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Abstract

Multispecies microbial communities often display “community functions” arising from inter-

actions of member species. Interactions are often difficult to decipher, making it challenging

to design communities with desired functions. Alternatively, similar to artificial selection for

individuals in agriculture and industry, one could repeatedly choose communities with the

highest community functions to reproduce by randomly partitioning each into multiple “New-

born” communities for the next cycle. However, previous efforts in selecting complex com-

munities have generated mixed outcomes that are difficult to interpret. To understand how

to effectively enact community selection, we simulated community selection to improve

a community function that requires 2 species and imposes a fitness cost on one or both

species. Our simulations predict that improvement could be easily stalled unless various

aspects of selection are carefully considered. These aspects include promoting species

coexistence, suppressing noncontributors, choosing additional communities besides the

highest functioning ones to reproduce, and reducing stochastic fluctuations in the biomass

of each member species in Newborn communities. These considerations can be addressed

experimentally. When executed effectively, community selection is predicted to improve

costly community function, and may even force species to evolve slow growth to achieve

species coexistence. Our conclusions hold under various alternative model assumptions

and are therefore applicable to a variety of communities.

Introduction

Multispecies microbial communities often display community functions, defined as biochemi-

cal activities not achievable by member species in isolation. Many community functions have

important commercial values. For example, a 6-species microbial community—but not any

member species alone—cleared relapsing Clostridium difficile infections in mice [1]. Commu-

nity functions arise from interactions by which an individual alters the physiology of another

individual. Thus, to improve community functions, one could identify and modify interactions
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[2,3]. In reality, this is no trivial task: each species can release dozens or more compounds,

many of which may influence the partner species in diverse fashions [4,5,6,7]. From this myr-

iad of interactions, one would then need to identify those critical for community function and

modify them by altering species genotypes or the abiotic environment. One could also artifi-

cially assemble different combinations of species or genotypes to screen for high community

function (e.g. [8, 9, 10]). However, some species may not be culturable in isolation. Moreover,

the number of combinations becomes very large even when testing a moderate number of spe-

cies and genotypes at various ratios, although recent advance has enabled massive parallel

screening of synthetic microbial communities in droplets [11].

In an alternative approach, artificial selection of whole communities could be carried out

over cycles to improve community trait [12–17, 115–120] (reviewed in [18,19,20]; Fig 1A). A

selection cycle starts with a collection of low-density "Newborn" communities with artificially

imposed boundaries (e.g., inside culture tubes). These low-density communities are incubated

for a period of time ("maturation") to form "Adult" communities. During maturation, commu-

nity members multiply and interact with each other and possibly mutate, and the community

function of interest develops. At the end of maturation, desired Adult communities are chosen

to “reproduce” such that each is randomly partitioned into multiple Newborn communities to

start the next cycle. Superficially, this process may seem straightforward since "one gets what

one selects for." After all, artificial selection on individuals has been successfully implemented

to obtain, e.g., proteins of enhanced activities ([21,22,23]; S1 Fig). However, compared to arti-

ficial selection of individuals or monospecies groups, artificial selection of multispecies com-

munities is more challenging (see detailed explanation in S1 Fig). For example, member

species critical for community function may get lost during community reproduction.

The few attempts at community selection have generated interesting results. One theoretical

study simulated artificial selection on multispecies communities based on the presence or

absence of a member species [17]. Communities responded to selection, but only under certain

conditions. In another theoretical study, multispecies communities responded to artificial selec-

tion for their ability to modify their abiotic environment in user-defined fashions [14]. In both

cases, the response to selection quickly leveled off, and could be generated without mutations.

Thus, community selection acted entirely on species types instead of new genotypes [14,17]. In

experiments, complex microbial communities were selected for various traits [12,13,15,16,115,

116]. For example, microbial communities selected to promote early or late flowering in plants

were dominated by distinct species types [15]. However in other cases, a community trait may

fail to improve despite selection and may improve even without selection [12,13,116].

Because communities used in these selection attempts were complex, much remains

unknown. First, was the trait under selection a community function or achievable by a single

species? If the latter, then community selection may not be needed, and the simpler task of

selecting individuals or monospecies groups could be performed instead (S1 Fig). Second, did

selection act solely on species types or also on newly arising genotypes? If selection acted solely

on species types [14,15,17,118], then without immigration of new species to generate new vari-

ations, community function may quickly plateau [14,17,118]. If selection acted on genotypes,

then community function could continue to improve as new genotypes evolve. Finally, why

might a community trait sometimes fail to improve despite selection [12,13]?

In this study, we simulated artificial selection on communities with 2 defined species whose

phenotypes can be modified by random mutations. Our goal is to improve a “costly” commu-

nity function. A community function is costly if any community member’s fitness is reduced

by contributing to that community function (Fig 1B). Costly community functions can arise

when microbes are engineered to contribute. Costly community functions are particularly

challenging to improve: because contributors to community function grow slower than
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Fig 1. Community selection. (A) Schematic of artificial community selection. (B) Costly community function. Dark cells contribute more to

community function per cell and thus divide more slowly than light cells. In other words, high contributors are disfavored by intracommunity selection

during community maturation. However, communities dominated by high contributors are favored by intercommunity selection and have a higher

chance to reproduce. (C) A Helper-Manufacturer community that converts substrates into a product. Helper H consumes agricultural waste and

Resource R to grow biomass, and concomitantly releases Byproduct B at no fitness cost to itself. H’s Byproduct B is required by Manufacturer M. M

consumes Resource and H’s Byproduct, and invests a fraction fP of its potential growth gM to make Product P while channeling the remaining to

biomass growth. When biomass growth ceases, Byproduct and Product are no longer made. The 5 state variables (italicized) H, M, R, B, and P
correspond to the amount of H biomass, M biomass, Resource, Byproduct, and Product in a community, respectively. Agricultural waste is present in

excess, and thus does not enter equations. (D) Simulating artificial selection of H-M communities. (i) In our simulations, cycles of selection were

performed on a total of ntot = 100 communities with the indicated initial conditions. At the beginning of the first cycle, each Newborn had a total

biomass of the target value (BMtarget = 100; 60 M and 40 H each of biomass 1). In subsequent cycles, as dictated by experiments that we simulate, each

Newborn’s total biomass would fluctuate around the target total biomass BMtarget, and each Newborn’s species ratio would fluctuate around its parent

Adult’s species ratio. The amount of Resource in each Newborn was fixed at a value that could support a total biomass of 104 (unless otherwise stated).

(ii) The maturation time T was chosen so that, for an average community, Resource was not depleted by time T (in experimental terms, this would

avoid complications of the stationary phase). During maturation, Resource R, Byproduct B, Product P, and each cell’s biomass were calculated from

differential equations (Methods, Section 6). Once a cell’s biomass had grown from 1 to 2, it divided into 2 identical daughter cells. Death occurred
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noncontributors, noncontributors will take over during community maturation. If all Adult

communities are dominated by noncontributors, then community selection will fail. To

improve a costly community function, intercommunity selection (which occurs once every

cycle) must overcome intracommunity selection throughout community maturation (Fig 1B).

By simulating a simplified 2-species community, we could compare the efficacy of different

selection regimens with relative ease, unlike experimental comparisons that would require

concerted efforts from multiple labs [24]. Additionally, by analyzing evolving communities—

their functions and member species phenotypes—we could begin to understand evolutionary

dynamics during community selection. We also designed our simulations to mimic real lab

experiments so that our conclusions could guide future experiments. For example, our simula-

tions incorporated not only chemical mechanisms of species interactions (as advocated by

[25,26]) but also experimental procedures (e.g., pipetting cultures during community repro-

duction). Model parameters, including species phenotypes, mutation rate, and distribution

of mutation effects, were based on a wide variety of published experiments. Note that most

previous models (e.g., [121]) focused on binary phenotypes (e.g., either contributing or non-

contributing) and therefore could not model community function improvement driven by the

evolution of quantitative phenotypes. We show that artificial community selection can

improve a costly community function, but only after circumventing a multitude of failure

traps. In discussions, we will elaborate on (i) challenges and solutions to community selection;

(ii) the tension between intracommunity selection versus intercommunity selection; (iii) simi-

larities and dinstinctions among individual selection, group selection, and community

selection; (iv) why optimizing monocultures may not lead to optimal community function;

(v) implications of our work; and (vi) future directions.

Results

We will first introduce the subject of our community selection simulation: a commensal 2-spe-

cies community that converts substrates to a valued product. We will then define community

function and describe how we simulate artificial community selection. Using simulation

results, we will demonstrate critical measures that make community selection effective. Finally,

we show that our conclusions are robust under alternative model assumptions, applicable also

to mutualistic communities and communities whose member species may not coexist. To

avoid confusion, we will use "community selection" or "selection" to describe the entire process

of artificial community selection (community formation, growth, selection, and reproduction),

and use "choose" or "intercommunity selection" to refer to the step in which the experimental-

ist decides which communities will reproduce.

A Helper-Manufacturer community that converts substrates into a product

Motivated by previous successes in engineering 2-species microbial communities that

convert substrates into useful products [27,28,29], we numerically simulated selection of such

communities.

In our community, Manufacturer M can manufacture Product P of value to us (e.g., a bio-

fuel or a drug) at a fitness cost to self, but only if assisted by Helper H (Fig 1C). Specifically,

stochastically to individual cells (not depicted). After division, mutations (different shades of oval) occurred stochastically to change a cell’s phenotypes

(e.g., M’s fP). (iii) At the end of a cycle, community functions (total Product P(T)) were ranked. (iv) During community reproduction, high-functioning

Adults were chosen and diluted into Newborns so that, on average, each Newborn had a total biomass of approximately the target biomass BMtarget. A

total of ntot = 100 Newborns were generated for the next selection cycle. In this study, communities never mixed with each other. Adult, Adult

community; B, Byproduct; H, Helper; M, Manufacturer; Newborn, Newborn community; P, Product; R, Resource.

https://doi.org/10.1371/journal.pbio.3000295.g001
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Helper but not Manufacturer can digest an agricultural waste (e.g., cellulose), and as Helper

grows biomass, Helper releases Byproduct B at no fitness cost to itself. Manufacturer requires

H’s Byproduct (e.g., carbon source) to grow. In addition, Manufacturer pays the cost of fP (0�

fP� 1) fraction of its potential growth to make Product P while using the rest (1 − fP) for its

biomass growth. Both species also require a shared Resource R (e.g., nitrogen). Thus, the 2

species together—but not any species alone—can convert substrates (agricultural waste and

Resource) into Product.

We define community function as the total amount of Product accumulated as a low-

density Newborn community grows into an Adult community over maturation time T, i.e.,

P(T). In the Discussion section, we explain problems associated with an alternative definition

of community function (e.g., per capita production; Methods Section 7; S2 Fig). We will ini-

tially focus on the scenario in which community function is not costly to Helpers but incurs

a fitness cost of fP to M. Later, we will show that our conclusions also hold when community

function is costly to both H and M. Below, we will describe how we simulated community

selection, followed by how we chose parameters of species phenotypes and parameters of

selection regimen.

Simulating community selection

We simulated 4 stages of community selection (Fig 1D) as follows: (i) forming Newborn com-

munities, (ii) Newborn communities maturing into Adult communities, (iii) choosing high-

functioning Adult communities, and (iv) reproducing the chosen Adult communities by split-

ting each into multiple Newborn communities of the next cycle. Our simulation was individ-

ual-based. That is, it tracked phenotypes and biomass of individual H and M cells in each

community as cells grew, divided, mutated, or died. Our simulations also tracked dynamics

of chemicals (including Product) in each community and accounted for actual experimental

steps such as pipetting cultures during community reproduction. Below is a brief summary of

our simulations, with more details in Methods (Section 6).

Each simulation started with ntot (= 100) number of Newborn communities. Each Newborn

community always started with a fixed amount of Resource R(0). Agricultural waste was

always supplied in excess and thus did not enter our equations. In the first cycle, each New-

born community had a total biomass equal to a target value BMtarget (= 100; 60 Manufacturers

and 40 Helpers each of biomass 1). See Discussion for problems associated with not having a

biomass target.

During community maturation, biomass of individual cells grew. The biomass growth rate

of a Helper cell depended on Resource concentration (Monod equation; S3A Fig; Eq 23). As H

grew, it consumed Resource and simultaneously released Byproduct (Eqs 21 and 22). The

potential growth rate of a Manufacturer cell depended on the concentrations of Resource and

H’s Byproduct (Mankad-Bungay dual-nutrient equation [30]; S3B Fig; see experimental sup-

port in S4 Fig). As M grew, it consumed Resource and Byproduct (Eqs 21 and 22) proportional

to its potential growth rate. M grew biomass at (1 − fP) fraction of potential growth rate (Eq

24), and released Product at a rate proportional to fP fraction of potential growth rate (Eq 25).

Once an H or M cell’s biomass grew from 1 to 2, it divided into 2 cells of equal biomass with

identical phenotypes, thus capturing experimental observations of continuous biomass

increase (S5 Fig) and discrete cell division events [31]. At any time, H and M cells died stochas-

tically at a constant death rate. Although mutations can occur during any stage of the cell

cycle, we assigned mutations immediately after cell division, such that each mutable phenotype

of both cells mutated independently.

Artificial selection for microbial community functions: Challenges and solutions
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Mutable phenotypes included H and M’s "growth parameters" (maximal growth rates in

excess nutrients; affinities for nutrients), and M’s cost fP. These phenotypes have been observed

to rapidly change during evolution [32,33,34,35]. Mutated phenotypes could range between

0 and their respective evolutionary upper bounds. Among mutations that alter phenotypes

(denoted "mutations"), on average, half abolished the function (e.g., zero growth rate, zero

affinity, or zero cost fP) based on experiments on green fluorescent protein, viruses, and yeast

[36,37,38]. Effects of the other 50% of mutations were bilateral-exponentially distributed,

enhancing or diminishing a phenotype by a few percent, based on our reanalysis of published

yeast data sets (S6 Fig) [39]. We held death rates constant, because death rates were much

smaller than growth rates and therefore mutations in death rates would be inconsequential.

We also held release and consumption coefficients constant. This is because, e.g., the amount

of Byproduct released per H biomass generated is constrained by biochemical stoichiometry.

At the end of community maturation time T, we compared community function P(T) (the

total amount of Product accumulated in the community by time T) for each Adult community.

We chose high-functioning Adults to reproduce. Each chosen Adult was randomly partitioned

into Newborns with target total biomass BMtarget. For example, if the chosen Adult had a total

biomass of 60BMtarget, then each cell would be assigned a random integer between 1 and 60,

and those cells with the same random integer would be allocated to the same Newborn. Experi-

mentally, this is equivalent to volumetric dilution using a pipette ("pipetting"). Thus, for each

Newborn, the total biomass and species ratio fluctuated around their expected values in a fash-

ion associated with pipetting (Methods Section 9). From top-functioning Adults, a total of ntot
Newborns were obtained to enter the next selection cycle (see below for details).

Choosing species: Enhancing species coexistence

In order to improve community function through community selection, species should ideally

coexist throughout selection cycles. That is, all species should grow at a similar average growth

rate within each cycle. Furthermore, species ratio should not be extreme because otherwise,

the low-abundance species could be lost by chance during Newborn formation. Species

coexistence at a moderate ratio has been experimentally realized in engineered communities

[27,28,40,41].

To achieve species coexistence at a moderate ratio in the H-M community, three consider-

ations need to be made. First, M’s cost fP for making Product must not be too large, otherwise

M would always grow slower than H and thus eventually go extinct (Fig 2A, bottom). Second,

H and M’s growth parameters (maximal growth rates in excess nutrients; affinities for nutri-

ents) must be balanced. This is because, upon Newborn formation, H can immediately start

to grow on agricultural waste and Resource, whereas M cannot grow until H’s Byproduct has

accumulated to a sufficiently high level. Thus, to achieve coexistence, M must grow faster than

H at some point during community maturation. Third, to achieve a moderate steady-state spe-

cies ratio, metabolite release and consumption need to be balanced [40]. Otherwise, the ratio

between releaser and consumer can be extreme.

Based on these considerations and published measurements on Saccharomyces cerevisiae
and Escherichia coli, we chose H and M’s ancestral growth parameters and their evolutionary

upper bounds, as well as release, consumption, and death parameters (Table 1, Methods Sec-

tion 2 and Section 3). Our choice of parameters ensured that throughout evolution, different

species ratios would converge toward a moderate steady-state value during community matu-

ration (Fig 2A, top). Note that if species were not chosen properly, selection might fail due to

insufficient species coexistence (Fig 6A), although we will demonstrate that under effective

community selection, requirements on species coexistence could be relaxed (Fig 6B–6D).

Artificial selection for microbial community functions: Challenges and solutions
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Choosing selection regimen parameters: Avoiding known failure modes

After choosing member species with appropriate phenotypes, we need to consider the parame-

ters of our selection regimen (Fig 1D). These parameters include the total number of communi-

ties under selection (ntot), the number of Adult communities chosen to reproduce (nchosen, the

“bottleneck size” when choosing a fraction of Adults to reproduce), Newborn target total bio-

mass (BMtarget, the "bottleneck size" when splitting an Adult into Newborns), the amount of

Resource added to each Newborn (R(0)), the amount of mutagenesis that controls the rate of

phenotype-altering mutations (μ), and maturation time (T). Compared to the well-studied

problem of group selection in which the unit of selection is a monospecies group [42–56], com-

munity selection is more challenging (Discussion; S1 Fig). However, the 2 types of selections do

share some common aspects (Discussion; S1 Fig). Thus, we can apply group selection theory,

together with other practical considerations, to better design community selection regimen.

