert the phase error into current.
Then, loop filter converts the current into the control voltage, by charging or discharging the
capacitor and sending it to Vctrl to set the VCDL delay. Two differential CPs (CP1 and CP2)
are used, because in this work, they seem more proper choice and the advantage of these
structures is that switching time is improved by using the current steering switches. CP1 is
depicted in Fig. 8(a). This CP can be used for rising edge [8]. Therefore, we needed another
CP for falling edge, and we proposed CP2 (Fig. 8(b)) to detect a falling pulse edge.

One of the possible filters is a RC low-pass filter, like the filter mentioned in [9]. But in this
work two simple capacitors are used as LPFs, and they are adjusted to be C1=C2=1.88pF.
As we can seen in Fig. 1, the equivalent model of the CP and LPF consists of a source
current, a sink current and two switches controlled by PFD output. When the output phase of
the DLL circuit leads the reference phase, the current source switch opens and the current
sink switch closes. Thus, the voltage in the capacitor decreases. The voltage in the capacitor
increases if the reference phase leads the output phase. In this work, we adjusted source
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current and sink current to be ICP-up=ICP-down=100uA. This amount of source and sink
current is chosen by HSPICE simulation test which works suitably in both mentioned CPs.
Each CP can charges or discharges their filter capacitors. Vctrl1 and Vctrl2 (Vbn and Vbp)
are the voltages on capacitors C1 and C2 respectively, and sets the VCDL stage
propagation delay.

Vdd Vdd

— [_JMH — ﬁmz

Mé

[cp( Emo IcpC

-

Vetrl2

[

P J T |1 DN%Q;@W“’%
L
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Fig. 8. Implementation of CP for (a) raising and (b) falling edges
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2.3 Voltage Controlled Delay Line and Multistage Clock Buffer

The most critical component in the performance of DLL is VCDL. A VCDL can influence DLL
action. Therefore, VCDL can influence DLL stability and jitter performances. The
implementation of a VCDL is composed of several variable delay elements connected in
series. There are several examples of buffer elements [10], such as cascade delay cell,
differential delay cell, shunt capacitor delay cell, etc.

The VCDL used in this work (Fig. 9) [9] consists of cascaded variable delay stage, is driven
by the reference input clock, and the output is CLKout1, which is an input voltage for MCB
circuit. As we can see, in this circuit, Vbp drives gates of M1 and M5 transistors, while Vbn
drives gates of M4 and M8. A few (or many) cascade delay stage can be implemented in the
structure of the proposed VCDL. We should note that, the load capacitance represented in
the previous stage, is the input capacitance of the next inverter.

In high-speed design a multistage clock buffer implemented with a long inverter chain is
often needed to drive a heavy capacitive load. For these designs, as well as for applications
in which the timing of both edges of the clock is critical, it is difficult to keep the clock duty
cycle at its ideal value of 50%, primarily due to various asymmetries in signal paths and
unbalances of the p and n transistors in the long buffer. As a consequence the clock duty
cycle will deteriorate from 50%, and in the worst case, the clock pulse may disappear inside
the clock buffer, as the pulse width becomes too narrow or too wide [3]. As can be seen in
Fig. 1 the output of VCDL (CLKout1), is an input for MCB and the output of MCB (CLK-out),
interns to PFD1 and PFD2. The VCDL and MCB were implemented as a chain of ten delay
elements (five VCDL and five MCB). It should be noted that proposed VCDL and MCB are
tested by HSPICE simulation for their jitter performances. Compare to reference [3],
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Selected VCDL and MCB take much less area than mentioned reference since they have
fewer delay cells.

Time delay variation of the leading and trailing pulse edge term of control voltage Vctrl (Vbn
and Vbp) is presented in Fig. 10. If the control voltage Vcirl, decreases, the time delay of the
trailing edge increases and time delay of leading edge decreases and vice versa.

Vdd Vdd

\-’blp ;":Ml ";bp ‘JI[ e
e

CLKref CLKoutl

e

| | Yo I s
Vhn | Vbn I

Fig. 9. VCDL Implementation
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(a) (b)
Fig. 10. Output (a) rising and (b) falling edge delay versus frequency
3. RESULTS AND DISCUSSION

The proposed DLL structure with double edge synchronization is implemented in 0.18um
CMOS technology, with the supply voltage of 1.8V. The operational frequency range is from
750MHz to 1GHz. Fig. 11 shows the result of DLL operation at (a) 750MHz and (b) 1GHz. In
Fig. 11 illustrates the behaviour of CLK-ref and CLK-out, and waveforms of UP1 (UP2), DN1
(DN2). Also, this figure shows the behaviour of CP’s output (Vctrl1 and Vctrl2). As can be
seen from UP1 and DN1 (UP2 and DN2) signals define the control voltages Vctrl1 (Vctri2).
The locked time of DLL is less than 20ns within the operating frequency band. This circuit
also has good duty cycle correction capability. Duty cycle error is also measured and as
shown in Fig. 12, within the full operating range, the duty cycle error is less than £0.9%.
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Fig. 13 and Fig. 14 show output rms jitter and peak-to-peak jitter versus operation frequency.
As can be seen, when frequency becomes bigger, both jitters are decreasing.

