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Rare variant associations with plasma 
protein levels in the UK Biobank

Ryan S. Dhindsa1,30 ✉, Oliver S. Burren2,30, Benjamin B. Sun3,30, Bram P. Prins2, 
Dorota Matelska2, Eleanor Wheeler2, Jonathan Mitchell2, Erin Oerton2, 
Ventzislava A. Hristova1, Katherine R. Smith2, Keren Carss2, Sebastian Wasilewski2, 
Andrew R. Harper4, Dirk S. Paul2, Margarete A. Fabre2, Heiko Runz3, Coralie Viollet2, 
Benjamin Challis5, Adam Platt6, AstraZeneca Genomics Initiative*, Dimitrios Vitsios2, 
Euan A. Ashley7, Christopher D. Whelan3, Menelas N. Pangalos8, Quanli Wang1 & 
Slavé Petrovski2,9 ✉

Integrating human genomics and proteomics can help elucidate disease  
mechanisms, identify clinical biomarkers and discover drug targets1–4. Because 
previous proteogenomic studies have focused on common variation via genome- 
wide association studies, the contribution of rare variants to the plasma proteome 
remains largely unknown. Here we identify associations between rare protein-coding 
variants and 2,923 plasma protein abundances measured in 49,736 UK Biobank 
individuals. Our variant-level exome-wide association study identified 5,433 rare 
genotype–protein associations, of which 81% were undetected in a previous genome- 
wide association study of the same cohort5. We then looked at aggregate signals using 
gene-level collapsing analysis, which revealed 1,962 gene–protein associations. Of the 
691 gene-level signals from protein-truncating variants, 99.4% were associated with 
decreased protein levels. STAB1 and STAB2, encoding scavenger receptors involved  
in plasma protein clearance, emerged as pleiotropic loci, with 77 and 41 protein 
associations, respectively. We demonstrate the utility of our publicly accessible 
resource through several applications. These include detailing an allelic series in 
NLRC4, identifying potential biomarkers for a fatty liver disease-associated variant  
in HSD17B13 and bolstering phenome-wide association studies by integrating protein 
quantitative trait loci with protein-truncating variants in collapsing analyses. Finally, 
we uncover distinct proteomic consequences of clonal haematopoiesis (CH), including  
an association between TET2-CH and increased FLT3 levels. Our results highlight a 
considerable role for rare variation in plasma protein abundance and the value of 
proteogenomics in therapeutic discovery.

Proteins circulating in the human bloodstream can provide a glimpse 
into an individual’s state of health1. These plasma proteins include 
critical regulators of cell signalling, transport, growth, repair and 
defence against infection, as well as proteins leaked from damaged cells 
throughout the body6. The dynamic nature of the plasma proteome 
and the accessibility of human blood makes these proteins valuable 
tools for diagnosing and predicting disease, identifying therapeutic 
targets and elucidating disease pathophysiology1–4. However, it is chal-
lenging to determine if changes in protein levels are directly linked to a 
disease or are simply markers of disease-related processes. Integrating 
proteomics with genomics to identify genetic variants associated with 

protein levels, called protein quantitative trait loci (pQTLs), can help 
to address this limitation.

Genetic variation, either in or near a gene that encodes a protein (cis) 
or in other parts of the genome (trans), can influence protein expres-
sion, folding, secretion and function. To date, most pQTLs have been 
discovered via genome-wide association studies (GWASs), which pre-
dominantly focus on common variants3,5–8. However, common variant 
associations are challenging to interpret because most are non-coding 
and tag linkage disequilibrium blocks. This can also confound the 
integration of pQTLs with disease-associated GWAS variants. Rarer 
protein-coding variants tend to confer larger biological effect sizes 
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than common variants and are more directly interpretable. However, 
their influence on the plasma proteome is largely unknown because 
previous rare variant proteogenomic studies have been limited in 
scale9,10.

Here, we evaluated the potential role of rare variation in plasma pro-
tein abundance by analysing exome sequence data and plasma levels of 
2,923 proteins measured in 49,736 UK Biobank (UKB) participants. We 
used variant- and gene-level association tests to map pQTLs across the 
allele frequency spectrum. We demonstrate how these associations can 
be used to discover biomarkers and allelic series. Moreover, we intro-
duce a framework that includes protein-truncating variants (PTVs) and 
cis-acting missense pQTLs to bolster the discovery of gene–phenotype 
association studies.

UKB Pharma Plasma Proteome cohort characteristics
The UKB Pharma Plasma Proteome (UKB-PPP) cohort comprises 
plasma samples from 54,219 individuals, including 46,595 randomly 
selected participants, 6,376 consortium-chosen individuals and 1,268 
participants from a COVID-19 repeat imaging study. Proteomic pro-
filing on blood plasma was performed with the Olink Explore 3072 
platform, which measures 2,941 protein analytes across 2,923 unique 
proteins (Supplementary Table 1). Exome sequencing data were 
available for 52,217 (96%) of these participants, which we processed 
through our previously published cloud-based pipeline11 (Extended 
Data Fig. 1a). We performed rigorous sample-level quality control 
(Methods), leaving 49,736 (92%) multi-ancestry samples with exomes 
for downstream analyses. Of these individuals, 46,327 (93%) were of 
European descent.

Variant-level associations
We first performed a variant-level exome-wide association study 
(ExWAS) between 2,923 plasma protein abundances and 617,073 
variants with minor allele frequencies (MAFs) as low as 0.006% in 
individuals of European ancestries (Fig. 1a, Extended Data Fig. 1a, 
Supplementary Table 2 and Methods). Using an n-of-one permuta-
tion analysis as previously described11, we identified P ≤ 1 × 10−8 as an 
appropriate P value threshold (Methods and Supplementary Table 3). 
Genomic inflation was well-controlled (median λGC = 1.03; 95% range, 
1.01–1.05; Supplementary Fig. 1 and Supplementary Table 4). In total, 
there were 151,491 significant genotype–protein associations, 5,433 of 
which corresponded to rare variants (MAF ≤ 0.1%).

In a separate array-based GWAS on the UKB-PPP cohort, we tested 
for the association between common variants (MAF > 0.1%) and 2,922 
protein assays, resulting in 14,287 primary genetic associations5. The 
effect sizes (β) of nominally significant ExWAS pQTLs (P < 1 × 10−4) 
strongly correlated with the GWAS-derived pQTLs5 (r2 = 0.96; Supple-
mentary Fig. 2). Furthermore, 90% of the more common study-wide 
associations (MAF > 0.1%) in our study were also significant in the GWAS 
(Fig. 1b). As expected, given the constraints of GWAS, only 19% of the 
rare (MAF ≤ 0.1%) associations from our ExWAS were significant in 
the UKB-PPP GWAS. There was also strong directional concordance 
between the ExWAS-derived pQTLs and pQTLs detected in an inde-
pendent Icelandic population8, which had increased resolution for 
rarer variants (MAF > 0.01%; Supplementary Note).