Let’s begin by considering the total number of communities under selection. The highest

community function achieved among a large number of communities will likely exceed that

achieved among a small number of communities. However, experimentally achieving a

very large number of communities can be challenging. We chose a total of 100 communities

(ntot = 100).

nchosen, the number of Adults chosen by the experimentalist to reproduce, reflects intercom-

munity selection strength. Since the top-functioning Adult is presumably the most desirable,

we reproduced it into as many Newborns as possible and then reproduced the second best,

Fig 2. Species coexistence and optimal community function at an intermediate cost. Calculations were based on Eqs 6–10 with H and M’s growth

parameters fixed at their respective evolutionary upper bounds (Table 1, “Preadapted”). (A) Stable species coexistence at moderate to low cost. Bottom:

When fP, the fraction of potential growth Manufacturer diverts for making Product, is high (e.g., fP = 0.7), M will eventually go extinct (i.e., fraction of

M< 1� BMtarget). Top: At moderate and low cost fP (e.g., fP = 0.4 and fP = 0.1), H and M can stably coexist. That is, different initial species ratios will

converge to a steady-state value. At the end of the first cycle (time T = 17), Byproduct and Resource were reset to the initial conditions at time zero (0

and 104, respectively), and total biomass was reduced to the target value BMtarget = 100, while the fraction of M biomass ϕM remained the same as that of

the parent community. See main text for how values of maturation time and Resource were chosen. (B) Optimal community function occurs at an

intermediate cost fP. Community functions at various combinations of fP and fraction of M biomass (out of BMtarget = 100 total biomass) were

computed by integrating Eqs 6–10. Maximal community function P(T) is achieved at an intermediate cost f �P ¼ 0:41 (magenta dashed line) when

Newborn species composition is also optimal (46 H and 54 M cells). Note that, at zero fP, no Product would be made; at fP = 1, M would go extinct. The

maximal P�(T) could not be further improved even if we allowed all growth parameters and fP to mutate (S10 Fig). Thus, P�(T) is locally maximal in the

sense that small deviation will always reduce P(T). Ancestral fP (gray) is lower than f �P . The central question is this: can intercommunity selection

improve ancestral fP to f �P despite intracommunity selection favoring lower fP? The Matlab code can be found in S1 Code. H, Helper; M, Manufacturer.

https://doi.org/10.1371/journal.pbio.3000295.g002
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etc., until we obtained ntot Newborn communities for the next cycle (the "top-dog" strategy).

In most simulations, the top-functioning community contributed approximately 60–70 New-

borns. We then reproduced the next highest-functioning Adult in the same way and randomly

chose enough (approximately 30–40) Newborns so that a total of ntot = 100 Newborns were

generated for the next selection cycle. Later, we will compare the top-dog strategy with other

strategies employing weaker intercommunity selection strengths.

Whether we mix chosen Adults before splitting them into Newborns could impact the effi-

cacy of community selection. In our simulations, chosen Adults were not mixed to limit the

spread of noncontributors. In other words, we created a spatially-structured environment,

which is known to discourage noncontributors [57–60].

If the mutation rate is very low, then community function cannot rapidly improve. If the

mutation rate is very high, then noncontributors will be generated at a high rate, and as the

fast-growing noncontributors take over during community maturation, community function

will likely collapse. Here, we chose μ, the rate of phenotype-altering mutations, to be biologi-

cally realistic (0.002 per cell per generation per phenotype, which is lower than the highest val-

ues observed experimentally; Methods Section 4).

If Newborn target total biomass BMtarget is very large, or if the number of doublings within

maturation time T is very large, then noncontributors will take over in all communities during

maturation (S7 Fig, compare B-D with A), as predicted by group selection theory. On the

other hand, if BMtarget and the number of generations within T are both very small, then muta-

tions will be rare within each cycle, and many cycles will be required to improve community

function. Finally, if BMtarget is very small, then a member species might get lost by chance

Table 1. Parameters for ancestral and preadapted H and M.

Symbols Definition Ancestral Preadapted

~rB Amount of B̂ released per H biomass grown Scaling factor, 1 No change

~rP Amount of P̂ released at the cost of one M biomass Scaling factor, 1 No change

~Rð0Þ Initial amount of Resource in Newborn Scaling factor, 1

fP Fraction of M growth diverted to producing Product (M’s cost) 0.10 0.13#

KMR Fold of ~Rð0Þ at which gMmax/2 is achieved in excess B 1 1/3†

KMB Amount of B̂ at which gMmax/2 is achieved in excess R, scaled against ~rB
5

3
� 102 1

3
� 102†

KHR Fold of ~Rð0Þ at which gHmax/2 is achieved 1 1/5†

gMmax Maximal biomass growth rate of M 0.58/unit time 0.7/unit time�

gHmax Maximal biomass growth rate of H 0.25/unit time 0.3/unit time�

δM Death rate of M 3.5 × 10−3/unit time No change

δH Death rate of H 1.5 × 10−3/unit time No change

cRM Fraction of ~Rð0Þ consumed per M biomass grown 10−4 No change

cRH Fraction of ~Rð0Þ consumed per H biomass grown 10−4 No change

cBM Amount of B̂ consumed per M biomass grown, scaled against ~rB
1

3
No change

Pmut Mutation probability per cell division for each mutable phenotype 2 × 10−5~2 × 10−3

Tilde “*” means scaling factor, and hat “^” means prescaled absolute quantity (Methods, Section 1).

�Evolutionary upper bound for maximal growth rates for most simulations except Fig 6, S17 and S24B Figs where gHmax was allowed to increase to 0.8/unit time. In the

latter case, the initial R(0) was increased to 10 units of ~Rð0Þ.
†Evolutionary lower bound for KSpeciesMetabolite, which corresponds to evolutionary upper bound for Species’s affinity for Metabolite (1/KSpeciesMetabolite).
#fP optimal for M-group function (S25B Fig).

Parameters in the "Preadapted" column are used as the phenotypes at the beginning of most simulations unless otherwise specified. By “preadapt”, we mean that all

growth parameters are at their evolutionary upper bounds, and that fP is at the ancestral state (0.1~0.13). Methods Section 2 explains our parameter choices (including

why some parameters are held constant during evolution).

https://doi.org/10.1371/journal.pbio.3000295.t001
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during Newborn formation. In our simulations, we chose Newborn’s target total biomass

BMtarget = 100 biomass (approximately 50 to 100 cells). Unless otherwise stated, we fixed the

input Resource R(0) to support a maximal total biomass of 104 and chose maturation time T so

that even if H and M had evolved to grow as fast as possible, total biomass would undergo

approximately 6 doublings (increasing from about 100 to about 7,000). Thus, by the end of T,

� 70% Resource would be consumed by an average community. This meant that when imple-

mented experimentally, we could avoid complications of Resource depletion and stationary

phase while not wasting too much Resource.

Community selection may not be effective under conditions reflecting

common lab practices

In initial simulations, we only allowed M’s cost fp to be modified by mutations, and we fixed H

and M’s growth parameters (maximal growth rates in excess metabolites; affinities for metabo-

lites) to their evolutionary upper bounds. Such a simplification is justified with our particular

parameter choices (Table 1) for the following reasons. First, we obtained qualitatively similar

conclusions regardless of whether we fixed growth parameters or not (e.g., compare final com-

munity functions in Fig 3B and 3E versus S8A and S8D Fig). Second, when growth parameters

mutated during community selection, they improved to their evolutionary upper bounds any-

ways (S8C and S8F Fig). Later, we will show an opposite case in which growth parameters

were kept below their evolutionary upper bounds by effective community selection (Fig 6). A

great advantage can be gained by allowing only cost fp to mutate: we can now calculate the the-

oretical maximal community function P�(T) and its associated optimal cost f �P ð¼ 0:41Þ and

optimal species ratio at a fixed total Newborn biomass (Fig 2B).

We started simulations with M’s cost fp lower than the optimal value f �P . Could intercom-

munity selection increase fp to f �P , despite intracommunity natural selection favoring lower fp?
As expected, in control simulations in which Adult communities were randomly chosen to

reproduce, community function was driven to zero by intracommunity natural selection as

fast-growing nonproducing M took over (S9 Fig).

When we chose Adults using the top-dog strategy (starting from the top-functioning Adult

followed by the runners-up) and split them into Newborns as if via pipetting, M’s cost fp and

community function P(T) did not decline to zero but they barely improved, and both were far

below their theoretical optima (Fig 3A and 3B).

Common lab practices can generate sufficiently large nonheritable

variations in community function that interfere with selection

Why did community selection fail to increase M’s cost fP and community function? One possi-

bility is that community function was not sufficiently heritable from one cycle to the next (S1

Fig). We therefore investigated the heredity of community function by examining the heredity

of community function determinants.

Community function P(T) was largely determined by phenotypes of cells in the Newborn

community. This is because maturation time was sufficiently short (approximately 6 dou-

blings), and therefore newly arising genotypes could not rise to high frequencies within one

cycle to significantly affect community function. Because all phenotypes except for fP were

fixed, community function had 3 independent determinants: Newborn’s total biomass BM(0),

Newborn’s fraction of M biomass ϕM(0), and Newborn’s average M cost �f Pð0Þ (fP averaged

across all M cells in the Newborn). Note that the first 2 values can stochastically fluctuate as

expected from pipetting; e.g., to pipette 100 cells, one can end up pipetting between 70 and 130

cells even with a precise pipette.
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A community function determinant is considered heritable if it is correlated between New-

borns of one cycle (Fig 4A, bottom row) and their respective progeny Newborns in the next

cycle (Fig 4A, color-matched top row). Among the 3 determinants, �f Pð0Þ was heritable (Fig

4B): if a Newborn community had a high average fP, so would the mature Adult community

and Newborn communities reproduced from it. On the other hand, Newborn total biomass

Fig 3. Community selection can be stalled by routine experimental procedures, and can succeed when community function correlates with its

heritable determinant or when using the top-tier strategy. (A–I) Evolution dynamics when the maturation time T was sufficiently short to avoid

Resource depletion and stationary phase (T = 17). (A–C) Adults were chosen using the top-dog strategy and diluted into progeny Newborns as if via

pipetting (i.e., H and M biomass fluctuated around their expected values). Community selection was not effective: Average fp and community function

failed to improve to their theoretical optima. Community function poorly correlated with its heritable determinant �f Pð0Þ (the average cost paid by M in

Newborn). Black and magenta dots: unchosen and chosen communities from 1 selection cycle, respectively. (D–F) Adults were chosen using the top-

dog strategy. A fixed H biomass and a fixed M biomass from a chosen Adult were allocated into each progeny Newborn as if using a cell sorter.

Community selection was successful. Community function also correlated with its heritable determinant �f Pð0Þ. Here, Newborn total biomass BM(0)

and fraction of M biomass ϕM(0) were, respectively, fixed to BMtarget = 100 and ϕM(T) of the parent Adult of the previous cycle. (G–I) When we chose

the top 10% Adults and let each reproduce 10 Newborns as if via pipetting, community function improved somewhat despite poor correlation between

community function and its heritable determinant �f Pð0Þ. For selection dynamics over many cycles, see S14 Fig. (J–L) Evolution dynamics when

maturation time was long (T = 20) such that, by the end of T, most Resource was consumed (stationary phase). Adults were chosen using the top-dog

strategy and reproduced as if via pipetting. Community selection was successful due to high correlation between community function and its heritable

determinant �f Pð0Þ, assuming that variable time in stationary phase would not introduce nonheritable variations in community function. Black, cyan,

and gray curves represent independent simulation trials. �PðTÞ was the average of P(T) across all chosen Adults. �f PðTÞ was obtained by first averaging

among M within each chosen Adult and then averaging across all chosen Adults. The simulation codes can be found in S2 Code, and the data can be

found in S1 Data. Adult, Adult community; H, Helper; M, Manufacturer; Newborn, Newborn community.

https://doi.org/10.1371/journal.pbio.3000295.g003
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BM(0) was not heritable (Fig 4C). This is because when an Adult community reproduced via

pipette dilution, the dilution factor was adjusted so that the total biomass of a progeny New-

born community was, on average, the target biomass BMtarget. Newborn’s fraction of M bio-

mass ϕM(0), which fluctuated around ϕM(T) of its parent Adult, was not heritable either (Fig

4D). This is because, regardless of the species composition of Newborns, Adults would have

similar steady-state species composition (Fig 2A top panel), and so would their offspring

Newborns.

In successful community selection, variations in community function should be mainly

caused by variations in its heritable determinants. However, community function P(T) weakly

correlated with its heritable determinant �f Pð0Þ but strongly correlated with its nonheritable

determinants (Fig 4E–4G). For example, the Newborn that would achieve the highest function

had a below-median �f Pð0Þ (left magenta dot in Fig 4E) but had high total biomass BM(0) and

low fraction of M biomass ϕM(0) (Fig 4F and 4G). In other words, variation in community

function is largely nonheritable, because it largely arises from variation in nonheritable

determinants.

The reason for strong correlations between community function and its nonheritable deter-

minants became clear by examining community dynamics. Recall that to avoid stationary

phase, we had chosen maturation time so that Resource would be in excess by the end of matu-

ration. Thus, a "lucky" Newborn community starting with a higher-than-average total biomass

would convert more Resource to Product (dotted lines in top panels of S11 Fig). Similarly, if a

Newborn started with higher-than-average fraction of Helper H biomass, then H would

Fig 4. During ineffective community selection, community function correlates weakly with its heritable determinant and strongly with

nonheritable determinants. (A) Schematic of community lineages across “previous” and “current” selection cycles. (B-G) Data of Newborns and

corresponding Adults (previous cycle) were taken from the 180th cycle of the simulation displayed in black in Fig 3A and 3B. We then allowed each

Adult to reproduce Newborns (current cycle), forming 100 lineages (tubes with the same color outline belong to the same lineage). (B–D) Among the 3

determinants of community function, �f Pð0Þ (fP averaged among M cells in Newborn) is heritable, but BM(0) (total biomass of Newborn) and ϕM(0)

(fraction of M biomass in Newborn) are not. For each lineage, the community function determinant at the previous cycle was scatter plotted against the

average value at the current cycle. (E–G) During ineffective community selection (Fig 3B), community function P(T) correlates weakly with heritable

determinant but strongly with nonheritable determinants. Each dot represents one community. Magenta dots: "successful" Newborns that achieved the

highest community function at adulthood and therefore were chosen to reproduce in the top-dog strategy. The Matlab code for B–D can be found in S2

Code, and the data for E–G can be found in S1 Data. Adult, Adult community; M, Manufacturer; Newborn, Newborn community.

https://doi.org/10.1371/journal.pbio.3000295.g004
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produce higher-than-average Byproduct, which meant that M would endure a shorter growth

lag, grow more, and make more Product (dotted lines in bottom panels of S11 Fig).

To summarize, when community function significantly correlated with its nonheritable

determinants (Fig 4F and 4G), community selection failed to improve community function

(Fig 3B).

Reducing nonheritable variations in an experimentally feasible manner

promotes artificial community selection

Reducing nonheritable variations in community function should facilitate community selec-

tion. One possibility would be to reduce stochastic fluctuations in nonheritable determinants.

For example, a cell sorter could allocate to each Newborn community a fixed biomass or cell

number from each species, if different species have different fluorescence [61]. Indeed, in sim-

ulations, when we fixed Newborn’s total biomass and species fraction ("cell sorting"; Methods,

Section 6), community function became strongly correlated with its heritable determinant (Fig

3F). In this case, average cost �f P and community function P(T) both increased under selection

(Fig 3D and 3E) to near the optimal. Improvement was not seen if either Newborn total bio-

mass or species fraction was allowed to fluctuate stochastically (S12A Fig). Community func-

tion also improved if fixed numbers of H and M cells (instead of biomass) were allocated into

each Newborn, even though each cell’s biomass fluctuated between 1 and 2 (S13C Fig; Meth-

ods, Section 6).

Nonheritable variations in community function could also be curtailed by reducing the

dependence of community function on nonheritable determinants. For example, we could

extend the maturation time T to nearly deplete Resource. In this selection regimen, Newborns

would still experience stochastic fluctuations in total biomass and species composition. How-

ever, "unlucky" communities would have time to "catch up" as "lucky" communities wait in sta-

tionary phase. Indeed, with this extended maturation time T, community function became

strongly correlated with its heritable determinant �f Pð0Þ; and community function improved

without having to fix Newborn total biomass or species composition (Fig 3J–3L). However, at

long maturation time, nonheritable variations in community function could still arise from

stochastic fluctuations in the duration of stationary phase (which could affect cell survival or

recovery time in the next selection cycle). Thus, for most simulations, we used short matura-

tion time unless stated otherwise.