The maximum and minimum of rms jitters are 9.12 and 0.463ps and the maximum and
minimum of peak-to-peak jitters are 124.89 and 2.52ps, respectively (these results seems
acceptable for even single edge DLLs). Fig. 15 shows power consumption variation during
the frequency range of DLL. Power consumption increases proportional to frequency in
whole of operation range (It can be seen from the picture that the frequency range is
calculated from 750 775....... up to 1000MHz). The maximum and minimum power
consumption at 750MHz and 1GHz are 2.2mW and 3.4mW, respectively. As we compared
this range with other power consumption range in other articles, it's been realized that this
range is the normal range in single edge DLLs (it should be mentioned that there are some
works that could achieve lower power consumption in single edge DLLs than our work).
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Fig. 13. RMS Jitter versus frequency
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Table 1, gives the performance summary of the proposed PWCL and the characteristics of
other published PWCLs. As it can be seen, reference [3] is also double edge synchronization
DLL. In this work, approximate architecture proposed in this reference is used, but with more
proper blocks and different process to improve important items of DLL. Therefore, compare
to this reference, different technology is used, locking time is faster, wider range of
frequency is achieved. On the other hand, rms jitter, peak-to-peak jitter and power
consumption were computed, which did not mention in reference [3] at all and as we know
these two items are the most important ones in DLLs. It can obtain that in our work, good
jitter performance and low power consumption are achieved too. In the rest of the table, our
work is compared with other references [11,12,13,14]. It should be mentioned that our
previous work [15] is also used to make the results of this work better (specially the locked
time, rms jitter and peak-to-peak jitter).
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It must also be pointed out that the reported information for this work are extracted from the
simulation results, whereas some of those previously reported works are from the
experimental results. So some problems such as parasitic elements, impedance mismatch
and calibration errors have been ignored, which could influence the performance of
proposed system for future fabrication and test setup.

Table 1. Performance comparisons of PWCLS

References This work [3] [11] [12] [13] [14]
Cmos 0.18um 1.2um 0.13um  0.18um  0.18um 0.18um
process
Supply 1.8V 5V N.A. 1.8V 0.6V 1.8V
voltage
Operational 0.75-1GHz 55- 15- 150- 85- 200-
frequency 166MHz 600MHz 400MHz 550MHz  400MHz
1-2GHz
Locked <20ns <200ns N.A. 13 N.A. >6 clock
time cycles cycles
Duty-cycle +0.9% +0.8% N.A. N.A. N.A. N.A.
error
Rms Jitter 0.468ps@1GH N.A. 9ps@60 25ps@4 3.22ps@
z OMHz OOMHz  3.8ps@5 300MHz
50MHz
Peak-to-peak 2.52ps@1GHz N.A. N.A. N.A. 23.6ps@
jitter 25.6ps@ 300MHz
550MHz
Power 3.4mW@1GHz N.A. 20mw N.A. 2.4- 31.5mW
consumption @600M 4.2mwW @
Hz 300MHz ,
1.5GHz
Singel/double  double double single single single single
edge
correction

4. CONCLUSION

In this paper, DLL architecture with double edge synchronization based on 0.18um CMOS
technology at 1.8V power supply is proposed. Operating frequency range is from 750MHz to
1GHz. Fast-lock double edge synchronization DLL (maximum 20ns) is achieved by using
high speed double edge PFD1 and PFD2. Proposed PFDs also have small dead zone. Also,
differential CPs (CP1 and CP2) are used, because in this work, they seem more proper
choice and the advantage of these CPs is that switching time is improved by using the
current steering switches. Another feature of this structure is that it has good duty cycle
correction capability (50+0.9%). On the other hand, as we know, double edge
synchronization method leads to more power consumption and it can increase rms and
peak-to-peak jitter, because of using two PFDs, two CPs and LPFs instead of one, therefore,
in this work analysis of rms jitter, peak-to-peak jitter and power consumption is also
implemented. The maximum and minimum power consumption at 750MHz and 1GHz are
2.2mW and 3.4mW, respectively. The maximum and minimum of rms jitters are 9.12 and
0.463ps and the maximum and minimum of peak-to-peak jitters are 124.89 and 2.52ps,
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respectively. Although designing double edge synchronization method in DLLs is challenging
and it takes more area than single edge DLLs (which is mentioned as the main
disadvantages of double edge DLLs and we are working on this part, to minimize the chip
area for our next DLL project), these results show that double edge DLLs can be used
without jitter performance or power consumption challenges. In other word, the results of this
paper shows that most of the effective and important items of introduced double edge DLL
are as well as single edge DLLs in most articles. So when it is suitable to use double edge
DLL instead of single edge DLL, it should be no concern about these items.
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