We classified pQTLs as cis-CDS (that is, cis-coding sequence) if the 
variant occurred in or nearby a given protein and trans-CDS if the variant 
affected the abundance of a protein that was greater than 1 megabase 
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Fig. 1 | ExWAS. a, Summary of significant (P ≤ 1 × 10−8) cis- and trans- 
pQTLs across the exome, limited to variants with MAF ≤ 0.1%. P values were 
generated via linear regression. If multiple variants in a gene were associated 
with the same protein, we displayed the most significant association for ease  
of visualization. The P values were not corrected for multiple testing; the 
study-wide significance threshold is P ≤ 1 × 10−8. b, Percentage of significant 
rare (MAF ≤ 0.1%) and common (MAF > 0.1%) ExWAS genotype–protein 

associations that were also significant in the UKB-PPP GWAS. c, The  
proportion of significant cis-CDS pQTLs per variant class across three MAF 
bins. ‘All tested variants’ refers to the total number of variants occurring in the 
genes corresponding to the proteins measured via the Olink platform that were 
included in the ExWAS. d, Effect sizes of significant rare pQTLs in each variant 
class. For all plots, if the same genotype–protein association was detected in 
multiple ExWAS models, we retained the association with the smallest P value.
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(Mb) away (Extended Data Fig. 1b). There was a subset of trans asso-
ciations that fell within 1 Mb of the gene encoding the protein whose 
level was altered, which we classified as ‘cis-position, trans-CDS’. Of the 
unique variants associated with at least one protein abundance meas-
urement, 9,098 (18.7%) were cis-CDS, 14,127 (29.0%) were trans-CDS and 
25,543 (52.3%) were cis-position, trans-CDS (Supplementary Table 2). 
The relative proportions of cis and trans associations were different 
among rare variants (MAF ≤ 0.1%), in which 2,227 (49.0%) were cis-CDS, 
782 (17.2%) were trans-CDS and only 1,540 (33.8%) were cis-position, 
trans-CDS. Moreover, among the common cis-CDS pQTLs, the pro-
portions of PTVs and missense, synonymous and non-coding variants 
closely matched the proportions observed for the total variants included 
in the ExWAS (that is, the expected null distribution; Fig. 1c). In com-
parison, PTVs and missense variants encompassed a significantly larger 
percentage of rare (MAF ≤ 0.1%) and ultra-rare (MAF ≤ 0.01%) cis-CDS 
pQTLs (Fig. 1c and Supplementary Table 5). These results illustrate how 
linkage disequilibrium contaminates common pQTLs, making it chal-
lenging to ascribe causality to these variants without fine-mapping.

Purifying selection keeps fitness-reducing variants at low frequencies 
in the population. As expected, the median absolute effect size (β) of 
rare cis-CDS pQTLs was 1.85, compared with 0.3 for common cis-CDS 
pQTLs (Wilcoxon P < 10−300). Similarly, the absolute effect sizes of rare 
trans-CDS pQTLs (median |β| = 1.26) were significantly larger than those 
of common trans-CDS pQTLs (median |β| = 0.08; Wilcoxon P < 10−300) 
(Extended Data Fig. 2a). Rare cis associations also had larger magni-
tudes of effect (median |β| = 1.86) than rare trans associations (median 
|β| = 1.26; Wilcoxon P < 10−300) (Extended Data Fig. 2b).

Of the 2,227 rare cis-CDS pQTLs, 538 (24.2%) were PTVs (Fig. 1d and Sup-
plementary Table 5). As expected, nearly all the PTVs were associated with 
decreased protein abundances (n = 518 of 538; 96%). Ten of the 20 PTVs 
associated with increased protein abundances (50%) were predicted to 
escape nonsense-mediated decay because they occurred within the last 
exon, the penultimate exon within 50 base pairs (bp) of the 3′ junction or 
the first exon within the first 200 nucleotides of the coding sequence12. 
Four were annotated as loss of splice donor or acceptor sites, which can 
have more variable effects than frameshift and nonsense variants. Rare 
missense variants and in-frame indels also had more variable directions 
of effects than PTVs, although most still decreased protein abundances 
(n = 1,274 of 1,490; 86%). Trans associations were even more variable, with 
26% (32 of 122) of PTVs and 26% (252 of 954) of missense variants/indels 
associated with decreased protein abundances (Fig. 1d).

Identifying allelic series, in which multiple variants in a gene asso-
ciate with a phenotype with varying effect sizes, can help prioritize 
candidate drug targets13,14. Missense variants are of particular interest 
due to their spectrum of biological effects, ranging from complete or 
partial loss-of-function, to neutral, to gain-of-function. We explored 
how often missense variants within the same gene had a similar impact 
on protein abundance, focusing on the 50 genes with at least five rare 
(MAF ≤ 0.1%) missense cis-CDS pQTLs. Most often, rare missense vari-
ants within the same gene had a similar effect on protein abundance. 
For 47 of these 50 genes (94%), at least 75% of the significant missense 
pQTLs were associated with decreased protein abundance. The per-
centage of protein-lowering missense variants in the remaining three 
genes ranged from 14% to 50% (Supplementary Table 2).

Assessing epitope effects
Genetic variants can theoretically affect antibody binding due to 
changes in protein conformation. We sought to determine the extent 
to which these epitope effects might bias the ExWAS cis-CDS pQTLs. We 
first tested whether cis-CDS pQTLs were enriched for clinically relevant 
variants, as missense pQTLs independently associated with clinical 
phenotypes are more likely to reflect true biological effects. We found 
a significant enrichment of ClinVar15 pathogenic and likely pathogenic 
variants among the 1,484 significant rare missense and in-frame indel 

cis-CDS pQTLs (observed: 3.5%; expected: 0.54%; two-tail binomial 
P = 2.5 × 10−25; Extended Data Fig. 3a). By contrast, the 36,466 missense 
variants and in-frame indels that were not associated with cis changes 
in protein abundances (P > 1 × 10−4) were significantly depleted of Clin-
Var pathogenic/likely pathogenic variants (observed: 0.4%; expected: 
0.54%; two-tail binomial P = 1.1 × 10−4). Moreover, the rare significant 
(P ≤ 1 × 10−8) and suggestive (1 × 10−8 < P ≤ 1 × 10−4) missense cis-CDS 
pQTLs were more likely to be predicted damaging by the in silico pre-
dictor, REVEL16 (Extended Data Fig. 3b).

Five of the Olink proteins harbouring cis-CDS pQTLs were indepen-
dently measured via immunoturbidimetric assays in the UKB biomarker 
panel (APOA1, CST3, GOT1, LPA, SHBG). We compared the rare cis-CDS 
pQTLs (P < 1 × 10−4) in these genes with our independent variant-level 
associations for these markers measured in 470,000 UKB individuals11,17. 
In total, 13 of the 14 cis-CDS pQTLs (93%) replicated in the biomarker 
ExWAS (P ≤ 1 × 10−8), with effect sizes showing complete directional 
concordance (Supplementary Table 6). One missense variant in GOT1 
had a suggestive association with reduced aspartate aminotransferase 
in the proteogenomic ExWAS. This variant did not achieve a P < 1 × 10−4 
in the biomarker ExWAS, and its effect was in the opposite direction, 
suggesting a possible epitope effect. Finally, we assessed the concord-
ance between the effect sizes of PCSK9 cis-CDS pQTLs (P < 1 × 10−4) and 
the effects of these variants on low-density lipoprotein. All six variants 
were also significantly (P ≤ 1 × 10−8) associated with low-density lipopro-
tein levels in the expected direction (Supplementary Table 7). These 
results collectively demonstrate that the cis-CDS pQTLs are enriched 
for biologically relevant signals.