Reducing inter-community selection strength can promote selection when

nonheritable variations hinder selection

Since the highest community function may not correspond to the highest fP (Fig 3C), we

examined whether a "top-tier" strategy might outperform the top-dog strategy. In the top-tier

strategy, we chose, for example, the top 10% Adults, allowing each to reproduce 10 New-

borns. When we partitioned Adults into Newborns as if using pipetting, although community

function failed to improve under the top-dog strategy, it improved somewhat under the top-

tier strategy (Fig 3, compare G-I with A-C). In fact, the top-tier strategy improved commu-

nity function under a wide range of selection strengths (e.g., top 5% to top 50%; S15 Fig).

When we chose top 2% (2 Adults, each contributing 50 Newborns), community function did

not improve (S15 Fig). When we chose all 100 Adults (each contributing 1 Newborn), com-

munity function declined to zero as expected (S15 Fig), because there was no intercommu-

nity selection.

The superiority of top-tier over top-dog strategy rests on giving "unlucky" Adults a chance

to reproduce. We reached this conclusion by noting that if we minimized nonheritable
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variations in community function (by fixing total biomass and species fraction in Newborns),

then top-dog is superior to top-tier strategy (S16 Fig). Also note that the top-tier strategy in the

presence of nonheritable variations (pipetting; Fig 3G–3I and S14 Fig) does not work as effec-

tively as eliminating nonheritable variations (cell sorting; Fig 3D–3F).

As expected, community function measurement noise—another source of nonheritable

variation—interferes with community selection (compare Fig 3A and 3B with Fig 5A; Fig 3D

and 3E with Fig 5C). In this case, community selection can be improved by leveraging both the

top-tier strategy and cell sorting (Fig 5, compare B and C with D). This is presumably because

(i) cell sorting reduces nonheritable variations in community function and (ii) the top-tier

strategy gives “unlucky” communities suffering unfavorable community function measure-

ment errors a chance to reproduce.

Effective community selection can enforce species coexistence

Properly executed community selection could even improve the functions of communities

whose member species may not coexist. Consider an H-M community in which, unlike the

H-M community we have considered so far, H had the evolutionary potential to grow much

faster than M. In this case, high community function not only required M to pay a fitness cost of

fP but also required H to pay a fitness cost by growing sufficiently slowly to not outcompete M.

We started community selection at ancestral growth parameters and allowed them and fP to

mutate. When community selection was ineffective (top-dog with pipetting; Fig 6A), H’s maxi-

mal growth rate evolved to its upper bound and exceeded M’s maximal growth rate (Fig 6A,

row 3, S17A Fig). This drove M to almost extinction (Fig 6A, row 4), and community function

was very low (Fig 6A, row 1). During effective community selection (top-dog with cell sorting,

top 10% with pipetting, or top 10% with cell sorting), H’s maximal growth rate remained far

below its evolutionary upper bound and below M’s maximal growth rate (Fig 6B–6D, row 3).

This is because if H’s maximal growth rate in a community had evolved to be too high, then H

would drive M to low abundance, and the resulting low community function would be disfa-

vored by intercommunity selection. Because H was constrained to grow slower than M, H and

M can coexist at a moderate ratio, and community function improved (Fig 6B–6D, row 1).

Note that, unlike Fig 5, here top-tier and cell sorting did not show synergism. This is because

when nonheritable variation in community function is minimized by cell sorting, the top-tier

strategy does not seem to be helpful (S16 Fig).

Robust conclusions under alternative model assumptions

We have demonstrated that when selecting for high H-M community function, seemingly

innocuous experimental procedures (e.g., choosing the top-functioning Adults and pipetting

portions of them to form Newborns) could be problematic. Instead, more precise procedures

(e.g., cell sorting) or moderate intercommunity selection strength (e.g., the top-tier strategy)

might be required. Our conclusions held when we used a much lower mutation rate (2 × 10−5

instead of 2 × 10−3 mutation per cell per generation per phenotype, S18 Fig), although lower

mutation rate slowed down community function improvement. Our conclusions also held

when we used different distributions of mutation effects (S19 Fig) or incorporated epistasis

(i.e., a non-null mutation would likely reduce fP if the current fP was high and increase fP if the

current fP was low; S20 and S21 Figs; Methods Section 5).

To further test the generality of our conclusions, we simulated community selection on a

mutualistic H-M community. Specifically, we assumed that Byproduct was inhibitory to H.

Thus, H benefited M by providing Byproduct, and M benefited H by removing the inhibitory

Byproduct, similar to the syntrophic community of Desulfovibrio vulgaris and Methanococcus
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maripaludis [62]. We obtained similar conclusions in this mutualistic H-M community (S22

Fig). We have also shown that similar conclusions hold for communities in which member

species may not coexist (Fig 6).

In summary, our conclusions seem general under a variety of model assumptions and apply

to a variety of communities.

Fig 5. Ineffective selection due to community function measurement noise can be rescued by the top-tier strategy acting in synergy with cell

sorting. Adult communities were chosen to reproduce based on "measured community function P(T)"—the sum of actual P(T) and a "noise term"

randomly drawn from a normal distribution with zero mean and standard deviations of 5% or 10% of the ancestral P(T). Dynamics of average fP and

average community function of the chosen Adult communities (�f PðTÞ and �PðTÞ) are plotted. When community function measurement noise is low

(5%), cell sorting largely rescues ineffective community selection (A–D, left panels). When community function measurement noise is high (10%), both

cell sorting and top-tier strategy are required (A–D, right panels). Black, cyan, and gray curves represent independent simulation trials. �PðTÞ was

averaged across the chosen Adults. �f PðTÞ was obtained by first averaging among M within each chosen Adult and then averaging across the chosen

Adults. The simulation codes can be found in S3 Code, and the data can be found in S2 Data. Adult, Adult community; M, Manufacturer.

https://doi.org/10.1371/journal.pbio.3000295.g005
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Discussion

A desired community function can be attained by identifying appropriate combinations of

species types. For example, by using cellulose as the main carbon source in a process called

"enrichment," Kato and colleagues obtained a community consisting of a few species that

together degrade cellulose [63]. However, if we solely rely on species types, then without a

Fig 6. Effective community selection can encourage species coexistence. Here, the evolutionary upper bound for gHmax (g�Hmax ¼ 0:8) was larger than

that for gMmax (g�Mmax ¼ 0:7), opposite to that in Figs 2–5. (A) When the top-dog strategy and pipetting were used to choose and reproduce Adult

communities, M was almost outcompeted by H as H evolved to grow faster than M (rows 3 and 4). Although M would ordinarily go extinct,

community selection managed to maintain M at a very low level (bottom). This imbalanced species ratio resulted in very low community function

(top). (B-D) When community selection was effective, using top-dog with cell sorting (panel B), top-tier with pipetting (panel C), or top-tier with cell

sorting (panel D), community selection successfully improved community function and �f P. In these cases, H’s growth parameter did not increase to its

evolutionary upper bound (panel B-D row 3, also see S17B–S17D Fig), allowing a balanced species ratio (panel B-D bottom) and high community

function (panel B-D top). Resource supplied to Newborn communities here supports 105 total biomass to accommodate faster growth rates (and hence

community function is larger than in other figures). Black, cyan, and gray curves represent independent simulation trials. �PðTÞ (average community

function) and ��MðTÞ (average fraction of M biomass in Adult communities) were averaged across the chosen Adults. �f PðTÞ was obtained by first

averaging among M within each chosen Adult and then averaging across all chosen Adults. The simulation codes can be found in S4 Code, and the data

can be found in S3 Data. Adult, Adult community; H, Helper; M, Manufacturer.

https://doi.org/10.1371/journal.pbio.3000295.g006
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constant influx of new species, community function will likely level off quickly [14,17,118].

Here, we consider artificial selection of communities with defined member species so that

improvement of community function requires new genotypes that contribute more toward

community function at a higher cost to itself.

Community selection can be challenging but is feasible

Artificial selection of whole communities to improve a costly community function requires

careful considerations. These considerations include species choice (Figs 2 and 6), mutation rate

(compare Fig 3 and S18 Fig), the total number of communities under selection, Newborn target

total biomass (S7 Fig), the number of generations during maturation (which in turn depends on

the amount of Resource added to each Newborn and the maturation time; S7 Fig), intercommu-

nity selection strength (Fig 3, S15 and S16 Figs), how we reproduce Adults (e.g., pipetting versus

cell sorting; Fig 3), and the uncertainty in community function measurements (Fig 5).

Many of these considerations face dilemmas. For example, a large Newborn size (BMtarget)

might lead to reproducible takeover by noncontributors (S7 Fig), but a small Newborn size

would mean that large nonheritable variations in community function can readily arise and

interfere with selection unless special measures are taken (Fig 3).

We can take obvious steps to mitigate nonheritable variations in community function. For

example, we can repeatedly measure community function to increase measurement precision,

thereby facilitating selection (Fig 5). We can also use the top-tier strategy so that unlucky com-

munities harboring desirable genotypes can have a chance to reproduce (Figs 3 and 5). Note

that a top-tier strategy had often been implemented during artificial individual selection [114]

and artificial community selection [119] to maintain variations among entities. Although

some community functions (such as steady-state species ratio or steady-state growth rate of

mutualistic communities) are not sensitive to fluctuations in Newborn biomass compositions

[40,64]; for those that are, we can use a cell sorter to fix Newborn species biomass composi-

tions to reduce nonheritable variations in community function (Figs 3 and 5).

The need to suppress nonheritable variations in community function can have practical

implications that may initially seem nonintuitive. For example, when shared Resource is nonli-

miting (to avoid stationary phase), we must dilute a chosen Adult community to a fixed target

biomass instead of by a fixed fold. This is because otherwise, selection would fail as we choose

larger and larger Newborn size instead of higher and higher fP (Methods, Section 7; S23 Fig).

The definition of community function is also critical. If we had defined community func-

tion as Product per M biomass in the Adult community P(T)/M(T) (which is approximately

proportional to
fP

1� fP
: see Methods Section 7), then we would be selecting for higher and higher

fP, and M can go extinct (S2 Fig).

Intracommunity selection versus intercommunity selection

Intracommunity selection and intercommunity selection are both important. Intracommunity

selection occurs during community maturation and favors fast growers. Intercommunity

selection occurs prior to community reproduction and favors high community function.

For M’s cost fP, intracommunity selection favors low fP, while intercommunity selection

favors f �P , the fP value leading to the highest community function. Thus, when current fP < f �P ,

intercommunity selection runs against intracommunity selection. When current fP > f �P , intra-

community and intercommunity selections are aligned.

For growth parameters (maximal growth rates, affinities for metabolites), depending on

their evolutionary upper bounds, intercommunity selection may or may not be aligned with

intracommunity selection. For example, using parameters in Table 1 (Fig 3), improving
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growth parameters promoted community function (S8A–S8C Fig; S24A Fig). This is because

with these choices of evolutionary upper bounds, H could not evolve to grow so fast to over-

whelm M. Thus, with sufficient Resource and with species coexistence (Fig 2A top), faster H

and M growth resulted in more Byproduct, larger M populations, and consequently higher

Product level. If H could evolve to grow faster than M, then increasing growth parameters

could decrease community function due to H dominance (Fig 6A; S17A Fig; S24B Fig). Note

that even in this case, properly executed community selection can promote species coexistence

and improve community function (Fig 6B–6D).

Contrasting selection at different levels

Selection of individuals bears some resemblance to selection of communities. Whereas com-

munity function relies on interactions between different species, an individual’s fitness relies

on interactions between different genes. To ensure sufficient heredity between an individual

and its offspring, elaborate cellular mechanisms have evolved. They include cell cycle check-

points to ensure accurate DNA replication and segregation [65], small RNA-mediated silenc-

ing of transposons [66], and clustered regularly interspaced short palindromic repeats and the

CRISPR-associated protein (CRISPR-Cas) degradation of foreign viral DNA [67]. In commu-

nity selection, heredity-enhancing mechanisms such as stable species ratio (Fig 2A top panel)

could already be in place due to ecological interactions or arise due to evolution (e.g., muta-

tions that affect ecological interactions). If endosymbiosis should evolve in response to com-

munity selection (i.e., one microbe stably living inside another microbe much like chloroplasts

living inside plant cells), then community selection would transition to individual selection.

Group selection is connected to individual selection and community selection. Group

selection, and in a related sense kin selection [42–55,68], have been extensively examined to

explain, e.g., the evolution of traits that lower individual fitness but increase the success of a

group (e.g., sterile ants helping the survival of an ant colony). Note that the term "group selec-

tion" has often been used to describe individual selection in spatially structured populations

without group births or deaths, although such usage has been criticized [69]. Artificial group

selection can sometimes be viewed as artificial individual selection. For example, when New-

born groups start with a single founder producing a product of interest, then artificial group

selection for high group production is equivalent to artificial individual selection for the foun-

der’s ability to produce over time as it grows into a population. On the other hand, if group

function relies on synergistic interactions between populations with distinct phenotypes, then

group selection can be thought of as a special case of community selection. The difference is

that, unlike community function, group function can arise as a single founder multiplies and

differentiates into distinct populations (e.g., filamentous cyanobacteria growing and differenti-

ating into nitrogen-fixing cells and photosynthetic cells [70]).

Group selection and community selection display additional similarities and distinctions.

First, group selection and community selection are similar in that Newborn size must not be

too large [71,72], and maturation time must not be too long. Otherwise, all entities (groups or

communities) will accumulate noncontributors in a similar fashion, and this lack of variation

among entities impedes selection (Price equation [56]; S1B Fig; S7 Fig). Second, species inter-

actions in a community could drive species composition to a value suboptimal for community

function [73]. A similar constraint could also occur during artificial group selection if the

founder genotype gives rise to interacting subpopulations. Otherwise, the problem of subopti-

mal composition does not exist for group selection. Finally, in group selection, when a New-

born group starts with a small number of individuals (e.g., one individual), a fraction of

Newborn groups of the next cycle will be highly similar to the original Newborn group
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(S1B Fig, bottom panel). This heredity facilitates group selection. In contrast, when a Newborn

community starts with a small number of total individuals, large stochastic fluctuations in

Newborn composition can interfere with community selection (Figs 3 and 4). In the extreme

case, a member species may even be lost by chance. Even if a fixed biomass of each species is

allocated into Newborns during community selection, heredity is much reduced due to ran-

dom sampling of genotypes from multiple species. For example, if Newborn communities

start with one contributor from each of the 2 species and if the highest-functioning Adult com-

munity has accumulated 50% noncontributors in each species, then only 50%×50% = 25%

Newborn communities of the next cycle will be similar to the original Newborns. In contrast,

if Newborn groups are initiated with a single contributor and if the highest-functioning Adult

group has accumulated 50% noncontributors, then 50% Newborn groups of the next cycle will

be similar to the original Newborn.

Community function may not be maximized through pre-optimizing

member species in monocultures

If we know how each member species contributes to community function, might we pre-opti-

mize member species in monocultures before assembling them into high-functioning commu-

nities? This turns out to be challenging due to the difficulty of recapitulating community

dynamics in monocultures. For example, artificial group selection on M failed to increase M’s

cost fP to f �P optimal for community function. Specifically, we started simulations with ntot of

100 Newborn M groups, each inoculated with one M cell (to facilitate group selection, S1B Fig

bottom panel) [71]. We supplied each Newborn M group with the same amount of Resource

as we would for H-M communities as well as excess Byproduct (since it is difficult to repro-

duce community Byproduct dynamics in M groups). After incubating these M groups for the

same maturation time T, the group with the highest level of Product would be chosen and

reproduced into Newborn M groups (initiated with a single cell) for the next cycle. M’s growth

parameters improved to evolutionary upper bounds (S25A Fig), because faster-growing M

cells would lead to higher group function in the presence of sufficient Resource and excess

Byproduct. When growth parameters were fixed to evolutionary upper bounds, optimal fP for

monoculture P(T) could be calculated to occur at an intermediate value (f �P;Mono ¼ 0:13; S25B

Fig). Optimal group function was indeed realized during selection (S25A Fig). However, the

associated optimal fP was much lower than that for community function (f �P ¼ 0:41; see Meth-

ods Section 8 for an explanation). Thus, optimizing monoculture activity does not necessarily

lead to optimized community function.

Implications of our work

Our work sheds new light on previous work. In the work of Swenson and colleagues [12],

authors tested 2 selection regimens with Newborn sizes differing by 100-fold. The authors

hypothesized that smaller Newborns would have a high level of variation that should facilitate

selection. However, the hypothesis was not corroborated by experiments. As a possible expla-

nation, the authors invoked the "butterfly effect" (the sensitivity of chaotic systems to initial

conditions). Our results suggest that even for nonchaotic systems like the H-M community,

selection could fail due to interference from nonheritable variations. This is because in New-

borns with small sizes, fluctuations in community composition can be large, which compro-

mises heredity of a community trait.