Gene-level protein abundance associations
Because the power to identify statistically significant variant-level asso-
ciations decreases with allele frequency, we next tested rare variants in 
aggregate via gene-level collapsing analyses. In this method, we identify 
rare variants that meet a predefined set of criteria (that is, ‘qualifying 
variants’ or ‘QVs’) in each gene and test for their aggregate effect on 
protein levels. Here, we used ten QV models introduced in our previous 
UKB phenome-wide association study (PheWAS), including one syn-
onymous variant model as an empirical negative control11 (Extended 
Data Table 1; www.azphewas.com). Some examples include the ‘ptv’ 
model, which only includes rare PTVs, the recessive (‘rec’) model, which 
considers recessive and putative compound heterozygous signals, and 
the ultra-rare (‘UR’) model, which includes non-synonymous singleton 
variants. Another key advantage of this approach is that it mitigates 
against epitope effects that could confound variant-level tests.

We tested the association between 18,885 genes and 2,923 plasma 
protein levels in 46,327 individuals of European ancestry (Supplemen-
tary Table 8). The n-of-1 permutation analysis and the synonymous 
QV model converged on P ≤ 1 × 10−8 as an appropriately conservative  
P value threshold (Supplementary Table 3 and Methods). In total, there 
were 7,412 significant associations across the nine non-synonymous 
QV models (Fig. 2a). Of these, there were 1,962 unique gene–protein 
abundance associations, including 1,049 (53%) cis associations, 813 
(41%) trans associations and 100 (5%) cis-position, trans-CDS signals. 
This relatively low percentage of cis-position, trans-CDS associations 
compared with the ExWAS (5% versus 52%) highlights the strength of 
collapsing analysis in mitigating contamination due to linkage disequi-
librium. Some of the remaining cis-position, trans-CDS signals may 
indicate local co-regulation, which could be interrogated in future 
whole-genome sequencing studies18.

Notably, 501 (25.5%) of the 1,962 gene–protein abundance signals 
identified in the collapsing analysis did not reach significance in the 
ExWAS (Extended Data Fig. 4a). Among 1,084 gene–protein associations 
specifically arising from the ptv model, 667 (62%) were not significant in 
the ExWAS. Meanwhile, only 112 of the rare PTV signals from the ExWAS 
did not achieve significance in the PTV collapsing model (Extended 

https://www.azphewas.com
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Data Fig. 4b). Of the associations that only reached significance in the 
collapsing analysis, 101 (20.2%) were cis-CDS (Supplementary Table 8). 
These data demonstrate how collapsing analyses increase statistical 
power for discovering rare variant-driven associations.

The models that included PTVs alongside putatively damaging mis-
sense variants encompassed most of the 4,528 cis-CDS signals. The 
flexdmg model accounted for 854 signals (19%), the ptvraredmg model 
accounted for 804 signals (18%) and the ptv model accounted for 691 
signals (15%). Moreover, there were only three significant gene-level 
cis-CDS pQTLs in the synonymous (syn) collapsing model19,20 (full defi-
nitions of collapsing models can be found in Extended Data Table 1).

Most pQTLs identified in the collapsing analysis were associated with 
changes in the abundance of a single protein (Fig. 2b). Among the 254 
genes with trans-CDS associations, 87% were associated with three or 
fewer proteins. However, certain genes appeared to be pQTL ‘hotspots’, 
associated with over 20 different protein abundances, including ASGR1 
(n = 186), STAB1 (n = 77), STAB2 (n = 41) and GNPTAB (n = 37) (Fig. 2a,b). 
ASGR1, which encodes a subunit of the asialoglycoprotein receptor, 
also emerged as a hotspot in the UKB-PPP GWAS and other large pQTL 
studies5,6,8. STAB1 and STAB2 are located on different chromosomes  
(3 and 12, respectively), but both encode related scavenger receptors 
expressed on macrophages and liver sinusoidal endothelial cells that 
mediate the clearance of aged plasma proteins and other waste mol-
ecules21,22. Interestingly, 20 of the 77 (26%) proteins associated with 
STAB1 variants were also associated with STAB2 variants.

GNPTAB encodes the alpha and beta subunits of GlcNAc-1-phos 
photransferase, which selectively adds GlcNAc-1-phosphate to man-
nose residues of lysosomal hydrolases. Tagged lysosomal hydrolases are 
transported to the lysosome, whereas untagged hydrolases are secreted 
into the blood and extracellular space23. Recessive PTVs in GNPTAB are 
associated with mucolipidosis III, a severe lysosomal storage disorder 

(LSD)24. Of the 37 GNPTAB trans-CDS pQTLs detected in the collaps-
ing model, 35 (95%) are lysosomal proteins25,26, 18 of which have been 
associated with other LSDs (Supplementary Table 9). Moreover, all 37 
proteins were increased in PTV carriers, suggesting reduced lysosomal 
targeting. Notably, there are efforts to therapeutically increase GNPTAB 
to enhance the cellular uptake of lysosomal proteins involved in other 
LSDs and improve the efficacy of enzyme replacement therapies27.

As expected, 99% (n = 687 of 691) of the cis signals from the ptv model 
were associated with decreased protein levels (Fig. 2c). Meanwhile, 
only 77 (21%) of the 372 significant trans signals from the ptv model 
were associated with decreased protein levels. This signal was mostly 
driven by the hotspot loci ASGR1, GNPTAB, STAB1 and STAB2 (Fig. 2a). 
Among these four proteins, 99% (n = 191) of the 193 trans-pQTLs had 
positive effect sizes compared with only 58% (n = 104 of 149 pQTLs) for 
the remaining 104 genes. Some possible explanations for these signals 
include the loss of upstream regulators, reduced negative feedback or 
compensatory changes. For example, PTVs in EPOR, encoding the eryth-
ropoietin receptor, were associated with increased erythropoietin, an 
example of compensatory upregulation (‘ptv’ model; P = 3.5 × 10−24; 
β = 1.78; 95% confidence interval (CI), 1.43 to 2.12)28.

Two of the collapsing models (‘UR’ and ‘URmtr’) include ultra-rare 
(genome Aggregation Database (gnomAD) MAF = 0%, UKB 
MAF ≤ 0.005%) PTVs and damaging missense variants16 (Extended Data 
Table 1). The one difference between them is that ‘URmtr’ includes only 
missense variants that occur in genic subregions intolerant to missense 
variation, measured via the missense tolerance ratio (‘MTR’; Methods)29. 
The effect sizes of the ‘URmtr’-derived cis-CDS pQTLs (mean |β| = 1.62) 
were significantly larger than the ‘UR’ ones (mean |β| = 1.45; Wilcoxon 
P = 1.2 × 10−5) (Fig. 2c). This underscores the ability of population 
genetics-based methods to prioritize functional missense variants, offer-
ing complementary information to in silico pathogenicity predictors.
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Pan-ancestry collapsing analysis
Including individuals of non-European ancestries in genetic studies 
promotes healthcare equity and boosts genetic discoveries11,30. We 
performed a pan-ancestry collapsing analysis on 49,736 UKB partic-
ipants, including the original 46,327 European samples plus 3,409 
individuals from African, Asian and other ancestries. In this combined 
analysis, there were 752 unique study-wide significant gene–protein 
abundance associations that were not significant in the European-only 
analyses. On the other hand, 228 associations that were significant in 
the European-only analyses did not reach study-wide significance in 
the pan-ancestry analysis (Supplementary Tables 8 and 10). Of the 
newly significant associations, 408 (54%) were cis, 327 (43%) were trans 
and 17 (2%) were cis-position, trans-gene (Supplementary Table 10).

One newly significant example was the trans association between 
PTVs in HBB and increased levels of the monocarboxylic acid trans-
porter SLC16A1 (β = 1.85; 95% CI, 1.33 to 2.37; P = 3.2 × 10−12). This likely 
reflects the enrichment of HBB PTVs in individuals of South Asian ances-
tries, as observed in our UKB PheWAS11. Another example that only 
became significant in the pan-ancestry analysis was the trans associa-
tion between PTVs in ATM, associated with ataxia telangiectasia and 
several cancers, and increased levels of alpha-fetoprotein (P = 1.8 × 10−9, 
β = 0.25, 95% CI, 0.17 to 0.33)31. These results illustrate the importance 
of increasing genetic diversity in proteogenomic studies.

Protein–protein interactions
Several trans associations from the collapsing analyses captured known 
protein–protein interactions. For example, there were significant 
associations between PTVs in PSAP and increased progranulin (GRN; 
P = 5.5 × 10−17; β = 2.60; 95% CI, 1.99 to 3.21) and cathepsin B (P = 1.2 × 10−11; 
β = 2.10; 95% CI, 1.49 to 2.70), and a nearly significant association with 
increased cathepsin D (P = 9.0 × 10−8; β = 1.61; 95% CI, 1.02 to 2.20) (Sup-
plementary Table 8). Prosaposin and progranulin are key regulators of 
lysosomal function, and recessive mutations in either gene can cause 
separate LSDs32,33. Haploinsufficiency of GRN is also associated with 
frontotemporal lobar degeneration34. Prosaposin heterodimerizes with 
progranulin, regulating its levels and facilitating its transport to the 
lysosome35,36. Moreover, within the lysosome, prosaposin is cleaved by 
cathepsin D in the lysosome into four separate saposins. This example 
highlights the utility of proteogenomics in identifying existing and 
potentially novel protein–protein interactions.

There were also 22 trans-CDS associations between known ligand–
receptor pairs37 (Supplementary Table 11). For example, there was a 
significant association between non-synonymous variants in TSHR, 
encoding the thyroid stimulating hormone receptor, and increased 
thyroid stimulating hormone (TSHB) (‘flexdmg’ model; P = 1.6 × 10−31; 
β = 0.66; 95% CI, 0.55 to 0.76). Likewise, we identified a trans associa-
tion between mutations in FLT3, encoding the fms-related tyrosine 
kinase 3, and increased levels of the FLT3 ligand (FLT3LG; ‘ptvraredmg’ 
model; P = 1.2 × 10−22; β = 0.85; 95% CI, 0.68 to 1.02). Although we high-
lighted well-known ligand–receptor pairs here, this trans-CDS pQTL 
atlas may also help identify ligands of orphan receptors38 (https://
astrazeneca-cgr-publications.github.io/pqtl-browser).

Insights into allelic series
Observing multiple pQTLs in one gene can help identify allelic series. 
For example, three rare protein-coding variants in NLRC4 were associ-
ated with significant changes in plasma levels of the proinflammatory 
cytokine IL-18 in the ExWAS (Extended Data Table 2 and Supplemen-
tary Table 2). NLRC4 is involved in inflammasome activation39, and 
rare, hypermorphic missense variants in this gene cause autosomal 
dominant infantile enterocolitis, characterized by recurrent flares of 
autoinflammation with elevated IL-18 and IL-1β levels40. The three NLRC4 

pQTLs included one frameshift variant, one missense variant associ-
ated with reduced protein levels and one putatively gain-of-function 
missense variant associated with higher levels (Extended Data Table 2). 
Interestingly, there were no significant associations between these 
three variants and clinically relevant phenotypes in our published 
PheWAS of 470,000 UKB exomes (https://azphewas.com)11, suggest-
ing that pharmacologic inhibition of NLRC4 may be safe. Moreover, 
these data show that some rare, putative gain-of-function mutations 
in this gene may not be sufficient to cause an observable phenotype, 
highlighting the value of this resource in clinical diagnostic settings.

Biomarker discovery
pQTLs offer a valuable resource for biomarker identification. For exam-
ple, 29% of genes with at least one trans-CDS association in the collaps-
ing analyses (n = 73 of 254) are targets of currently approved drugs 
listed in DrugBank (expected: 14%; two-tailed binomial P = 8.7 × 10−10)41. 
However, this pQTL atlas can also help discover putative biomarkers 
for candidate therapies that may not yet be approved. To demon-
strate this, we examined the trans associations with a splice variant in 
HSD17B13 (rs72613567), known to protect against chronic liver disease42. 
In the ExWAS, this variant was associated with altered levels of ASS1 
(P = 1.4 × 10−12; β = −0.05; 95% CI, −0.04 to −0.06), CES3 (P = 2.9 × 10−12; 
β = 0.07; 95% CI, 0.08 to 0.05), FUOM (P = 1.7 × 10−10; β = −0.05; 95% 
CI, −0.03 to −0.06), HYAL1 (P = 9.5 × 10−9; β = −0.04; 95% CI, −0.03 to 
−0.06), SHBG (P = 1.9 × 1−13; β = −0.05; 95% CI, −0.04 to −0.06) and 
SMPD1 (P = 2.7 × 10−11; β = −0.05; 95% CI, −0.03 to −0.06) (Supplemen-
tary Table 2). These associations not only serve as potential biomark-
ers, but could also inform future functional studies investigating the 
protective effect of this variant. Beyond biomarker discovery, this pQTL 
atlas may facilitate other components of drug development, including 
identifying novel genetic targets, safety profiling and drug reposition-
ing opportunities (Extended Data Fig. 5a). To make these data broadly 
accessible, we provide the pQTL summary statistics in our PheWAS 
browser (https://azphewas.com) and publish a separate interactive 
portal (Extended Data Fig. 5b; https://astrazeneca-cgr-publications.
github.io/pqtl-browser).

Clonal haematopoiesis pQTLs
The accumulation of somatic mutations with age can cause clonal 
expansion of haematopoietic stem cell populations (termed ‘clonal 
haematopoiesis’ or ‘CH’). CH has been associated with an increased risk 
of haematological cancer, cardiovascular disease, infection and other 
diseases43,44. We sought to identify plasma protein changes associated 
with CH to uncover potential disease mechanisms and biomarkers. We 
performed a gene-level collapsing analysis focused on clonal somatic 
variants in 15 genes recurrently mutated in CH and myeloid cancers 
(Methods and Supplementary Table 12).