A general implication of our work is that before launching a selection experiment, one

should carefully design the selection regimen. For example, one may want to check the sensi-

tivity of community function to fluctuations in Newborn biomass composition. The first
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method of checking involves estimating the "signal to noise" ratio: one could use the most pre-

cise method to initiate Newborn community replicates and measure community functions

(e.g., cell sorting during Newborn formation; many repeated measurements of community

function). Despite this, some levels of nonheritable variations in community function are inev-

itable due to, e.g., nongenetic phenotypic variations among cells [74] or stochasticity in cell

birth and death. If "noises" (variations among replicate communities) are small compared to

"signals" (variations among communities of different genotypes that affect the community

function of interest), then one can test and possibly adopt less precise procedures (e.g., cell

culture pipetting during Newborn formation; fewer repeated measurements of community

function). The second checking method involves empirically estimating the heritability of

community function, especially if significant variations in community function naturally arise

within the first few cycles (due to, e.g., preexisting mutations). In this case, one could experi-

mentally evaluate whether community functions of the previous cycle are correlated with

community functions of the current cycle across independent lineages (similar to Fig 4). Given

the ubiquitous nature of nonheritable variations in community function, the top-tier strategy

could be useful (Figs 5 and 6).

Our work also contributes to how we might think about community selection in the natural

environment. Microbes can co-evolve with each other and with their host [75, 76, 77]. Some

have proposed that complex microbial communities such as the gut microbiota could serve as

a unit of selection [19]. Our work suggests that if selection for a costly microbial community

function should occur in nature, then certain mechanisms may need to be in place. These

mechanisms include (i) suppressing nonheritable variations in community function, and (ii)

exerting an appropriate strength of intercommunity selection.

Future directions

Our work touched upon only the tip of the iceberg of community selection. We expect that

certain rules will be insensitive to details of a community. For example, community selection

can be facilitated by reducing nonheritable variations in community function, or by mitigating

the effects of nonheritable variations via top-tier strategies. Still, much more awaits further

investigation. Here, we outline a few:

1. Explore the best strategies for choosing and reproducing Adult communities. We have

chosen top 10% communities to contribute an equal number of Newborns, but alternative

strategies (e.g., allowing higher-functioning Adults to contribute more Newborns) may

work better.

2. Examine the impact of migration (community mixing) on community selection. Here, we

did not allow migration. Excessive migration could deter community selection by allowing

fast-growing noncontributors to spread. However, by combining the best genotypes of mul-

tiple member species, migration could speed up community selection, much like the effects

of sexual recombination on the evolution of finite populations [78].

3. Investigate how interaction structure might affect selection efficacy. We have shown that

our conclusions hold for 2-species communities engaging in commensalism or mutualism.

We have also shown that our conclusions hold regardless of whether the 2 species can

evolve to coexist or not. The next step would be to test other types of interactions and com-

plex interaction networks. For example, when species mutually inhibit each other, multi-

stability could arise. In this case, species dominance [79] and thus community function

could be highly sensitive to stochastic fluctuations in Newborn species composition. How

might multistability affect community selection [117,118]?
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A complex community might also have multiple local optima of community function. This

can arise when, e.g., the maximal community function requires multiple species with par-

tially redundant activities. Consider the community function of waste degradation. Suppose

that one species is good at degrading waste at high concentration while the other is good at

degrading waste at low concentration. Then, maximal waste degradation requires both spe-

cies. If any one species is lost by chance during Newborn formation, then community func-

tion would be stuck at local suboptima. In this case, community migration (mixing) could

recover the lost species and help community selection reach a global optimum.

4. Develop a general theory to understand the rate of community function improvement.

Community function improvement depends on many experimental parameters, as we

have demonstrated here. Ultimately, the rate of improvement will depend on variation and

heredity of community function, which are affected by intracommunity and intercommu-

nity selection. How might experimental parameters affect variation and heredity of com-

munity function under selection? This aspect might be explored through expanding

population genetics theories which have so far focused on individual selection [114].

5. Experimentally test model predictions. Effective community selection will require a fast

and precise assay for community function. If community function is sensitive to species

biomass composition in Newborns, then species should ideally be distinguishable by flow

cytometry (e.g., different fluorescence or different scattering patterns) so that fixed biomass

of each species can be sorted into Newborns. Note that cell sorting only needs to be per-

formed on several high-functioning communities and thus would not be cost prohibitive if

the total number of Newborn communities is moderate.

6. Discover drivers of community function. Once high-functioning communities are obtained

through selection, one could compare metagenomes of evolved communities with those

of ancestral communities. This could illuminate genes and species interactions that are

important for community function.

Methods

1. Equations of H-M community

H, the biomass of H, changes as a function of growth and death,

dH
dt
¼ gH R̂

� �
H � dHH ð1Þ

Growth rate gH depends on the level of Resource R̂ (hat ^ representing prescaled absolute

value) as described by the Monod growth model

gH R̂
� �
¼ gHmax

R̂
R̂ þ K̂HR

where K̂HR is the R̂ at which gHmax/2 is achieved. δH is the death rate of H. Note that because

agricultural waste is in excess, its level does not enter the equation.

M, the biomass of M, changes as a function of growth and death,

dM
dt
¼ 1 � fPð ÞgM R̂; B̂

� �
M � dMM ð2Þ
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Total potential growth rate of M gM depends on the levels of Resource and Byproduct (R̂ and

B̂) according to the Mankad-Bungay model [30] which has received experimental support (S4 Fig)

gM R̂; B̂
� �

¼ gMmax
R̂MB̂M

R̂M þ B̂M

1

R̂M þ 1
þ

1

B̂M þ 1

� �

where R̂M ¼ R̂=K̂MR and B̂M ¼ B̂=K̂MB (S3 Fig). Out of total potential growth rate of M, 1 − fP
fraction is channeled to biomass increase, while fP fraction is channeled to making Product

dP̂
dt
¼ ~rPfPgM R̂; B̂

� �
M ð3Þ

where ~rP is the amount of Product made at the cost of one M biomass (tilde “~” represents scaling

factor; see below and Table 1).

Resource R̂ is consumed proportionally to the growth of M and H; Byproduct B̂ is released

proportionally to H growth and consumed proportionally to M growth

dR̂
dt
¼ � ĉRMgM R̂; B̂

� �
M � ĉRHgH R̂

� �
H ð4Þ

dB̂
dt
¼ ~rBgH R̂

� �
H � ĉBMgM R̂; B̂

� �
M ð5Þ

Here, ĉRM and ĉRH are the amounts of R̂ consumed per potential M biomass and H biomass,

respectively. ĉBM is the amount of B̂ consumed per potential M biomass. ~rB is the amount of B̂
released per H biomass grown. Our model assumes that Byproduct or Product is generated

proportionally to H or M biomass grown, which is reasonable given the stoichiometry of meta-

bolic reactions and experimental support [80]. The volume of community is set to 1, and thus

cell or metabolite quantities (which are considered here) are numerically identical to cell or

metabolite concentrations.

In the equations above, scaling factors are marked by "~" and will become 1 after scaling.

Variables and parameters with hats will be scaled and lose their hats afterwards. Variables and

parameters without hats will not be scaled. We scale Resource-related variable (R̂) and param-

eters (K̂MR; K̂HR; ĉRM, and ĉRH) against ~Rð0Þ (Resource supplied to Newborn), Byproduct-

related variable (B̂) and parameters (K̂MB and ĉBM) against ~rB (amount of Byproduct released

per H biomass grown), and Product-related variable (P̂) against ~rP (amount of Product made

at the cost of one M biomass). For biologists who usually think of quantities with units, the

purpose of scaling (and getting rid of units) is to reduce the number of parameters. For exam-

ple, H biomass growth rate can be rewritten as

gHðR̂Þ ¼ gHmax
R̂

R̂ þ K̂HR

¼ gHmax
R̂

~Rð0Þ

� �

=
R̂

~Rð0Þ
þ

K̂HR

~Rð0Þ

� �

¼ gHmax
R

ðRþ KHRÞ

¼ gHðRÞ

where R ¼ R̂=~Rð0Þ and KHR ¼ K̂HR=
~Rð0Þ. Thus, the unscaled gHðR̂Þ and the scaled gH(R) share
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identical forms (S3 Fig). After scaling, the value of ~Rð0Þ becomes irrelevant (1 with no unit).

Similarly, because R̂M ¼
R̂

~Rð0Þ =
K̂MR
~Rð0Þ ¼

R
KMR
¼ RM and B̂M ¼

B̂
~rB
=

K̂MB
~rB
¼ B

KMB
¼ BM; gM R̂; B̂

� �
¼

gM R;Bð Þ (S3 Fig).

Thus, scaled equations are as follows:

dH
dt
¼ gH Rð ÞH � dHH ð6Þ

dM
dt
¼ 1 � fPð ÞgM R;Bð ÞM � dMM ð7Þ

dP
dt
¼

dP̂
~rPdt

¼ fPgMðR̂; B̂ÞM

¼ fPgMðR;BÞM

ð8Þ

dR
dt
¼

dR̂=~Rð0Þ
dt

¼ �
ĉRM
~Rð0Þ

gMðR̂; B̂ÞM �
ĉRH
~Rð0Þ

gHðR̂ÞH

¼ � cRMgMðR;BÞM � cRHgHðRÞH

ð9Þ

dB
dt
¼

dB̂=~rB
dt

¼ gHðR̂ÞH �
ĉBM
~rB

gMðR̂; B̂ÞM

¼ gHðRÞH � cBMgMðR;BÞM

ð10Þ

We have not scaled time here, although time can also be scaled by, e.g., the community mat-

uration time. Here, time has the unit of unit time (e.g., hour), and to avoid repetition, we often

drop the time unit. Scaling factors and values of species phenotypes after scaling are in Table 1.

Additional symbols, including state variables and selection scheme parameters, are summa-

rized in Table 2.

Below, we calcuate the steady-state species ratio in the H-M community. From Eq 10:

R T
0

dB
dt dt ¼

R T
0
gHðRÞHdt �

R T
0
cBMgMðR;BÞMdt: ð11Þ

If we approximate Eqs 6–7 by ignoring the death rates so that dH
dt � gH Rð ÞH and

dM
dt � 1 � fPð ÞgM R;Bð ÞM, Eq 11 becomes

B Tð Þ �
R T

0

dH
dt dt �

cBM
1� fP

R T
0

dM
dt dt: ð12Þ

In our simulations, with our parameter choices, if fP is not too large (fP< 0.4), B(T)� 0.

If T is large enough so that both M and H have multiplied significantly and H(T)�H(0) and

M(T)�M(0), Eq 12 becomes

H Tð Þ � H 0ð Þ �
cBM

1 � fP
MðTÞ � Mð0Þð Þ � H Tð Þ �

cBM
1 � fP

M Tð Þ � 0;
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and the M:H ratio at time T is

MðTÞ
HðTÞ

�
1 � fP
cBM

: ð13Þ

Thus when Byproduct B(T)� 0, ϕM,SS, the steady-state fraction of M biomass, is then

�M;SS �
1 � fP

1 � fP þ cBM
: ð14Þ

For fP< 0.4, Eq 14 is applicable and predicts the steady-state ϕM,SS well (see S26 Fig). Note

that significant deviation occurs when fP> 0.4. This is because when fP is large, M’s biomass

does not grow fast enough to deplete B so that we cannot approximate B(T)� 0 anymore.

2. Parameter choices

Our parameter choices are based on experimental measurements from a variety of organisms.

Additionally, we chose growth parameters (maximal growth rates and affinities for metabo-

lites) of ancestral and evolved H and M so that (i) the 2 species can coexist at a moderate ratio

for a range of fP over selection cycles and (ii) improving all growth parameters up to their evo-

lutionary upper bounds generally improves community function (Methods Section 3). This

way, we could simplify our simulation by fixing growth parameters at their respective evolu-

tionary upper bounds. With only 1 mutable parameter (fP), we can identify the optimal f �P asso-

ciated with maximal community function (Fig 2B).

For ancestral H, we set gHmax = 0.25 (equivalent to 2.8-hour doubling time if we choose

hour as the time unit), KHR = 1 and cRH = 10−4 (both with unit of ~Rð0Þ) (Table 1). This way,

ancestral H can grow by about 10-fold by the end of T = 17. These parameters are biologically

realistic. For example, for a lys- S. cerevisiae strain with lysine as Resource, unscaled Monod

constant is K̂ ¼ 2 mM, and consumption ĉ is 5 fmole/cell (Ref. [83]’s Fig 2 and Ref. [64]’s

S1 Data). Thus, if we choose 25 μL as the community volume V̂ and 2 μM as the initial

Table 2. Additional symbols used in the simulation.

Symbols Definition

T Community maturation time, corresponding to the duration of a selection cycle

t Time within a selection cycle, 0� t � T
M(t), H(t) The biomass of M or H in a community at time t

BM(t) = M(t) + H(t) The total biomass in a community at time t
ϕM(t) The fraction of M biomass at time t
BMtarget Preset target total biomass of Newborns during community reproduction

IM(t), IH(t) The integer number of M or H cells in a community at time t
φM(t) The fraction of M individuals at time t

LM(t), LH(t) The biomass (length) of an individual M or H cell at time t, 1� LM(t), LH(t)� 2

�L The average biomass (length) of an individual M or H cell, set to 1.5

P(t) The amount of Product P in a community at time t, scaled by ~rP
R(t) The amount of Resource R remaining in a community at time t, scaled by ~Rð0Þ
B(t) The amount of Byproduct B in a community at time t, scaled by ~rB
nD The fold dilution when reproducing an Adult community

nchosen Number of Adult communities chosen to reproduce

ntot Total number of communities under selection in each cycle

https://doi.org/10.1371/journal.pbio.3000295.t002

Artificial selection for microbial community functions: Challenges and solutions

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000295 June 25, 2019 23 / 52

https://doi.org/10.1371/journal.pbio.3000295.t002
https://doi.org/10.1371/journal.pbio.3000295


Resource concentration, then ~Rð0Þ ¼ 5� 104 fmole. After scaling, K ¼ K̂ V̂=~Rð0Þ ¼ 1 and

c ¼ ĉ=~Rð0Þ ¼ 10� 4, comparable to the values in Table 1.

To ensure the coexistence of H and M, M must grow faster than H for part of the maturation

cycle since M has to wait for H’s Byproduct at the beginning of a cycle. Because we have

assumed M and H to have similar affinities for R (Table 1), gMmax must exceed gHmax, and M’s

affinity for Byproduct (1/KMB) must be sufficiently large. Moreover, metabolite release and con-

sumption need to be balanced to avoid extreme species ratios. Thus, for ancestral M, we chose

gMmax = 0.58 (equivalent to a doubling time of 1.2 hours). We set cBM ¼ 1

3
(units of ~rB), meaning

that Byproduct released during one H biomass growth is sufficient to generate 3 potential M

biomass, which is biologically achievable [40, 81]. When we chose KMB ¼
5

3
� 102 (units of ~rB),

H and M can coexist for a range of fP (Fig 2A). This value is biologically realistic. For example,

suppose that H releases hypoxanthine as Byproduct. A hypoxanthine-requiring S. cerevisiae
strain evolved under hypoxanthine limitation could achieve a Monod constant for hypoxan-

thine on the order of 0.1 μM [64]. If the volume of the community is 10 μL, then KMB ¼
5

3
� 102

(units of ~rB) corresponds to an absolute release rate ~rB ¼ 0:1 mM� 10 mL= 5

3
� 102

� �
¼ 6

fmole per releaser biomass born. At 8-hour doubling time, this translates to 6 fmole/(1 cell×8

h)� 0.75 fmole/cell/h, within the ballpark of experimental observation (approximately 0.3

fmole/cell/h [64]). As a comparison, a lysine-overproducing yeast strain reaches a release rate of

0.8 fmole/cell/h [64], and a leucine-overproducing strain reaches a release rate of 4.2 fmole/cell/

h [81]. Death rates δH and δM were chosen to be 0.5% of H and M’s respective upper bound of

maximal growth rate, which are within the ballpark of experimental observations (e.g., the

death rate of a lys- strain in lysine-limited chemostat is 0.4% of maximal growth rate [64]).

We assume that H and M consume the same amount of Resource R per new cell (cRH =

cRM) because the biomass of various microbes share similar elemental (e.g., carbon or nitro-

gen) compositions [82]. Specifically, cRH = cRM = 10−4 (units of ~Rð0Þ), meaning that the

Resource supplied to each Newborn community can yield a maximum of 104 total biomass.

In some simulations (e.g., Fig 6, S8 and S17 Figs), growth parameters (maximal growth

rates gMmax and gHmax and affinities for nutrients 1/KMR, 1/KMB, and 1/KHR) and production

cost parameter (0� fP� 1) were allowed to change from ancestral values during community

maturation because these phenotypes have been observed to rapidly evolve within dozens to

hundreds of generations [32, 33, 34, 35]. For example, several-fold improvement in nutrient

affinity and 20% increase in maximal growth rate have been observed in experimental evolu-

tion [33,35]. We therefore allowed affinities 1/KMR, 1/KHR, and 1/KMB to increase by up to

3-fold, 5-fold, and 5-fold, respectively, and allowed gHmax and gMmax to increase by up to 20%.

These evolutionary upper bounds also ensured that evolved H and M could coexist for fP< 0.5

and that Resource was, on average, not depleted by T to avoid stationary phase.