We detected 36 trans associations with JAK2-CH, 15 with TET2-CH, 
eight with ASXL1-CH and four each with SF3B1-CH and SRSF2-CH 
(Fig. 3a–e and Supplementary Table 13). Strikingly, there was very lit-
tle overlap between the protein abundances associated with each of 
these five genes, suggesting distinct downstream effects of the somatic 
events detected in each. The effect sizes were opposite in the two 
instances where the same protein was linked with CH events affecting 
two different genes. COL5A1 was positively associated with ASXL1-CH 
(P = 1.6 × 10−12; β = 0.75; 95% CI, 0.54 to 0.96) and negatively associated 
with TET2-CH (P = 5.9 × 10−9; β = −0.35; 95% CI, −0.47 to −0.23) (Fig. 3b,c). 
DKK1 was positively associated with JAK2-CH (P = 7.2 × 10−14; β = 1.57; 95% 
CI, 1.16 to 1.98) and negatively associated with SF3B1-CH (P = 1.8 × 10−10; 
β = −1.19; 95% CI, −0.47 to −0.23) (Fig. 3a,d).

Three of the JAK2 trans-CDS pQTLs are proteins involved in the 
integrin β2 pathway: FCGR2A, GP1BA and ICAM2 (ref. 45) (Fig. 3a). 
The most prevalent JAK2 missense variant associated with CH and 

https://astrazeneca-cgr-publications.github.io/pqtl-browser
https://astrazeneca-cgr-publications.github.io/pqtl-browser
https://azphewas.com
https://www.ncbi.nlm.nih.gov/snp/?term=rs72613567
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https://astrazeneca-cgr-publications.github.io/pqtl-browser
https://astrazeneca-cgr-publications.github.io/pqtl-browser
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myeloproliferative disorders (V617F) is thought to promote venous 
thrombosis by activating this pathway46.

Somatic mutations in TET2 were associated with increased levels of 
the receptor tyrosine kinase FLT3 (P = 3.4 × 10−16; β = 0.50; 95% CI, 0.38 
to 0.62) and decreased levels of the FLT3 ligand, FLT3LG (P = 6.4 × 10−64; 
β = −0.97; 95% CI, −1.08 to −0.86) (Fig. 3b). FLT3 is a key regulator of 
haematopoietic stem cell proliferation and dendritic cell differentia-
tion47. Roughly 30% of patients with acute myeloid leukaemia carry 
FLT3-activating mutations, the presence of which portends poor out-
comes48. There are FLT3 inhibitors that improve the survival of patients 
with acute myeloid leukaemia49,50. If the relationship between TET2 
and FLT3 is causal, this could suggest potential drug repositioning 
and precision medicine opportunities for TET2-CH. The three other 
proteins increased in abundance in TET2-CH were CD1C (a marker 
of conventional dendritic cells), CLEC4C (a marker of plasmacytoid 
dendritic cells) and CD86 (a marker of dendritic cells, monocytes and 
other antigen-presenting cells)51. Many of the downregulated proteins 
are markers of other haematopoietic lineages, such as KIR2DL2 and 
KIR2DL3 (natural killer cell activation)52, and PRG2 and PRG3 (constitu-
ents of eosinophil granules also involved in basophil stimulation)53,54. 
These results are consistent with the well-established association 
between CH and immune dysfunction55.

pQTL-augmented PheWAS
Defining appropriate QVs is critical to improving the signal-to-noise 
ratio in collapsing analysis. This is relatively straightforward for 
PTVs, but distinguishing between damaging and benign missense 
variants remains challenging. In silico tools help, but even the most 

well-performing predictors only modestly correlate with experimental 
measures of protein function56. We reasoned that incorporating both 
PTVs and missense cis-CDS pQTLs associated with decreased protein 
abundance could offer an orthogonal approach to defining QVs.

In our previous UKB PheWAS, the PTV collapsing models accounted 
for the greatest number of significant gene–phenotype relationships11. 
Here, we augmented our standard PTV model with missense variants 
associated with reduced protein abundance (that is, ExWAS cis-CDS 
pQTLs with β < 0 and P < 0.0001; Methods). We defined two new col-
lapsing models: ‘ptvolink’, in which we included PTVs and missense 
pQTLs with a MAF < 0.1%, and ‘ptvolink2pcnt’, in which we relaxed the 
MAF of missense pQTLs to <2% (Methods, Fig. 4a and Extended Data 
Table 1). We then tested for associations between genes encoding the 
Olink proteins and 13,385 binary and 1,629 quantitative phenotypes 
(Supplementary Table 14).

In the standard ptv model, 11 genes with at least one qualifying 
cis-CDS missense pQTL were significantly associated with at least one 
phenotype (Supplementary Table 15). These associations included 
ACVRL1 and ENG with hereditary haemorrhagic telangiectasia, GRN with 
dementia, NOTCH1 with chronic lymphocytic leukaemia, PCSK9 and 
ANGPTL3 with dyslipidaemia, and others (Fig. 4b and Supplementary 
Table 15). The P value of the association between PCSK9 and dyslipidae-
mia markedly improved from P = 4.02 × 10−17 (odds ratio (OR) = 0.35; 
95% CI, 0.27 to 0.46) to P = 7.69 × 10−112 (OR = 0.63; 95% CI, 0.60 to 0.65) 
in the ptvolink2pcnt model. Likewise, the ANGPTL3-dyslipidaemia 
signal improved from P = 8.73 × 10−9 (OR = 0.58; 95% CI, 0.48 to 0.70) to 
P = 9.62 × 10−17 (OR = 0.57; 95% CI, 0.50 to 0.66) in the ptvolink model. 
Including these cis-CDS missense pQTLs, which tended to have more 
modest effects on protein abundance than PTVs, resulted in weaker 
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Fig. 3 | CH trans-CDS pQTL associations. a–e, Significant (P ≤ 1 × 10−8) 
trans-CDS pQTLs associated with somatic mutations in JAK2 (a), TET2 (b),  
ASXL1 (c), SF3B1 (d) and SRSF2 (e). Red lines indicate positive betas and black 

lines indicate negative betas. Line width is proportional to the absolute beta. 
We plotted significant associations for each gene in any of the four CH collapsing  
models.
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effect sizes but increased statistical power. The signals from the remain-
ing nine significant genes in the PTV-only model were attenuated in the 
plasma pQTL-informed missense models (Supplementary Table 15).

Impressively, 15 genes that were not significant in the standard ptv 
model became significant in at least one of the pQTL-informed models 
(Fig. 4b and Supplementary Table 15). Many of these examples are 
well-established, including LPL and hyperlipidaemia, PROC and throm-
bophilia, and VWF and Von Willebrand’s disease. There was also a newly 
significant association between TCN1, encoding a vitamin B12 binding 
protein, and vitamin B deficiency. Other examples include KEL with 
hypertrophic skin disorders, MICA with hypothyroidism, ANGPTL4 
with hypercholesterolaemia, TNFRSF8 and protection from asthma and 
SPARC with special screening examinations (Fig. 4b and Supplementary 
Table 15). The second strongest association for SPARC was with basal 
cell carcinoma, suggesting that this signal arose from screening for 
skin cancer (ptvolink2pcnt P = 4.5 × 10−6; β = 2.9; 95% CI, 1.9 to 4.4).

Several quantitative trait associations also became more significant 
in these models (Extended Data Fig. 6 and Supplementary Table 16). 
Consistent with related binary phenotypes, the associations of PCSK9, 
ANGPTL4, LPL and ANGPTL3 with lipid-related traits all improved under 
the ptvolink and ptvolink2pcnt models. There was also an association 
between EPO and reduced haematocrit that was only significant in the 
ptvolink2pcnt model (P = 1.8 × 10−83; β = −0.24; 95% CI, −0.27 to −0.22). 
PTVs in this gene are a well-established cause of erythrocytosis57. Newly 
significant associations included PEAR1 (endothelial aggregation recep-
tor) with decreased mean platelet volume (ptvolink2pcnt P = 6.9 × 10−27; 
β = −0.26; 95% CI, −0.31 to −0.21) and CA1 (carbonic anhydrase) with 
increased reticulocyte count (P = 1.0 × 10−19; β = 0.40; 95% CI, 0.32 to 0.49).

We compared the gene–phenotype associations that improved in 
the ptvolink model with our ‘flexnonsyn’ model, which includes rare 
PTVs and all rare missense variants. There were two associations where 

the flexnonsyn model outperformed the ptvolink model (PROC with 
thrombophlebitis and LCAT with HDL cholesterol; Fig. 4b and Extended 
Data Fig. 5). We next compared these results with the ‘flexdmg’ model, 
which includes PTVs and rare missense variants (MAF < 0.1%) pre-
dicted to be damaging (REVEL > 0.25). Only two of the seven binary 
trait associations and ten of the 92 quantitative associations were 
more significant in the flexdmg model than in the ptvolink model. 
These results demonstrate how including cis-CDS missense pQTLs 
can enhance conventional loss-of-function gene collapsing analyses. 
The approach is currently constrained by the UKB-PPP sample size 
used for pQTL discovery. As the number of proteogenomics samples 
increases, we will have more power to detect rarer missense pQTLs, 
further improving this approach.

Discussion
We performed an extensive rare variant proteogenomics study, includ-
ing 2,923 plasma protein abundances measured in 49,736 UKB human 
exomes. Our results highlight the importance of exome sequencing 
for rare variant associations, as most rare variant pQTLs (MAF ≤ 0.1%) 
were not detected in the common variant analysis on the same cohort5. 
Moreover, rare cis- and trans-CDS pQTLs conferred significantly larger 
effect sizes than common variant pQTLs. cis-CDS pQTLs corresponding 
to PTVs were nearly always associated with decreased protein levels, 
highlighting the robustness of these associations. We showed that 
the rare missense cis-CDS pQTLs are enriched for pathogenic and 
predicted damaging missense variants. Although we detected one 
potential epitope effect in GOT1, epitope effects do not seem to sys-
tematically confound these coding pQTLs. In future studies, putatively 
novel associations should nonetheless be validated with orthogonal  
experiments.
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We highlighted several examples of how this protein-coding pQTL 

atlas can address drug discovery and clinical pipeline challenges. We 
anticipate that this resource will provide novel insights into protein 
regulatory networks, upstream trans regulators of target genes whose 
inhibition could increase target protein levels, target safety assess-
ments and drug repositioning opportunities (Extended Data Fig. 5a). 
Through our pQTL browser (https://astrazeneca-cgr-publications.
github.io/pqtl-browser) and our previously published UKB PheWAS 
browser (azphewas.com), researchers can readily identify genetically 
anchored disease–protein abundance associations.
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Methods

UKB cohort
The UKB is a prospective study of approximately 500,000 participants 
aged 40–69 years at recruitment. Participants were recruited in the 
United Kingdom between 2006 and 2010 and are continuously fol-
lowed58. The average age at recruitment for sequenced individuals 
was 56.5 yr and 54% of the sequenced cohort comprises those of the 
female sex. Participant data include health records that are periodi-
cally updated by the UKB, self-reported survey information, linkage to 
death and cancer registries, collection of urine and blood biomarkers, 
imaging data, accelerometer data, genetic data and various other phe-
notypic end points59. All study participants provided informed consent.

Olink proteogenomics study cohort
Olink proteomic profiling was conducted on blood plasma samples 
collected from 54,967 UKB participants using the Olink Explore 3072 
platform. This platform measured 2,923 protein analytes, reflecting 
2,941 unique proteins measured across the Olink panels that comprise 
the 3072 panel (Cardiometabolic[II], Inflammation[II], Neurology[II] 
and Oncology[II]) (Supplementary Table 1). Details of UKB Proteomics 
participant selection (across the 46,673 randomized, the 6,365 con-
sortia selected and the 1,268 individuals participating in the COVID-19 
repeat imaging study) alongside the sample handling have been thor-
oughly documented in the Supplementary Information in Sun et al.5.

For whole-exome sequencing-based proteogenomic analyses, we 
analysed the 52,217 samples with available paired-exome sequence 
data. Next, we required that samples pass Olink NPX quality control 
as described in Sun et al.5, resulting in a test cohort reduction to 
50,065 (96%). We then pruned this cohort for sample duplicates and 
first-degree genetic relatedness (no pair with a kinship coefficient 
exceeding 0.1769, n = 462), resulting in 49,736 (95%) participants avail-
able for the multi-ancestry analyses performed in this paper. Europeans 
are the most well-represented genetic ancestry in the UKB. We identi-
fied the participants with European genetic ancestry based on Peddy60 
Pr(EUR) > 0.98 (n = 46,441). We then performed finer-scale ancestry 
pruning of these individuals, retaining those within 4 s.d. from the 
mean across the first four principal components, resulting in a final 
cohort of 46,327 (89%) individuals for the proteogenomic analyses.

Sequencing
Whole-exome sequencing data for UKB participants were generated at 
the Regeneron Genetics Center as part of a precompetitive data genera-
tion collaboration between AbbVie, Alnylam Pharmaceuticals, Astra-
Zeneca, Biogen, Bristol-Myers Squibb, Pfizer, Regeneron and Takeda. 
Genomic DNA underwent paired-end 75-bp whole-exome sequencing 
at Regeneron Pharmaceuticals using the IDT xGen v1 capture kit on the 
NovaSeq6000 platform. Conversion of sequencing data in BCL format 
to FASTQ format and the assignments of paired-end sequence reads 
to samples were based on 10-base barcodes, using bcl2fastq v.2.19.0. 
Exome sequences from 469,809 UKB participants were made avail-
able to the Exome Sequencing consortium in May 2022. Initial quality 
control was performed by Regeneron and included sex discordance, 
contamination, unresolved duplicate sequences and discordance with 
microarray genotyping data checks61.

AstraZeneca Centre for Genomics Research bioinformatics 
pipeline
The 469,809 UKB exome sequences were processed at AstraZeneca 
from their unaligned FASTQ state. A custom-built Amazon Web Services 
(AWS) cloud computing platform running Illumina DRAGEN Bio-IT 
Platform Germline Pipeline v.3.0.7 was used to align the reads to the 
GRCh38 genome reference and to perform single-nucleotide variant 
(SNV) and insertion and deletion (indel) calling. SNVs and indels were 
annotated using SnpEFF v.4.3 (ref. 62) against Ensembl Build 38.92 

(ref. 63). We further annotated all variants with their gnomAD MAFs 
(gnomAD v.2.1.1 mapped to GRCh38)64. We also annotated missense 
variants with MTR and REVEL scores16,29. The AstraZeneca pipeline out-
put files including the variant call format files are available through UKB 
Showcase (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=172).