We also simulated community selection in which improved growth parameters could

reduce community function (Fig 6, S17 and S24B Figs). In this simulation, gHmax was allowed

to increase by up to 220%, and each Newborn community was supplied with Resource that

can support up to 105 cells (10 units of ~Rð0Þ).
Although empirical studies sometimes find trade-off between maximal growth rate and

nutrient affinity (e.g., [33]), for simplicity we assumed here that the two traits are independent

of each other. We held metabolite consumption (cRM, cBM, cRH) constant because conversion

of essential elements such as carbon and nitrogen into biomass is unlikely to evolve quickly

and dramatically, especially when these elements are not in large excess [82]. Similarly, we

held the scaling factors ~rP (Product released at the cost of one M biomass) and ~rB (Byproduct

released per H biomass grown) constant, assuming that they do not change rapidly during evo-

lution. Indeed, metabolite release rate and metabolite consumption amount per biomass
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(biomass measured as cell size) did not change significantly for a commonly-arising mutant in

a yeast evolution experiment [83]. We held death rates (δM, δH) constant because they are

much smaller than growth rates in general and thus any changes are likely inconsequential.

3. Choosing growth parameter ranges so that we can fix growth parameters

to upper bounds

Improving growth parameters (maximal growth rate and affinity for metabolites) does not

always lead to improved community function (Fig 6, S17 and S24B Figs). However, for most

simulations, we have chosen H and M growth parameters so that improving them from their

ancestral values up to evolutionary upper bounds generally improves community function

(see below). H and M with growth parameters at upper bounds are called “preadapted”.

When Newborn communities are assembled from preadapted H and M, 2 advantages are

apparent.

First, after fixing growth parameters of H and M to their upper bounds, we can identify the

locally maximal community function. Specifically, for a Newborn with total biomass BM(0) =

100 and fixed Resource R, we can calculate community function P(T) under various cost fP
and fraction M biomass in Newborn ϕM(0), assuming that all M cells have the same fP. Since

both numbers range between 0 and 1, we calculate P(T, fP = 0.01 × i, ϕM(0) = 0.01 × j) for inte-

gers i and j between 1 and 99. There is a single maximum for P(T) when i = 41 and j = 54. In

other words, if M invests f �P ¼ 0:41 of its potential growth to make Product and if the fraction

of M biomass in Newborn �
�

Mð0Þ ¼ 0:54, then maximal community function P�(T) is achieved

(Fig 2B; magenta dashed line in Fig 3).

Second, preadapted H and M are evolutionarily stable in the sense that deviations (reduc-

tions) from upper bounds will reduce both individual fitness and community function (S27

Fig), and are therefore disfavored by intracommunity selection and intercommunity selection.

Below, we present evidence that within our parameter ranges (Table 1), improving growth

parameters generally improves community function. When fP is optimal for community func-

tion (f �P ¼ 0:41), if we fix any 4 of the 5 growth parameters to their upper bounds, then as the

remaining growth parameter improves, community function increases (magenta lines in top

panels of S27 Fig). Moreover, mutants with a reduced growth parameter are outcompeted by

their preadapted counterparts (magenta lines in bottom panels of S27 Fig).

When fP ¼ f �P;Mono ¼ 0:13 (optimal for M monoculture function in S25B Fig; the starting

phenotype for most community selection simulations in this paper), community function and

individual fitness generally increase as growth parameters improve (black dashed lines in S27

Fig). However, when M’s affinity for Resource (1/KMR) is reduced from upper bound, fitness

improves slightly (black dashed line in S27J Fig). Mathematically speaking, this is a conse-

quence of the Mankad-Bungay model [30] (S3B Fig). Let RM = R/KMR and BM = B/KMB. Then,

@gM
@KMR

¼
@gMmax

@RM

@RM

@KMR
¼

@ gMmax
RMBM

RM þ BM

1

1þ RM
þ

1

1þ BM

� �� �

@RM

@RM

@KMR

¼ gMmax
� RM

KMR

BMðRM þ BMÞ � RMBM

ðRM þ BMÞ
2

1

1þ RM
þ

1

1þ BM

� �

�
RMBM

RM þ BM

1

ð1þ RMÞ
2

" #

¼ gMmax
RMBM

ðRM þ BMÞKMR
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ð1þ RMÞ
2
�

BM

RM þ BM

1

1þ RM
þ

1
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If RM� 1� BM (corresponding to limiting R and abundant B),

RM

ð1þ RMÞ
2
�

BM

RM þ BM

1

1þ RM
þ

1

1þ BM

� �

�
RM

ð1þ RMÞ
2
�

1

1þ RM
¼ �

1

ð1þ RMÞ
2
ð15Þ

and thus
@gM
@KMR

< 0. This is the familiar case in which growth rate increases as the Monod con-

stant decreases (i.e., affinity increases). However, if BM� 1� RM

RM

ð1þ RMÞ
2
�

BM

RM þ BM

1

1þ RM
þ

1

1þ BM

� �

�
1

RM
�

BM

RM

1

1þ BM

� �

¼
1

RMð1þ BMÞ
ð16Þ

and thus
@gM
@KMR

> 0. In this case, growth rate decreases as the Monod constant decreases (i.e.,

affinity increases). In other words, decreased affinity for the abundant nutrient improves

growth rate. Transporter competition for membrane space [84] could lead to this result, since

reduced affinity for abundant nutrient may increase affinity for rare nutrient.

At the beginning of each cycle, R is abundant and B is limiting (Eq 16). Therefore M cells

with lower affinity for R will grow faster than those with higher affinity (S28A Fig). At the end

of each cycle, the opposite is true (S28A Fig). As fP decreases, M diverts more toward biomass

growth, and the first stage of B limitation lasts longer. Consequently, M can gain a slightly

higher overall fitness by lowering the affinity for R at low fP (S28A Fig).

Regardless, decreased M affinity for Resource (1/KMR) only leads to a very slight increase in

M fitness (S27J Fig, dashed line) and a very slight decrease in P(T) (S28B Fig). Moreover, this

only occurs at low fP at the beginning of community selection and thus may be neglected. Indeed,

if we start all growth parameters at their upper bounds and fP = 0.13, and perform community

selection while allowing all parameters to vary (S29 Fig), then 1/KMR decreases somewhat, yet the

dynamics of fP is similar to when we only allow fP to change (compare S29D Fig with Fig 3A).

4. Mutation rate and the distribution of mutation effects

Literature values of mutation rate and the distribution of mutation effects are highly variable.

Below, we briefly review the literature and discuss rationales of our choices.

Among mutations, a fraction is neutral in that they do not affect the phenotype of interest.

For example, the vast majority of synonymous mutations are neutral [85]. Furthermore, muta-

tions with small effects may appear neutral, which can depend on the effective population size

and selection condition. For example, at low population size due to genetic drift (i.e., changes

in allele frequencies due to chance), a beneficial or deleterious mutation may not be selected

for or selected against and is thus neutral with respect to selection [86, 87]. As another exam-

ple, the same mutation in an antibiotic-degrading gene can be neutral under low antibiotic

concentrations but deleterious under high antibiotic concentrations [88]. We term all muta-

tions with zero effects on phenotypes as "neutral" mutations.

Since a larger fraction of neutral mutations is equivalent to a lower rate of phenotype-alter-

ing mutations, our simulations define "mutation rate" as the rate of non-neutral mutations

that either enhance a phenotype ("enhancing mutations") or diminish a phenotype ("diminish-

ing mutations"). Enhancing mutations of maximal growth rates (gHmax and gMmax) and of

nutrient affinities (1/KHR, 1/KMR, 1/KMB) enhance the fitness of an individual ("beneficial

mutations"). In contrast, enhancing mutations in fP diminish the fitness of an individual ("del-

eterious mutations").

Depending on the phenotype, the rate of phenotype-altering mutations is highly variable.

Mutations that cause qualitative phenotypic changes (e.g., drug resistance) occur at a rate of

10−8~10−6 per genome per generation in bacteria and yeast [89, 90]. In contrast, mutations
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affecting quantitative traits such as growth rate occur much more frequently. For example in

yeast, mutations that increase growth rate by� 2% occur at a rate of * 10−4 per genome per

generation (calculated from Fig 3 of Ref. [91]), and mutations that reduce growth rate occur at

a rate of 10−4 * 10−3 per genome per generation [38, 92]. Moreover, mutation rate can be ele-

vated by as much as 100-fold in hypermutators where DNA repair is dysfunctional [92, 93,

94]. In our simulations, we assume a high, but biologically feasible, rate of 2 × 10−3 phenotype-

altering mutations per cell per generation per phenotype to speed up computation. At this

rate, an average community would sample approximately 20 new mutations per phenotype

during maturation. We have also simulated with a 100-fold lower mutation rate. As expected,

evolutionary dynamics slowed down, but all of our conclusions still held (S18 Fig).

Among phenotype-altering mutations, around 10% to 40% create null (loss-of-function)

mutants, as illustrated by experimental studies on protein, viruses, and yeast [36, 37, 38]. Thus,

we assumed that 50% of phenotype-altering mutations were null (i.e., resulting in zero maxi-

mal growth rate, zero affinity for metabolite, or zero fP). Among non-null mutations, the rela-

tive abundances of enhancing versus diminishing mutations are highly variable in different

experiments. It can be impacted by effective population size. For example, with a large effective

population size, the survival rate of beneficial mutations is 1,000-fold lower due to clonal inter-

ference (competition between beneficial mutations) [95]. The relative abundance of enhancing

versus diminishing mutations also strongly depends on the starting phenotype [36, 86, 88].

For example, with ampicillin as a substrate, the wild-type TEM-1 β-lactamase is a "perfect"

enzyme. Consequently, mutations were either neutral or diminishing, and few enhanced

enzyme activity [88]. In contrast, with a novel substrate such as cefotaxime, the enzyme had

undetectable activity, and diminishing mutations were not detected, whereas 2% of tested

mutations were enhancing [88]. When modeling H-M communities, we assumed that the

ancestral H and M had intermediate phenotypes that can be enhanced or diminished.

We based our distribution of mutation effects on experimental studies in which a large

number of enhancing and diminishing mutants have been quantified in an unbiased fashion.

An example is a study from the Dunham lab in which the fitness effects of thousands of S. cere-
visiae mutations were quantified under various nutrient limitations [39]. Specifically for each

nutrient limitation, the authors first measured ΔsWT ¼ ðwWT � �wWTÞ=�wWT ¼ wWT=�wWT � 1,

the deviation in relative fitness of thousands of bar-coded wild-type control strains from the

wild-type mean fitness �wWT (i.e., selection coefficients). Due to experimental noise, ΔsWT is dis-

tributed with zero mean and nonzero variance. Then, the authors measured thousands of

ΔsMT, each corresponding to the relative fitness change of a bar-coded mutant strain with

respect to the mean of wild-type fitness (i.e., ΔsMT ¼ ðwMT � �wWTÞ=�wWT). From these 2 distri-

butions, we used convolution to derive μΔS, the probability density function (PDF) of relative

fitness change caused by mutations Δs = ΔsMT − ΔsWT (S6 Fig), in the following manner.

First, we calculated μm(ΔsMT), the discrete PDF of the relative fitness change of mutant

strains, with bin width 0.04. In other words, μm(ΔsMT) = counts in the bin of [ΔsMT − 0.02,

ΔsMT + 0.02]� total counts� 0.04 where ΔsMT ranges from −0.6 and 0.6, which is sufficient to

cover the range of experimental outcome. The Poissonian uncertainty of μm is dmmðΔsMTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
counts per bin

p
� total counts� 0.04. Repeating this process for the wild-type collection,

we obtained the PDF of the relative fitness change of wild-type strains μw(ΔsWT). Next, from

μw(ΔsWT) and μm(ΔsMT), we derived μΔs(Δs), the PDF of Δs with bin width 0.04:

mΔsðΔs ¼ i� 0:04Þ ¼ 0:04�
Xþ1

j¼� 1
mwðj� 0:04Þmmððiþ jÞ � 0:04Þ ð17Þ

assuming that ΔsMT and ΔsWT are independent from each other. Here, i is an integer from −15

to 15. The uncertainty for μΔs was calculated by propagation of error. That is, if f is a function

Artificial selection for microbial community functions: Challenges and solutions

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000295 June 25, 2019 27 / 52

https://doi.org/10.1371/journal.pbio.3000295


of xi (i = 1, 2, . . ., n), then sf, the error of f, is s2
f ¼

P
@f
@xi

sxi
� �2

, where sxi is the error or uncer-

tainty of xi. Thus,

dmΔsðiÞ ¼ 0:04�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j
½ðdmwðjÞmmðiþ jÞÞ2 þ ðmwðjÞdmmðiþ jÞÞ2�

q
ð18Þ

where μw(j) is short-hand notation for μw(ΔsWT = j × 0.04) and so on. Our calculated μΔs(Δs)
with error bar of δμΔs is shown in S6 Fig.

Our re-analysis demonstrated that distributions of mutation fitness effects μΔs(Δs) are

largely conserved regardless of nutrient conditions and mutation types (S6 Fig). In all cases,

the relative fitness changes caused by beneficial (fitness-enhancing) and deleterious (fitness-

diminishing) mutations can be approximated by a bilateral exponential distribution with

means s+ and s− for the positive and negative halves, respectively. After normalizing the total

probability to 1, we have

mΔs Δsð Þ ¼

1

sþ þ s� ð1 � e� 1=s� Þ
e� Δs=sþ ifDs � 0

1

sþ þ s� ð1 � e� 1=s� Þ
eΔs=s� if � 1 < Ds < 0

0

B
B
B
@

ð19Þ

We fitted the Dunham lab haploid data (since microbes are often haploid) to Eq 19, using

μΔs(i)/δμΔs(i) as the weight for nonlinear least squared regression (green lines in S6 Fig). We

obtained s+ = 0.050 ± 0.002 and s− = 0.067 ± 0.003.

Exponential distribution described the fitness effects of deleterious mutations in an RNA

virus remarkably well [36]. Based on extreme value theory, the fitness effects of beneficial

mutations were predicted to follow an exponential distribution [96,97], which has gained

experimental support from bacterium and virus [98, 99, 100] (although see [91, 101] for coun-

terexamples). Evolutionary models based on exponential distributions of fitness effects have

shown good agreement with experimental data [95, 102].

We have also simulated smaller average mutation effects based on measurements of sponta-

neous or chemically induced (instead of deletion) mutations. For example, the fitness effects

of nonlethal deleterious mutations in S. cerevisiae were mostly between 1% to 5% [38], and the

mean selection coefficient of beneficial mutations in E. coli was approximately 1% to 2% [95,

98]. Thus, as an alternative, we simulated with s+ = s− = 0.02. We obtained the same conclu-

sions (S19A Fig).

5. Modeling epistasis on fP
Epistasis, in which the effect of a new mutation depends on prior mutations ("genetic back-

ground"), is known to affect evolutionary dynamics. Epistatic effects have been quantified in

various ways. Experiments on viruses, bacteria, yeast, and proteins have demonstrated that if 2

mutations were both deleterious or both random, viable double mutants experienced epistatic

effects that distributed nearly symmetrically around a value close to zero [103, 104, 105, 106].

In other words, a significant fraction of mutation pairs show no epistasis, and a small fraction

show positive or negative epistasis (i.e., a double mutant displays a stronger or weaker pheno-

type than expected from additive effects of the 2 mutations). Epistasis between 2 beneficial

mutations can vary from being predominantly negative [104] to being symmetrically distrib-

uted around zero (Fig 2 of [107]). Furthermore, a beneficial mutation tends to confer a

lower beneficial effect if the background already has high fitness ("diminishing returns") [107,

108, 109].
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A mathematical model by Wiser and colleagues incorporates diminishing-return epistasis

[102]. In this model, beneficial mutations of advantage s in the ancestral background are expo-

nentially distributed with PDF αe−αs, where 1/α> 0 is the mean advantage. After a mutation

with advantage s has occurred, the mean advantage of the next mutation would be reduced to

1/[α(1 + gs)], where g> 0 is the "diminishing returns parameter." Wiser and colleagues esti-

mate g� 6. This model quantitatively fits the fitness dynamics of evolving E. coli populations.

Based on the above experimental and theoretical literature, we modeled epistasis on fP in

the following manner. Let the relative mutation effect on current fP be ΔfP = (fP,mut − fP)/fP
(note ΔfP� −1). Then, μ(ΔfP, fP), the PDF of ΔfP at the current fP value, is described by a form

similar to Eq 19:

m ΔfP; fPð Þ ¼

1

sþðfPÞ þ s� ðfPÞð1 � e� 1=s� ðfPÞÞ
e� ΔfP=sþðfPÞ if ΔfP � 0

1

sþðfPÞ þ s� ðfPÞð1 � e� 1=s� ðfPÞÞ
eΔfP=s� ðfPÞ if � 1 < DfP < 0

0

B
B
B
@

ð20Þ

Here, s+(fP) and s−(fP) are, respectively, the mean ΔfP for enhancing and diminishing muta-

tions at current fP. We assigned s+(fP) = s+init/(1 + g × (fP/fP,init − 1)), where fP,init is the fP of the

initial background in a community selection simulation (fP;init ¼ f �P;Mono ¼ 0:13), s+init is the

mean enhancing ΔfP occurring in the initial background, and 0< g< 1 is the epistatic factor.

Similarly, s−(fP) = s−init × (1 + g × (fP/fP,init − 1)) is the mean |ΔfP| for diminishing mutations at

current fP. In the initial background, because fP = fP,init, we have s+(fP) = s+init and s−(fP) = s−init
(s+init = 0.050 and s−init = 0.067 in S6 Fig). Consistent with the diminishing returns principle,

for subsequent mutations that alter fP, if current fP> fP,init, then a new enhancing mutation

became less likely and its mean effect smaller, while a new diminishing mutation became more

likely and its mean effect bigger (ensured by g> 0; S20 Fig right panel). Similarly, if current fP
< fP,init, then a new enhancing mutation became more likely and its mean effect bigger, while a

diminishing mutation became less likely and its mean effect smaller (ensured by 0< g< 1;

S20 Fig left panel). In summary, our model captured not only diminishing returns epistasis,

but also our understanding of mutational effects on protein stability [86].

6. Simulation code of community selection

As described in the main text, our simulations tracked the biomass and phenotypes of individ-

ual cells as well as the amounts of Resource, Byproduct, and Product in each community

throughout community selection. Cell biomass growth, cell division, and changes in chemical

concentrations were calculated deterministically. Stochastic processes, including cell death,

mutation, and the partitioning of cells of a chosen Adult community into Newborn communi-

ties were simulated using the Monte Carlo method.

Specifically, each simulation was initialized with a total of ntot = 100 Newborn communities

with identical configuration:

• Each community had 100 cells of biomass 1. Thus, total biomass BM(0) = 100.

• Each community had 40 H cells and 60 M cells with identical fP and biomass of 1 per cell.

Thus, M biomass M(0) = 60 and fraction of M biomass ϕM(0) = 0.6.

Our community selection simulations did not consider mutations arising during pregrowth

prior to inoculating Newborns of the first cycle, because incorporating pregrowth had little

impact on evolution dynamics (S30 Fig). Thus, initially, all M cells have the same phenotype,

and all H cells have the same phenotype.
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At the beginning of each selection cycle, a random number was used to seed the random

number generator for each Newborn community. This number was saved so that the matura-

tion of each Newborn community can be replayed. In most simulations, the initial amount of

Resource was 1 unit of ~Rð0Þ unless otherwise specified, the initial Byproduct was B(0) = 0, and

the initial Product was P(0) = 0.

The maturation time T was divided into time steps of Δτ = 0.05. Resource R(t) and Byprod-

uct B(t) during each time interval [τ, τ + Δτ] were calculated by solving the following equations

(similar to Eqs 9–10) using the initial condition R(τ) and B(τ) via the ode23s solver in Matlab

(MathWorks; www.mathworks.com):

dR
dt
¼ � cRMgM R;Bð ÞM tð Þ � cRHgH Rð ÞH tð Þ ð21Þ

dB
dt
¼ gH Rð ÞH tð Þ � cBMgM R;Bð ÞM tð Þ ð22Þ

where M(τ) and H(τ) were the total biomass of M and total biomass of H at time τ (treated as

constants during time interval [τ, τ + Δτ]), respectively. The solutions from Eqs 21–22 were

used in the integrals below to calculate the biomass growth of H and M cells.

Suppose that H and M were rod-shaped organisms with a fixed diameter. Thus, the biomass

of an H cell at time τ could be written as the length variable LH(τ). The continuous growth of

LH between τ and τ + Δτ could be described as

dLH

dt
¼ gH Rð ÞLH

or

ln
LHðtþ ΔtÞ

LHðtÞ
¼
R tþΔt
t

gHðRÞdt:

Thus,

LHðtþ ΔtÞ ¼ LHðtÞ exp ð
R tþΔt
t

gHðRÞdtÞ: ð23Þ

Similarly, let the length of an M cell be LM(τ). The continuous growth of M could be

described as

dLM

dt
¼ 1 � fPð ÞgM R;Bð ÞLM:

Thus for an M cell, its length LM(τ + Δτ) could be described as

LMðtþ ΔtÞ ¼ LMðtÞ exp ð
R tþΔt
t
ð1 � fPÞgMðR;BÞdtÞ: ð24Þ

From Eqs 7–8, within Δτ since death is modeled separately, we have

dP
dt
¼ fPgMðR;BÞM

¼
fP

1 � fP

dM
dt
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and therefore

P tþ Δtð Þ ¼ P tð Þ þ
fP

1 � fP
Mðtþ ΔtÞ � MðtÞð Þ ð25Þ

where M(τ + Δτ) = SLM(τ + Δτ) represented the sum of the biomass (or lengths) of all M cells

at τ + Δτ.

At the end of each Δτ, each H and M cell had a probability of δHΔτ and δMΔτ to die, respec-

tively. This was simulated by assigning a random number between 0 and 1 for each cell. Cells

assigned with a random number less than δHΔτ or δMΔτ then got eliminated. For surviving

cells, if a cell’s length� 2, this cell would divide into 2 cells with half the original length.

After division, each mutable phenotype of each cell had a probability of Pmut to be modified

by a mutation (Methods, Section 4). As an example, let’s consider mutations in fP. If a muta-

tion occurred, then fP would be multiplied by (1 + ΔfP), where ΔfP was determined as below.

First, a uniform random number u1 between 0 and 1 was generated. If u1� 0.5, ΔfP = −1,

which represented 50% chance of a null mutation (fP = 0). If 0.5< u1� 1, ΔfP followed the dis-

tribution defined by Eq 20 with s+(fP) = 0.05 for fP-enhancing mutations and s−(fP) = 0.067 for

fP-diminishing mutations when epistasis was not considered (Methods, Section 4). In the sim-

ulation, ΔfP was generated via inverse transform sampling. Specifically, C(ΔfP), the cumulative

distribution function (CDF) of ΔfP, could be found by integrating Eq 19 from −1 to ΔfP:

CðΔfPÞ ¼
R ΔfP
� 1
mΔsðxÞdx

¼

s�
sþ þ s� ð1 � e� 1=s� Þ

ðeΔfP=s� � e� 1=s� Þ if DfP � 0

1 �
sþ

sþ þ s� ð1 � e� 1=s� Þ
e� ΔfP=sþ if DfP � 0

0

B
B
B
@

ð26Þ

The 2 parts of Eq 26 overlap at CðΔfP ¼ 0Þ ¼ s� ð1 � e� 1=s� Þ=½sþ þ s� ð1 � e� 1=s� Þ�.

In order to generate ΔfP satisfying the distribution in Eq 19, a uniform random number u2

between 0 and 1 was generated, and we set C(ΔfP) = u2. Inverting Eq 26 yielded

ΔfP ¼
s� lnðu2ðsþ þ s� ð1 � e� 1=s� ÞÞ=s� þ e� 1=s� Þ u2 �

s� ð1 � e� 1=s� Þ

sþ þ s� ð1 � e� 1=s� Þ

� sþlnðð1 � u2Þðsþ þ s� ð1 � e� 1=s� ÞÞ=sþÞ u2 >
s� ð1 � e� 1=s� Þ

sþ þ s� ð1 � e� 1=s� Þ

0

B
B
B
@

ð27Þ

When s+, s−� 1, the above equation can be simplified as

ΔfP �
s� lnðu2ðsþ þ s� Þ=s� Þ u2 �

s�
sþ þ s�

� sþlnðð1 � u2Þðsþ þ s� Þ=sþÞ u2 >
s�

sþ þ s�

:

0

B
B
@

When epistasis was considered, s+(fP) = s+init/(1 + g × (fP/fP,init −1)) and s−(fP) = s−init × (1 +

g × (fP/fP,init −1)) were used in Eq 27 to calculate ΔfP for each cell (Methods Section 5).

If a mutation increased or decreased the phenotypic parameter beyond its bound (Table 1),

the phenotypic parameter was set to the bound value.

The above growth, death, division, and mutation cycle was repeated from time 0 to T. Note

that because the size of each M and H cell is larger than or equal to 1, the integer numbers of

M and H cells, IM and IH, are generally smaller than the numerical values of biomass M and H,

respectively. At the end of T, Adult communities were sorted according to their P(T) values.
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The Adult communities with high P(T) (or a randomly chosen Adult in control simulations in

S9 Fig) were chosen for reproduction. Communities were never mixed.

In the top-dog strategy, we started with the Adult with the highest community function.

We first calculated the fold by which this Adult would be diluted as nD ¼ b
MðTÞþHðTÞ
BMtarget

c. Here,

BMtarget = 100 was the preset target for Newborn total biomass, and bxc is the floor (round

down) function that generates the largest integer that is smaller than x. Note that rounding

down causes negligible errors. For example, with 7,000 total biomass in an Adult, fold dilution

nD ¼
7000

100
¼ 70 and each Newborn would have an average 100 total biomass. In comparison,

with 6999 total biomass in an Adult, nD = 69 and each Newborn would have an average 101.4

total biomass. This difference of 1% is much smaller than stochastic fluctuations caused by pip-

petting. If nD was less than ntot, the total number of communities within a cycle, then all nD
Newborn communities were kept, and the Adult with the next highest function was parti-

tioned to obtain an additional batch of Newborns. From the last batch of Newborns, we would

randomly choose enough to obtain ntot Newborns. The next cycle then began.

During reproduction of the top-tier strategy, nchosen Adults with the highest functions

would each contribute ntot/nchosen Newborns for the next cycle. We have always picked nchosen
so that ntot/nchosen is an integer.

Before community reproduction, the current random number generator state was saved so

that the random partitioning of Adult communities could be replayed.

To mimic partitioning Adult communities via pipetting into Newborn communities with

an average total biomass of BMtarget, we first calculated the fold of dilution nD as described

above. If the Adult community had IH(T) H cells and IM(T) M cells, IH(T) + IM(T) random

integers between 1 and nD were uniformly generated so that each M and H cell was assigned a

random integer between 1 and nD. All cells assigned with the same random integer were then

assigned to the same Newborn, generating nD Newborn communities. This partition regimen

can be experimentally implemented by pipetting 1/nD volume of an Adult community into a

new well.

To fix BM(0) to BMtarget and ϕM(0) to ϕM(T) of the parent Adult (cell sorting), the code ran-

domly assigned M cells from the chosen Adult until the total biomass of M came closest to

BMtargetϕM(T) without exceeding it. H cells were assigned similarly. Because each M and H

cells had a length between 1 and 2, the biomass of M could vary between BMtargetϕM(T)−2 and

BMtargetϕM(T), and the biomass of H could vary between BMtarget(1 − ϕM(T))−2 and BMtarget(1

− ϕM(T)). Variations in BM(0) and ϕM(0) were sufficiently small so that community selection

worked (Fig 3D and 3E). We also simulated sorting cells such that H and M cell numbers

(instead of biomass) were fixed in Newborns. Specifically, bBMtargetφM(T)/1.5cM cells and

bBMtarget(1 − φM(T))/1.5cH cells were sorted into each Newborn community, where we

assumed that the average biomass of a cell was 1.5, and φM(T) = IM(T)/(IM(T) + IH(T)) was cal-

culated from cell numbers in the parent Adult community. We obtained the same conclusion

(S13C Fig).

To fix Newborn total biomass BM(0) to the target total biomass BMtarget while allowing

ϕM(0) to fluctuate (S12 Fig first and third columns), H and M cells were randomly assigned

to a Newborn community until BM(0) came closest to BMtarget without exceeding it (other-

wise, P(T) might exceed the theoretical maximum). For example, suppose that a certain

number of M and H cells had been sorted into a Newborn so that the total biomass was 98.6.

If the next cell, either M or H, had a biomass of 1.3, this cell would go into the community so

that the total biomass would be 98.6 + 1.3 = 99.9. However, if a cell of mass 1.6 happened to

be picked, this cell would not go into this community so that this Newborn had a total bio-

mass of 98.6 and the cell of mass 1.6 would go to the next Newborn. Thus, each Newborn
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might not have exactly the biomass of BMtarget, but rather between BMtarget −2 and BMtarget.

Experimentally, total biomass can be determined from the optical density, or from the total

fluorescence if cells are fluorescently labeled [61]. To fix the total cell number (instead of

total biomass) in a Newborn, the code randomly assigned a total of bBMtarget/1.5c cells into

each Newborn, assuming an average cell biomass of 1.5. We obtained the same conclusion,

as shown in S13A Fig.

To fix ϕM(0) to ϕM(T) of the chosen Adult community from the previous cycle while allow-

ing BM(0) to fluctuate (S12 Fig second and fourth columns), the code first calculated dilution

fold nD in the same fashion as mentioned above. If the Adult community had IH(T) H cells and

IM(T) M cells, IM(T) random integers between [1, nD] were then generated for each M cell. All

M cells assigned the same random integer joined the same Newborn community. The code

then randomly dispensed H cells into each Newborn until the total biomass of H came closest

to M(0)(1 − ϕM(T))/ϕM(T) without exceeding it, where M(0) was the biomass of all M cells in

this Newborn community. Again, because each M and H had a biomass (or length) between 1

and 2, ϕM(0) of each Newborn community might not be exactly ϕM(T) of the chosen Adult

community. We also performed simulations in which the ratio between M and H cell numbers

in the Newborn community, IM(0)/IH(0), was set to IM(T)/IH(T) of the parent Adult commu-

nity and obtained the same conclusion (S13B Fig).

7. Problems associated with an alternative definition of community

function and an alternative method of reproducing Adults

Here, we describe problems associated with an alternative definition of community function

and an alternative method of community reproduction.

An alternative definition of community function is Product per M biomass in an Adult

community: P(T)/M(T). To illustrate problems with this definition, let’s calculate P(T)/M(T)

assuming that cell death is negligible. From Eqs 7 and 8,

dM
dt
¼ 1 � fPð ÞgMM

dP
dt
¼ fPgMM

where biomass growth rate gM is a function of B and R. Thus,

dM
ð1 � fPÞdt

¼
dP
fPdt

and we have

P Tð Þ ¼
fP

1 � fP
MðTÞ � Mð0Þð Þ �

fP
1 � fP

M Tð Þ

if M(T)�M(0) (true if T is long enough for cells to double at least 3 or 4 times). In this case,

P Tð Þ �
fP

1 � fP
M 0ð Þexpðð1 � fPÞ

R

TgMdtÞ ð28Þ

If we define community function as P Tð Þ=M Tð Þ � fP
1� fP

, then higher community function

requires higher
fP

1� fP
or higher fP. However, if we select for very high fP, then M can go extinct

(Fig 2 and S2 Fig).
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In our community selection scheme, the average total biomass of Newborn communities

was set to a constant BMtarget. Alternatively, each Adult community can be partitioned into a

constant number of Newborn communities (i.e., fixed-fold dilution). If Resource is not limit-

ing, then there is no competition between H and M, and P(T) increases as M(0) and H(0)

increase. Therefore, selection for higher P(T) results in selection for higher Newborn total bio-

mass (instead of higher fP, S23 Fig). This will continue until Resource becomes limiting, and

then communities will get into the stationary phase.

8. f �P is smaller for M group than for H-M community

For groups or communities with a certain
R

T
gMdt, we can calculate fP optimal for community

function from Eq 28 by setting

dPðTÞ
dfp
� M 0ð Þ d

dfp
fP

1� fP
expðð1 � fPÞ

R

TgMdtÞ
h i

¼ 0:

We have

1

ð1� fPÞ
2 expðð1 � fPÞ

R

TgMdtÞ �
fP

1� fP

R

TgMdtexpðð1 � fPÞ
R

TgMdtÞ ¼ 0

or

1=
R

TgMdt ¼ fPð1 � fPÞ:

If
R
T gMdt� 1, fP is very small, then the optimal fP for P(T) is

f �P � ð
R

TgMdtÞ
� 1
: ð29Þ

R
T gMdt is larger in monoculture than in community because M grows faster in monoculture

than in community. This is because B is supplied in excess in monoculture, whereas in commu-

nity, H-supplied Byproduct is initially limiting. Thus, according to Eq 29, f �P � 1=
R

TgMdt is

smaller for monoculture than for community.

9. Stochastic fluctuations during community reproduction

The total number of cells in a Newborn community is approximately BMð0Þ=�L, where �L is the

average biomass (or length) of M and H cells. This number fluctuates in a Poissonian fashion

with a standard deviation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BMtarget=

�L
q

. As a result, the biomass of a Newborn communities

fluctuates around BMtarget with a standard deviation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BMtarget=

�L
q

� �L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BMtarget

�L
q

.

Similarly, M(0) and H(0) fluctuate independently with a standard deviation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Mð0Þ��L

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BMtarget�MðTÞ�L

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Hð0Þ��L

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BMtargetð1 � �MðTÞÞ�L

q
, respectively,

where “E” means the expected value and ϕM(T) is the fraction of M biomass in the parent
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Adult community. Therefore, M(0)/H(0) fluctuates with a variance of

Var M 0ð Þ=H 0ð Þ½ � ¼
E½Mð0Þ�
E½Hð0Þ�

� �2 Var½Mð0Þ�
ðE½Mð0Þ�Þ2

� 2
Cov½Mð0Þ;Hð0Þ�
E½Mð0Þ�E½Hð0Þ�

þ
Var½Hð0Þ�
ðE½Hð0Þ�Þ2

" #

¼
�MðTÞ

ð1 � �MðTÞÞ
3

�L
BMtarget

where "Cov" means covariance (equal to zero) and "Var" means variance.