ExWAS
We tested the 617,073 variants identified in at least four individuals from 
the 46,327 European ancestry UKB exomes that passed both exome 
and Olink sample quality checks. Variants were required to pass the 
following quality control criteria: minimum coverage 10×; percentage 
of alternate reads in heterozygous variants greater than or equal to 
0.2; binomial test of alternate allele proportion departure from 50% 
in heterozygous state P > 1 × 10−6; genotype quality score (GQ) ≥ 20; 
Fisher’s strand bias score (FS) ≤ 200 (indels), FS ≤ 60 (SNVs); mapping 
quality score (MQ) ≥ 40; quality score (QUAL) ≥ 30; read position rank 
sum score (RPRS) ≥ −2; mapping quality rank sum score (MQRS) ≥ −8; 
DRAGEN variant status = PASS; the variant site is not missing (that is, less 
than 10× coverage) in 10% or more of sequences; the variant did not fail 
any of the aforementioned quality control in 5% or more of sequences; 
the variant site achieved tenfold coverage in 30% or more of gnomAD 
exomes; and, if the variant was observed in gnomAD exomes, 50% or 
more of the time those variant calls passed the gnomAD quality control 
filters (gnomAD exome AC/AC_raw ≥ 50%). In our previous UKB exome 
sequencing study we also created dummy phenotypes to correspond 
to each of the four exome sequence delivery batches to identify and 
exclude from analyses genes and variants that reflected sequencing 
batch effects; we provided these as a cautionary list resource for other 
UKB exome researchers as Supplementary Tables 25–27 in Wang et al.11. 
Since then, an additional fifth batch of exomes was released, for which 
we identified an additional 382 cautionary variants (Supplementary 
Table 17) on top of the original 8,365 previously described. We also 
report the ExWAS results from the 8,747 cautionary variants in Sup-
plementary Table 17.

Variant-level pQTL P values were generated, adopting a linear regres-
sion (correcting for age, sex, age × sex, age × age, age × age × sex, prin-
cipal component 1 (PC1), PC2, PC3, PC4, batch2, batch3, batch4, batch5, 
batch6, batch7 and a panel-specific measure of time between meas-
urement and sampling). Three distinct genetic models were studied: 
genotypic (AA versus AB versus BB), dominant (AA + AB versus BB) 
and recessive (AA versus AB + BB), where A denotes the alternative 
allele and B denotes the reference allele. For ExWAS analysis, we used a 
significance cut-off of P ≤ 1 × 10−8. To support the use of this threshold, 
we performed an n-of-1 permutation on the full ExWAS pQTL analysis. 
In total, 24 of 5.4 billion permuted tests had P ≤ 1 × 10−8 (Supplementary 
Table 3). At this P ≤ 1 × 10−8 threshold, the expected number of ExWAS 
pQTL false positives is 24 out of the 328,975 observed significant asso-
ciations (0.007%).

As an additional quality control check, we assessed the concordance 
of suggestive and significant ExWAS cis-CDS pQTLs (P < 1 × 10−4) cor-
responding to proteins that were measured in multiple Olink panels 
(CXCL8, TNF, IDO1 and LMOD1). Encouragingly, there was complete 
concordance across panels (Supplementary Table 18). Of note, IL-6 and 
SCRIB also were measured on multiple panels, but we did not observe 
any cis-CDS pQTLs with a P < 1 × 10−4 for these proteins. Ideally, potential 
epitope effects could be assessed by testing whether cis-CDS pQTLs 
preferentially overlap with known binding sites for the antibodies used 
on the Olink platform. These data were unavailable on request.

Collapsing analysis
As previously described, to perform collapsing analyses we aggregated 
variants within each gene that fitted a given set of criteria, identified 
as QVs11,65,66. In total, we performed nine non-synonymous collapsing 
analyses, including eight dominant and one recessive model, plus a 
tenth synonymous variant model that serves as an empirical negative 
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control. In each model, for each gene, the proportion of cases was 
compared with the proportion of controls for individuals carrying 
one or more QVs in that gene. The exception is the recessive model, 
where a participant must have two qualifying alleles, either in homozy-
gous or potential compound heterozygous form. Hemizygous gen-
otypes for the X chromosome were also qualified for the recessive 
model. The QV criteria for each collapsing analysis model adopted 
in this study are in Extended Data Table 1. These models vary in terms 
of allele frequency (from private up to a maximum of 1%), predicted 
consequence (for example, PTV or missense) and REVEL and MTR 
scores. Based on SnpEff annotations, we defined synonymous vari-
ants as those annotated as ‘synonymous_variant’. We defined PTVs as 
variants annotated as exon_loss_variant, frameshift_variant, start_lost, 
stop_gained, stop_lost, splice_acceptor_variant, splice_donor_vari-
ant, gene_fusion, bidirectional_gene_fusion, rare_amino_acid_variant 
and transcript_ablation. We defined missense as: missense_variant_
splice_region_variant and missense_variant. Non-synonymous variants 
included: exon_loss_variant, frameshift_variant, start_lost, stop_gained, 
stop_lost, splice_acceptor_variant, splice_donor_variant, gene_fusion, 
bidirectional_gene_fusion, rare_amino_acid_variant, transcript_abla-
tion, conservative_inframe_deletion, conservative_inframe_insertion, 
disruptive_inframe_insertion, disruptive_inframe_deletion, missense_
variant_splice_region_variant, missense_variant and protein_alter-
ing_variant.

For all models, we applied the following quality control filters: mini-
mum coverage 10×; annotation in consensus coding sequence (CCDS) 
transcripts (release 22; approximately 34 Mb); at most 80% alternate 
reads in homozygous genotypes; percentage of alternate reads in het-
erozygous variants greater than or equal to 0.25 and less than or equal 
to 0.8; binomial test of alternate allele proportion departure from 50% 
in heterozygous state P > 1 × 10−6; GQ ≥ 20; FS ≤ 200 (indels), FS ≤ 60 
(SNVs); MQ ≥ 40; QUAL ≥ 30; RPRS ≥ −2; MQRS ≥ −8; DRAGEN variant 
status = PASS; the variant site achieved tenfold coverage in ≥25% of 
gnomAD exomes; and, if the variant was observed in gnomAD exomes, 
the variant achieved exome z-score ≥ −2.0 and exome MQ ≥ 30.

The list of 18,885 studied genes and corresponding coverage sta-
tistics of how well each protein-coding gene is represented across all 
individuals by the exome sequence data is available in Supplementary 
Table 19. Moreover, we had previously created dummy phenotypes to 
correspond to each of the five exome sequence delivery batches to 
identify and exclude from analyses 46 genes that were enriched for 
exome sequencing batch effects; these cautionary lists are available 
in Supplementary Tables 25–27 of Wang et al.11. Gene-based pQTL 
P values were generated, adopting a linear regression (correcting 
for age, sex, age × sex, age × age, age × age × sex, PC1, PC2, PC3, PC4, 
batch1, batch2, batch3, batch4, batch5, batch6 and batch7). For the 
pan-ancestry analysis we included additional categorical covariates 
to capture broad ancestry (European, African, East Asian and South 
Asian).