10. Mutualistic H-M community

In the mutualistic H-M community, Byproduct inhibits the growth of H. According to Luli

and colleagues [110], the growth rate of E. coli decreases exponentially as the exogenously

added acetate concentration increases. Thus, we only need to modify the growth of H by a fac-

tor of exp(−B/B0) where B is the concentration of Byproduct and B0 is the concentration of

Byproduct at which H’s growth rate is reduced by e−1~0.37:

dH
dt
¼ exp �

B
B0

� �
gHmaxR
Rþ KHR

H � dHH:

The larger B0, the less inhibitory effect Byproduct has on H, and when B0! +1, Byprod-

uct does not inhibit the growth of H. For simulations in S22 Fig, we set B0 = 2KMB.

Supporting information

S1 Fig. Artificial selection is more challenging for multispecies communities than for indi-

viduals or monospecies groups. Artificial selection can be applied to any population of enti-

ties [111]. An entity can be an individual (A), a monospecies group (B), or a multispecies

community (C). Unlike natural selection, which selects for fastest-growing cells, artificial selec-

tion generally selects for traits that are costly to individuals. In each selection cycle, a popula-

tion of "Newborn" entities grow for maturation time T to become "Adults." Adults expressing

a higher level of the trait of interest (darker shade) are chosen by the experimentalist to repro-

duce. An individual reproduces by making copies of itself, while an Adult group or community

can reproduce by randomly splitting into multiple Newborns of the next selection cycle. Suc-

cessful artificial selection requires that (i) entities display trait variations; (ii) trait variations

can be selected to result in differential entity survival and reproduction; and (iii) entity trait

is sufficiently heritable from one selection cycle to the next [112]. In all 3 types of selection,

entity variations can be introduced by mutations and recombinations in individuals. However,

heredity can be low in community selection. (A) Artificial selection of individuals has been

successful [21, 22, 23, 113], since a trait is largely heritable so long as mutation and recombina-

tion are sufficiently rare. (B, C) In group selection and community selection, if maturation

time T is small so that newly arising genotypes cannot rise to high frequencies within a selec-

tion cycle, then Adult trait is mostly determined by Newborn composition (the biomass of

each genotype in each member species). In this case, variation can be defined as the dissimilar-

ity in Newborn compositions within a selection cycle, while heredity can be defined as the

similarity of compositions between Newborns connected through lineage across consecutive

selection cycles (tubes with same-colored outlines in Fig 4A). (B) Artificial selection of mono-

species groups has been successful [18, 46, 48]. Suppose cooperators but not cheaters pay a fit-

ness cost to generate a product (dark shade). Artificial selection for groups producing high

total product favors cooperator-dominated groups, although within a group, cheaters grow
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faster than cooperators. If a Newborn group has a large number of cells (top), all Newborns

will harbor similar fractions of cheaters, and thus intergroup variation will be small [71]. Dur-

ing maturation, cheater frequency will increase, thereby diminishing heredity. Low variation

and low heredity interfere with group selection. In contrast, when Newborn groups are initi-

ated at a small size such as one individual (bottom), a Newborn group will comprise either a

cooperator or a cheater, thereby ensuring variation. Furthermore, even if cheaters were to

arise during maturation of the group, a fraction of Newborns of the next cycle will by chance

inherit a cooperator, thereby ensuring some level of heredity. Thus, group selection can work

when Newborn size is small. (C) Artificial selection of multispecies communities may be hin-

dered by insufficient heredity. During maturation, the relative abundance of genotypes and

species can rapidly change due to ecological interactions and evolution, which compromises

heredity. During community reproduction, stochastic fluctuations in Newborn species and

genotype composition further reduce heredity.

(TIFF)

S2 Fig. Problems of defining community function as P(T)/M(T). When community func-

tion was defined by P(T)/M(T), average fP of the chosen communities rapidly increased to

such a high level that M was outcompeted by H, as demonstrated by Fig 2A bottom panel.

Consequently, selection abruptly came to a stop. Black, cyan, and gray curves are independent

simulation trials. �PðTÞ was averaged across chosen Adults. �f PðTÞ was obtained by first averag-

ing among M within each chosen Adult, and then averaging across all chosen Adults. The sim-

ulation codes can be found in S5 Code, and the data can be found in S4 Data.

(TIF)

S3 Fig. Growth models of H and M. (A) H growth follows Monod kinetics, reaching half max-

imal growth rate when R = KHR. (B) M growth follows dual-substrate Mankad-Bungay kinet-

ics. When Resource R is in great excess (RM� BM) or Byproduct B is in great excess (BM�
RM), we recover monosubstrate Monod kinetics (panel A). Here, for simplicity, symbols repre-

sent absolute quantities.

(TIF)

S4 Fig. A comparison of dual-substrate models. Suppose that cell growth rate depends on

each substrate S1 and S2 in a Monod-like, saturable fashion. When S2 is in excess, the S1 at

which half maximal growth rate is achieved is K1. When S1 is in excess, the S2 at which half

maximal growth rate is achieved is K2. (A) In the "Double Monod" model, growth rate depends

on the 2 limiting substrates in a multiplicative fashion. (B) In the model proposed by Mankad

and Bungay, growth rate takes a different form. In both models, when one substrate is in

excess, growth rate depends on the other substrate in a Monod-like fashion. However, when
S1

K1
¼

S2

K2
¼ 1, the growth rate is predicted to be gmax/2 by the Mankad and Bunday model, and

gmax/4 by the Double Monod model. The Mankad and Bungay model outperforms the Double

Monod model in describing experimental data of S. cerevisiae and E. coli growing on low glu-

cose and low nitrogen. The figures are plotted using data from reference [30].

(TIF)

S5 Fig. A comparison of different simulations of exponential cell growth in excess metabo-

lites. Thick black line: analytical solution with biomass growth rate (0.7/time unit). Gray

dashed line: simulation assuming that biomass increases exponentially at 0.7/time unit and

that cell division occurs upon reaching a biomass threshold, an assumption used in our model.

Colored dotted lines: simulations assuming that cell birth is discrete and occurs at a probability

equal to the birth rate multiplied with the length of simulation time step (Δτ = 0.05 time unit).
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When a cell birth occurs, biomass increases discretely by 1, resulting in step-wise increase in

colored dotted lines at early time. The Matlab codes can be found in S6 Code.

(TIF)

S6 Fig. PDFs of changes in relative fitness due to mutations (μΔs(Δs)). We derived μΔs(Δs)
from the Dunham lab data [39] where bar-coded mutant strains were competed under sulfate

limitation (red), carbon limitation (blue), or phosphate limitation (black). Error bars represent

uncertainty δμΔs (the lower error bar is omitted if the lower estimate is negative). In the left-

most panel, green lines show nonlinear least squared fitting of data to Eq 19 using all 3 sets of

data. Note that data with larger uncertainty are given less weight and thus deviate more from

the fitting. For an exponentially distributed PDF p(x) = exp(−x/r)/r where x, r> 0, and the

average of x is r. When plotted on a semi-log scale, we get a straight line with slope −1/r, which

gets us the average effect r. From the green line on the right side, we obtain the average effect

of enhancing mutations s+ = 0.050 ± 0.002, and from the green line on the left side, we obtain

the average effect of diminishing mutations s− = 0.067 ± 0.003. The probability of a mutation

altering a phenotype by ±α is the area of the hatched region drawn in the leftmost panel. The

Matlab codes can be found in S7 Code. PDF, probability density function.

(TIF)

S7 Fig. Large Newborn group size or long maturation time allows noncontributors to accu-

mulate to similar levels in all groups, thereby reducing intergroup variation. For simplicity,

we modeled the growth of Newborn groups of M cells. Both wild-type and mutant cells fol-

lowed exponential growth. The growth rate of wild-type cells was 0.87 times that of mutants.

From a Newborn biomass BM(0) of 102 (top panels) or 104 (bottom panels) wild-type M cells,

M population multiplied for 6 (left panels) or 100 (right panels) generations. Immediately fol-

lowing cell division, wild-type daughter cells mutated to noncontributors with a probability of

10−3. The fraction of biomass made up by mutants at each wild-type doubling is shown. The

simulation codes can be found in S8 Code.

(TIF)

S8 Fig. Improved individual growth can promote community function. Here, we allowed

mutations to alter M’s fP and H and M’s growth parameters (Table 1). Communities were cho-

sen using the top-dog strategy. (A–C) Community reproduction via pipetting (i.e., Newborn

biomass and species composition can fluctuate). Community function P(T) increased upon

community selection (A). Since fP remained unchanged (panel B), this increase in P(T) must

be due to improved growth parameters (panel C). (D–F) Community reproduction via bio-

mass sorting (i.e., fixed Newborn total biomass and species composition). Community func-

tion improved to a much higher level (panel D). In both strategies, the 5 growth parameters

increased to their respective evolutionary upper bounds (green dashed lines). Magenta dashed

lines: optimal fP for community function and maximal community function P(T) when all 5

growth parameters are fixed at their evolutionary upper bounds and ϕM(0) is also optimal for

P(T). Black, cyan, and gray curves show independent simulations. �PðTÞ is averaged across cho-

sen Adults. �gMmax; �gHmax, and �f P are obtained by averaging within each chosen Adult and then

averaging across chosen Adults. KSpeciesMetabolite are averaged within each chosen Adult, then

averaged across chosen Adults, and finally inverted to represent average affinity. Note different

horizontal axis scales. The maximal growth rates (gMmax and gHmax) have the unit of 1/time.

Affinity for Resource (1/KMR, 1/KHR) has the unit of 1=~Rð0Þ, where ~Rð0Þ is the initial amount

of Resource in Newborn. Affinity for Byproduct (1/KMB) has the unit of 1=~rB, where ~rB is the

amount of Byproduct released per H biomass produced. Product P has the unit of ~rP, the

amount of Product released at the cost of 1 M biomass. More details on parameters and
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variables can be found in Tables 1 and 2. The simulation codes can be found in S9 Code, and

the data can be found in S5 Data.

(TIF)

S9 Fig. Community function declines to zero in the absence of intercommunity selection

for higher community function. An Adult was randomly chosen to reproduce as many New-

borns as possible, and a second Adult was randomly chosen to reproduce more Newborns

until 100 Newborns were obtained. Natural selection favored zero fP (panel A). Consequently,

P(T) decreased to zero (panel B). Here, reproduction was done by pipetting. Black, cyan, and

gray curves are independent simulation trials. �PðTÞ was averaged across the randomly chosen

Adults. �f PðTÞ was obtained by first averaging among M within each randomly chosen Adult

and then averaging across the chosen Adults. The simulation codes can be found in S10 Code,

and the data can be found in S6 Data.

(TIF)

S10 Fig. P�(T) is a local optimum because it cannot be further improved by small changes.

We started each Newborn community with total biomass BM(0) = 100, all 5 growth parame-

ters at their evolutionary upper bounds, and f �P ¼ 0:41 and �
�

Mð0Þ ¼ 0:54 to achieve P�(T). We

then allowed all 5 growth parameters and fP to mutate while applying community selection. To

ensure effective community selection (Fig 3D–3F), the strategy of top-dog with cell sorting

was implemented. We found that all 5 growth parameters remained at their respective evolu-

tionary upper bounds. At the end of the first cycle (Cycle = 1 in insets), even though �f P did not

change, �PðTÞ had already declined from the original magenta dashed line. This is because spe-

cies interactions have driven ϕM(0) from the optimal �
�

Mð0Þ (= 0.54) to near the steady-state

value (ϕM = 0.64, compare with ϕM,SS represented by the blue dashed line in Fig 2A top panel).

Later, over hundreds of cycles, �f P gradually increased, while �PðTÞ was still below maximal.

This is because species composition gravitated toward steady-state ϕM,SS, which deviated from

the optimal �
�

Mð0Þ. Other legends are the same as S8 Fig. The simulation codes can be found in

S11 Code, and the data can be found in S7 Data.

(TIF)

S11 Fig. Variations in community function can arise from nonheritable variations in New-

born compositions. An average Newborn community (solid lines) has a total biomass of 100

with 75% M. (A) A "lucky" Newborn community (dotted lines), by stochastic fluctuations, has

a higher total biomass of 130 and the average 75% M. Even though the lucky and the average

communities share identical fP = 0.1, biomass of M in the lucky Newborn can grow to a higher

value (left), deplete more Resource (middle), and make more Product (right) by the end of

short T (T = 17). (B) A "lucky" Newborn community (dotted lines), by stochastic fluctuations,

has 65% (instead of 75%) M and the average total biomass of 100. Even though the lucky and

the average communities share identical fP = 0.1, higher fraction of Helper H biomass in the

lucky community results in faster accumulation of Byproduct. Consequently, M can enjoy a

shorter growth lag, grow to a larger size (left), deplete more Resource (middle), and make

more Product (right) by the end of short T (T = 17). In both cases, the difference between the

lucky (dotted) and the average (solid) communities diminished at longer T (T = 20) compared

to shorter T (T = 17, dash dot line). The Matlab codes can be found in S12 Code.

(TIF)

S12 Fig. Fixing either Newborn total biomass or Newborn species composition did not

significantly improve community selection compared to fixing neither. When using the

top-dog strategy (A) or the top 10% strategy (B), fixing only Newborn total biomass (BM(0))
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or fixing only Newborn species composition (ϕM(0)) yielded similar dynamics as fixing nei-

ther (pipetting; Fig 3A–3C and Fig 3G–3I, respectively). Black, cyan, and gray curves are 3

independent simulation trials. �PðTÞ was averaged across all chosen Adults. �f PðTÞ was

obtained by first averaging among M within each chosen Adult and then averaging across all

chosen Adults. The simulation codes can be found in S2 Code, and the data can be found in

S8 Data.

(TIF)

S13 Fig. Fixing H and M cell numbers during community reproduction improves

community function. (A) The total cell number in Newborn communities was fixed to

bBMtarget/1.5c where bxcmeans rounding down x to the nearest integer. (B) The ratio between

M and H cell numbers in Newborn communities were fixed to IM(T)/IH(T), where IM(T) and

IH(T) were the number of M and H cells in the chosen Adult community from the previous

cycle, respectively. (C) The total cell numbers of Newborn communities were fixed

to bBMtarget/1.5c, and the ratio between M and H cell numbers were fixed to IM(T)/IH(T). See

Methods Section 6 for details of simulating community reproduction. Black, cyan, and gray

curves are independent simulation trials. �PðTÞ was averaged across the 2 chosen Adults. �f PðTÞ
was obtained by first averaging among M within each chosen Adult and then averaging across

the 2 chosen Adults. The simulation codes can be found in S13 Code, and the data can be

found in S9 Data.

(TIF)

S14 Fig. Long-term selection dynamics of the top 10% strategy with pipetting. Simulation

setup was identical to that in Fig 3G–3H, except that selection here lasted more cycles. Com-

pared to Fig 3A–3C (top-dog, pipetting), the top 10% strategy was more effective. However,

compared to Fig 3D–3F (top-dog, cell sorting), the top 10% strategy was less effective, even

over 104 cycles. Black, cyan, and gray curves are independent simulation trials. �PðTÞ was aver-

aged across the chosen Adults. �f PðTÞ was obtained by first averaging among M within each

chosen Adult and then averaging across all chosen Adults. The simulation codes can be found

in S2 Code, and the data can be found in S1 Data.

(TIF)

S15 Fig. Top-tier strategies promoted community selection under a wide range of selection

strengths. In a top-tier strategy (“top 2%” to “top 50%”), top nchosen(= 2*50) Adults each con-

tributed 100/nchosen Newborns into the next cycle. Here, Adults were reproduced (split) into

Newborns as if via pipetting. Note that “top 2%” yielded qualitatively similar results as “top-

dog”. Note also that when all Adults contributed one Newborn each (“all 100%”), intercommu-

nity selection strength was zero, and thus natural selection quickly reduced average cost fP and

community function to zero. Black, cyan, and gray curves are independent simulation trials.

�PðTÞ was averaged across the chosen Adults. �f PðTÞ was obtained by first averaging among M

within each chosen Adult and then averaging across all chosen Adults. The simulation codes

can be found in S2 Code, and the data can be found in S10 Data.

(TIF)

S16 Fig. The top-dog strategy is superior to the top 10% strategy when nonheritable varia-

tion in community function is low. Twenty replicas of selection simulations were performed

using either the top-dog strategy (black curves) or the top-tier strategy (top 10 Adults chosen

to reproduce; red curves). Community reproduction was through cell sorting. Community

functions improved slightly faster and to a slightly higher level using the top-dog strategy.

Thus, when nonheritable variations in community function were suppressed, the top-dog
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strategy was superior to the top-tier strategy. The simulation codes can be found in S2 Code,

and the data can be found in S11 Data.

(TIF)

S17 Fig. Community function can be improved even if it is costly to both species. Identical

to Fig 6, the evolutionary upper bound for gHmax (g�Hmax ¼ 0:8) was larger than that of gMmax

(g�Mmax ¼ 0:7), opposite to that in Fig 3. (A) When using the top-dog strategy with pipetting,

gHmax and gMmax evolved to their respective upper bounds, and thus gHmax> gHmax (compare

i and iv). This would ordinarily lead to extinction of M. However, community selection man-

aged to maintain M at a very low level (Fig 6A bottom panel). (B–D) When using the top-

dog strategy with cell sorting (panel B), the top 10% strategy with pipetting (panel C), or the

top 10% strategy with cell sorting (panel D), community selection worked in the sense that

both �f P and P(T) improved over cycles (Fig 6B–6D). The maximal growth rate of H gHmax

did not increase to its upper bound g�Hmax ¼ 0:8, and H’s affinity for Resource even decreased

from the ancestral level in some cases. Here, Resource supplied to Newborn communities

could support 105 total biomass to accommodate faster growth rate. Other legends are the

same as S8 Fig. The simulation codes can be found in S4 Code, and the data can be found in

S3 Data.

(TIF)

S18 Fig. Evolution dynamics of chosen Adult communities at a mutation rate of 2 × 10−5

per cell per generation. (A, B) At short maturation time (T = 17, Resource was not exhausted

in an average community), cell sorting improved community function. The top-tier strategy

with pipetting slightly improved community function. (C, D) At long maturation time (T = 20,

Resource was nearly exhausted in an average community), community function improved

without fixing BM(0) or ϕM(0) (top-dog with pipetting). At this mutation rate, because the

population size of a community never exceeds 104, a mutation occurs on average every 5

cycles, resulting in step-wise improvement in both �f PðTÞ and �PðTÞ. Black, cyan, and gray

curves are independent simulation trials. �PðTÞ was averaged across all chosen Adults. �f PðTÞ
was obtained by first averaging among M within each chosen Adult and then averaging across

all chosen Adults. The simulation codes can be found in S2 Code, and the data can be found in

S12 Data.

(TIF)

S19 Fig. Evolutionary dynamics of chosen Adult communities under different distribu-

tions of mutation effects. (A) Evolutionary dynamics where half of the mutations reduced fP
to zero, and the distribution of mutation effects of the other half is specified by Eq 19 in which

s+ = s− = 0.02 are constants. (B) Evolutionary dynamics when null mutations in fP did not

occur. The distribution of mutation effects is specified by Eq 19 where s+ = 0.05 and s− = 0.067.

�f PðTÞ as well as �PðTÞ were more stable compared to when null mutations were present (Fig 3).

Black, cyan, and gray curves are independent simulation trials. �PðTÞ was averaged across the

chosen Adults. �f PðTÞ was obtained by first averaging among M within each chosen Adult and

then averaging across all chosen Adults. For panel A, the simulation codes can be found in S14

Code, and the data can be found in S13 Data. For panel B, the simulation codes can be found

in S15 Code, and the data can be found in S14 Data.

(TIF)

S20 Fig. Mutation effects under epistasis. Distribution of mutation effects at different current

fP values (marked on top) are plotted according to Eq 20. (Top) When there is no epistasis, dis-

tribution of mutational effects on fP (ΔfP) remains identical regardless of current fP. (Middle
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and Bottom) With epistasis (see Methods Section 5 for definition of epistasis factor), muta-

tional effects on fP depend on the current value of fP. If current fP is low (left), enhancing muta-

tions are more likely to occur (the area to the right of ΔfP = 0 becomes bigger), and their mean

mutational effect (= 1/slope) becomes larger. If current fP is high (right), the opposite is true.

(TIF)

S21 Fig. Evolutionary dynamics of chosen Adults when epistasis is considered. When we

incorporated different epistasis strengths (epistasis factor of 0.3 and 0.8), we obtained essen-

tially the same conclusions as when epistasis was not considered (Fig 3). Black, cyan, and gray

curves are independent simulation trials. �PðTÞ was averaged across the chosen Adults. �f PðTÞ
was obtained by first averaging among M within each chosen Adult and then averaging across

all chosen Adults. For panel A, the simulation codes can be found in S16 Code, and the data

can be found in S15 Data. For panel B, the simulation codes can be found in S16 Code, and the

data can be found in S16 Data.

(TIF)

S22 Fig. Selection dynamics of mutualistic H-M communities. In the mutualistic H-M com-

munity, H generates Byproduct that is essential for M but inhibitory to H. (A) H can grow to a

high density in the presence of M (top) but not in the absence of M (bottom). (B) Similar to

community selection on commensal H-M communities, selection was promoted by the top

10% strategy or cell sorting at short T (T = 20), or via extending T (T = 24). Black, cyan, and

gray curves are independent simulation trials. �PðTÞ was averaged across the chosen Adults.

�f PðTÞ was obtained by first averaging among M within each chosen Adult and then averaging

across all chosen Adults. For panel A, the Matlab codes can be found in S17 Code. For panel B,

the simulation codes can be found in S18 Code, and the data can be found in S17 Data.

(TIF)

S23 Fig. Artificial selection in excess Resource failed under fixed-fold pipetting dilution

scheme. Excess Resource was supplied to each Newborn (R(0)/KMR = 106), and chosen Adults

were reproduced via a fixed-fold (100-fold) pipetting dilution into Newborns. Because of

pipetting, Newborns with larger total biomass will tend to be selected (Fig 4F). Community

function initially increased as Newborn total biomass increased exponentially (middle and

bottom panels), while nonproducing M cells with fP = 0 quickly took over (top panel; S7B Fig).

Black, cyan, and gray curves are independent simulation trials. �PðTÞ was averaged across cho-

sen Adults. �f PðTÞ was obtained by first averaging among M within each chosen Adult and

then averaging across all chosen Adults. The simulation codes can be found in S19 Code, and

the data can be found in S18 Data.

(TIF)

S24 Fig. Improving growth parameters can improve or impair community function,

depending on evolutionary upper bounds of growth parameters. Plotted here are plateaued

community function after 1,500 cycles when simulation did or did not allow mutations in

growth parameters or fP. The top-dog strategy and pipetting were used. (A) When evolutionary

upper bound for gHmax (g�Hmax ¼ 0:3) was lower than that of gMmax (g�Mmax ¼ 0:7), improving

growth parameters improved community function. Compared to community function where

no mutations were allowed (i), community function improved when both growth parameters

and fP were allowed to mutate (ii). Preventing mutations in growth parameters diminished

community function improvement (iii). In this case, improved growth of M and H resulted in

higher community function. Evolutionary dynamics are shown in S8A–S8C Fig. (B) When evo-

lutionary upper bound for gHmax (g�Hmax ¼ 0:8) was larger than that of gHmax (g�Mmax ¼ 0:7),
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improving growth parameters could decrease community function. Compared to community

function in which no mutations were allowed (i), community function decreased when both

growth parameters and fP were allowed to mutate (ii). Preventing mutations in growth parame-

ters diminished reduction in community function (iii). In this case, improved growth of M and

H resulted in lower community function. Evolutionary dynamics are shown in S17A Fig and

Fig 6A. In panel B, Resource supplied to Newborn communities could support 105 total bio-

mass to accommodate faster growth rate. Error bars are calculated form 3 independent selec-

tions. The simulation codes can be found in S2 and S4 Codes. The plot can be generated by S20

Code from S19 Data.

(TIF)

S25 Fig. Selection dynamics of M monospecies groups. (A) Phenotypes averaged over chosen

groups are plotted for 500 selection cycles. Because Resource is the same as in community

selection while Byproduct is in excess, M’s affinity for Byproduct 1/KMB is no longer relevant

in equations (S3B Fig, RM� BM). Upper bounds of M’s maximal growth rate gMmax and M’s

affinity for Resource 1/KMR are marked with green dashed lines. Magenta lines mark fP optimal

for group function and maximal P(T) when M’s maximal growth rate gMmax and M’s affinity

for Resource 1/KMR are fixed at their upper bounds and when Byproduct is in excess. (B) Sup-

pose that a Newborn M group starts with a single Manufacturer (biomass 1) supplied with

excess Byproduct and the same amount of Resource as in a Newborn H-M community

(Resource could support 104 M biomass). Then, maximal group function is achieved at fP ¼
f �P;Mono ¼ 0:13 (middle panel), lower than the optimal fP for the community function f �P ¼ 0:41

(Fig 2B). Here, the growth parameters of M are all fixed at their evolutionary upper bounds,

and P(T) has the unit of ~rP. For panel A, the simulation codes can be found in S21 Code, and

the data can be found in S20 Data. For panel B, the Matlab codes can be found in S22 Code.

(TIF)

S26 Fig. Comparison between the steady-state ϕM,SS calculated from Eqs 6–10 (black

curve) and from Eq 14 (red line). The Matlab codes can be found in S23 Code.

(TIF)

S27 Fig. With parameters in Table 1, improved maximal growth rates and nutrient affini-

ties generally—but do not always—improve individual fitness and community function. In

all figures, solid and dashed lines, respectively, represent calculations with fP ¼ f �P ¼ 0:41

(optimal for community function; Fig 2B) and fP ¼ f �P;Mono ¼ 0:13 (the starting point for most

of our simulations; optimal for M monoculture production when Byproduct is in excess—see

S25B Fig). Except for the growth parameter indicated on the horizontal axis, all other growth

parameters were set to their respective upper bounds. (A–D) Community function increases

as the indicated growth parameter increases. For example, in (A), all growth parameters except

for gMmax were set to their upper bounds. For each gMmax, the steady-state ϕM,SS was calculated

using equations in Methods Section 1. This steady-state ϕM,SS was then used to calculate P(T).

(F–I) The ratio between mutant population (whose indicated growth parameter was 10%

lower than the upper bound) and preadapted population (with all growth parameters at upper

bounds) over maturation time T = 17. The decreasing ratio indicates that the mutant has a

lower fitness compared to the growth-adapted cells. For example, in (F), a Newborn commu-

nity had 70 M and 30 H. Among M cells, 90% were preadapted and had upper bound gMmax =

0.7 ("upper bound"). The remaining 10% had gMmax = 0.63, 10% less than the upper bound

("mutant"). The ratio between "mutant" and "upper bound" cells declined over maturation

time, indicating that mutant M cells had a lower fitness. (E, J) When fP = 0.13 (black dashed

line) but not when fP = 0.41 (magenta line), increasing M’s affinity for Resource (1/KMR)
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slightly decreases individual fitness and barely affects community function. The Matlab codes

can be found in S24 Code.

(TIF)

S28 Fig. At low fP, M’s lower affinity for Resource can increase its growth rate. (A) The ratio

between MLowAff (the population size of M with low affinity for Resource K � 1
MR ¼ 2:5~Rð0Þ� 1

)

and MHighAff (the population size of M with high affinity for Resource K � 1
MR ¼ 3~Rð0Þ� 1

) are

plotted over a maturation cycle when grown together in the H-M community. The fP values of

both populations equaled to 0.1 (solid line), 0.2 (dotted line), and 0.3 (dashed line). (B) P(T)

improves over increasing affinity K � 1
MR when fP is 0.1 (solid line), 0.2 (dotted line), and 0.3

(dashed line). The dependence of P(T) on affinity K � 1
MR is rather weak for low fP. For example,

when K � 1
MR increases from 1 to 3, P(T) increases by only 2% and 0.6% for fP = 0.2 and fP = 0.1,

respectively. The Matlab codes can be found in S25 Code.

(TIF)

S29 Fig. Selection dynamics of communities of preadapted H and M when allowing all

parameters to vary. In the Newborn communities of the first cycle of community selection, all

growth parameters of H and M were at their upper bounds and fP ¼ f �P;Mono ¼ 0:13 (S25 Fig).

The top-dog strategy was used to choose Adults that were then reproduced via pipetting.

When we simulated community selection while allowing all growth parameters and fP to vary,

M’s affinity for R 1=�KMR decreased slightly because at low fP = 0.13, M with a lower affinity

for R (lower 1/KMR) has a slightly improved individual fitness (S28 Fig). Other growth parame-

ters (�gMmax; �gHmax; 1=
�KMB, and 1=�KHR) remain mostly constant during community selection

because mutants with lower-than-maximal values were selected against by intracommunity

selection and by intercommunity selection (S27 Fig). Other legends are the same as in S8 Fig.

The simulation codes can be found in S4 Code, and the data can be found in S21 Data.

(TIF)

S30 Fig. Different methods of pregrowth had limited impact on selection dynamics. An M

monoculture grew from a single non-null M cell. This M cell went through approximately 23

doublings and therefore multiplied into approximately 107 cells. Every time a non-null M cell

divides, the mother and daughter cells can independently mutate and become a null M cell (fP
= 0) at a fixed probability of 10−3. If a non-null M cell has fP = 0.13, then it will grow at a rate

87% of that of a null cell. After approximately 23 doublings, the M monocultures have on aver-

age about 3% null mutants. Sixty randomly chosen M cells from the same monoculture or from

distinct monocultures, together with 40 H cells, were used to inoculate each of the 100 New-

borns for the first selection cycle. (Top panels) Histograms of the number of Newborn commu-

nities of the first cycle that are free of noncontributor M mutants when inoculated from a

single M monoculture (Left panel) or from independently grown M monocultures (right

panel). To generate the histograms, the pregrowth and inoculation process was repeated 1,000

times. (Middle and bottom panels) Improvement in �f PðTÞ and �PðTÞ was only slightly slower

when Newborn communities from the first cycle were inoculated by the same M monoculture

(left panel) than by distinct monocultures (right panel). The top-dog strategy was used to

choose Adults that were then reproduced via cell sorting. Black, cyan, and gray curves are inde-

pendent simulation trials. �PðTÞ was averaged across the 2 chosen Adults. �f PðTÞ was obtained

by first averaging among M within each chosen Adult and then averaging across the chosen

Adults. The simulation codes for evolution dynamics can be found in S26 Code, the simulation

codes for the histograms can be found in S27 Code, and the data can be found in S22 Data.

(TIF)
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S1 Code. Matlab codes that generated Fig 2.

(ZIP)

S2 Code. Matlab codes that generated Figs 3 and 4.

(ZIP)

S3 Code. Matlab codes that generated Fig 5.

(ZIP)

S4 Code. Matlab codes that generated Fig 6.

(ZIP)

S5 Code. Matlab codes that generated S2 Fig.

(ZIP)

S6 Code. Matlab codes that generated S5 Fig.

(ZIP)

S7 Code. Matlab codes that generated S6 Fig.

(ZIP)

S8 Code. Matlab codes that generated S7 Fig.

(ZIP)

S9 Code. Matlab codes that generated S8 Fig.

(ZIP)

S10 Code. Matlab codes that generated S9 Fig.

(ZIP)

S11 Code. Matlab codes that generated S10 Fig.

(ZIP)

S12 Code. Matlab codes that generated S11 Fig.

(ZIP)

S13 Code. Matlab codes that generated S13 Fig.

(ZIP)

S14 Code. Matlab codes that generated S19A Fig.

(ZIP)

S15 Code. Matlab codes that generated S19B Fig.

(ZIP)

S16 Code. Matlab codes that generated S21 Fig.

(ZIP)

S17 Code. Matlab codes that generated S22A Fig.

(ZIP)

S18 Code. Matlab codes that generated S22B Fig.

(ZIP)

S19 Code. Matlab codes that generated S23 Fig.

(ZIP)

S20 Code. Matlab codes that generated S24 Fig.

(ZIP)
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S21 Code. Matlab codes that generated S25A Fig.

(ZIP)

S22 Code. Matlab codes that generated S25B Fig.

(ZIP)

S23 Code. Matlab codes that generated S26 Fig.

(ZIP)

S24 Code. Matlab codes that generated S27 Fig.

(ZIP)

S25 Code. Matlab codes that generated S28 Fig.

(ZIP)

S26 Code. Matlab codes that generated S30 Fig.

(ZIP)

S27 Code. Matlab codes that generated histograms in S30 Fig.

(ZIP)

S1 Data. Data plotted in Figs 3 and 4.

(XLSX)

S2 Data. Data plotted in Fig 5.

(XLSX)

S3 Data. Data plotted in Fig 6.

(XLSX)

S4 Data. Data plotted in S2 Fig.

(XLSX)

S5 Data. Data plotted in S8 Fig.

(XLSX)

S6 Data. Data plotted in S9 Fig.

(XLSX)

S7 Data. Data plotted in S10 Fig.

(XLSX)

S8 Data. Data plotted in S12 Fig.

(XLSX)

S9 Data. Data plotted in S13 Fig.

(XLSX)

S10 Data. Data plotted in S15 Fig.

(XLSX)

S11 Data. Data plotted in S16 Fig.

(XLSX)

S12 Data. Data plotted in S18 Fig.

(XLSX)

S13 Data. Data plotted in S19A Fig.

(XLSX)
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S14 Data. Data plotted in S19B Fig.

(XLSX)

S15 Data. Data plotted in S21A Fig.

(XLSX)

S16 Data. Data plotted in S21B Fig.

(XLSX)

S17 Data. Data plotted in S22B Fig.

(XLSX)

S18 Data. Data plotted in S23 Fig.

(XLSX)

S19 Data. Data plotted in S24 Fig.

(XLSX)

S20 Data. Data plotted in S25 Fig.

(XLSX)

S21 Data. Data plotted in S29 Fig.
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S22 Data. Data plotted in S30 Fig.

(XLSX)
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