For gene-based collapsing analyses, we used a significance cut-off of 
P ≤ 1 × 10−8. To support the use of this threshold, we ran the synonymous 
(empirical null) collapsing model and found only seven events achieved 
a signal below this threshold. Moreover, we performed an n-of-1 permu-
tation on the full collapsing pQTL analysis. Only 4 of 499.9 million per-
muted tests had P ≤ 1 × 10−8 (Supplementary Table 3). At this P ≤ 1 × 10−8 
threshold, the expected number of collapsing pQTL false positives is 4 
out of the 7,412 (0.05%) observed significant associations.

Phenotypes
We studied two main phenotypic categories: binary and quantitative 
traits taken from the April 2022 data release that was accessed on 6 
April 2022 as part of UKB applications 26041 and 65851. To parse the 
UKB phenotypic data, we adopted our previously described PEACOCK 
package, located at https://github.com/astrazeneca-cgr-publications/
PEACOK11.

The PEACOK R package implementation focuses on separating 
phenotype matrix generation from statistical association tests. It also 
allows statistical tests to be performed separately on different comput-
ing environments, such as on a high-performance computing cluster 
or an AWS Batch environment. Various downstream analyses and sum-
marizations were performed using R v.3.6.1 (https://cran.r-project.org).  
R libraries data.table (v.1.12.8; https://CRAN.R-project.org/package=data. 
table), MASS (7.3-51.6; https://www.stats.ox.ac.uk/pub/MASS4/), tidyr 
(1.1.0; https://CRAN.R-project.org/package=tidyr) and dplyr (1.0.0; 
https://CRAN.R-project.org/package=dplyr) were also used.

For UKB tree fields, such as the International Classification of Dis-
eases tenth edition (ICD-10) hospital admissions (field 41202), we stud-
ied each leaf individually and studied each subsequent higher-level 
grouping up to the ICD-10 root chapter as separate phenotypic enti-
ties. Furthermore, for the tree-related fields, we restricted controls to 
participants who did not have a positive diagnosis for any phenotype 
contained within the corresponding chapter to reduce potential con-
tamination due to genetically related diagnoses. A minimum of 30 cases 
were required for a binary trait to be studied. In addition to studying 
UKB algorithmically defined outcomes, we studied union phenotypes 
for each ICD-10 phenotype. These union phenotypes are denoted by a 
‘Union’ prefix and the applied mappings are available in Supplementary 
Table 1 of Wang et al.11.

In total, we studied 13,385 binary and 1,629 quantitative phenotypes. 
As previously described, for all binary phenotypes, we matched con-
trols by sex when the percentage of female cases was significantly 
different (Fisher’s exact two-sided P < 0.05) from the percentage of 
available female controls. This included sex-specific traits in which, 
by design, all controls would be the same sex as cases11. All phenotypes 
and corresponding chapter mappings for all phenotypes are provided 
in Supplementary Table 14.

Detecting CH somatic mutations
To detect putative CH somatic variants, we used the same GRCh38 
genome reference aligned reads as for germline variant calling, and 
ran somatic variant calling with GATK’s Mutect2 (v.4.2.2.0)67. This analy-
sis focused on the 74 genes previously curated as being recurrently 
mutated in myeloid cancers44. To remove potential recurrent artifacts, 
we filtered variants using a panel of normals created from 200 of the 
youngest UKB participants without a haematologic malignancy diag-
nosis. Subsequent filtering was performed with GATK’s FilterMutect-
Calls, including the filtering of read orientation artifacts using priors 
generated with LearnReadOrientationModel.

From the variant calls, clonal somatic variants were identified 
using a predefined list of gene-specific variant effects and specific 
missense variants (Supplementary Table 20). Only PASS variant calls 
with 0.03 ≤ variant allele frequency (VAF) ≤ 0.4 and allelic depth greater 
than or equal to 3 were included. For each gene, we validated the iden-
tified variants collectively as somatic by inspection of the age versus 
population prevalence profile (Supplementary Fig. 3), and limited 
further analysis to a set of 15 genes.

For the collapsing analysis, we considered four different VAF cut-offs 
(Supplementary Table 12). We excluded 359 individuals diagnosed 
with a haematological malignancy predating sample collection and 
included body mass index (BMI) and pack years of smoking as additional 
covariates. Most of the significant (P ≤ 1 × 10−8) associations arose with 
a VAF ≥ 10% cut-off (Supplementary Table 13).

Implementing the 470,000 missense pQTL-augmented PheWAS
In this study, we repeated our published PheWAS, adopting the now 
469,809 available UKB exomes and 13,385 binary end points alongside 
1,629 quantitative end points. We sought to test whether additional 
genotype–phenotype associations could be detected by augmenting 
our standard ptv model with cis-CDS missense pQTLs. Specifically, 
we included cis-acting missense variants nominally associated with 
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reduced protein levels (that is, cis-CDS missense pQTLs with β < 0 
and P < 0.0001). We identified 5,025 missense variants with cis-acting 
negative betas (P < 0.0001) among the genes encoding the 2,923 Olink 
protein analytes. In total, 1,487 (51%) distinct genes carried at least one 
of these 5,025 missense variants11. To assess improved signal detection 
over the baseline ptv collapsing model, we introduced two new collaps-
ing models, ‘ptvolink’ and ‘ptvolink2pcnt’. ptvolink adopts the baseline 
ptv collapsing model with the only deviation being the inclusion of the 
5,025 missense variants that also qualify the quality control and MAF 
criteria as adopted for the ptv collapsing model. ptvolink2pcnt is a 
repeat of the ptvolink collapsing model but permits missense variants 
with a MAF in the UKB population as high as 2%, as long as they were 
among the list of 5,025 missense variants identified to have a P < 0.0001 
negative beta cis-CDS pQTL signal in the Olink ExWAS analyses. Full 
model descriptions are available in Extended Data Table 1. These new 
cis-CDS pQTL missense ptv augmented collapsing models were then 
compared with the standard collapsing models.

There may be instances where reduced protein levels reflect a dis-
ruption of antibody binding rather than a true biological signal. In 
the setting of collapsing analysis, in which we aggregate many variant 
effects in a gene, we expect these events to represent only a modest 
fraction of a gene’s complete allelic series. Moreover, in the context of 
this assessment, the inclusion of missense pQTLs would be expected to 
act conservatively (that is, diluting the value of including such missense 
in the PTV proteogenomic-augmented PheWAS collapsing analyses).

The UKB exomes cohort that was adopted for this refreshed PheWAS 
analysis was sampled from the available 469,809 UKB exome sequences. 
We excluded from analyses 118 (0.025%) sequences that achieved a 
VerifyBAMID freemix (contamination) level of 4% or higher68, and an 
additional five sequences (0.001%) where less than 94.5% of the CCDS 
(release 22) achieved a minimum of tenfold read depth69.

Using exome sequence-derived genotypes for 43,889 biallelic auto-
somal SNVs located in coding regions as input to the kinship algorithm 
included in KING v.2.2.3 (ref. 70), we generated pairwise kinship coef-
ficients for all remaining samples. We used the ukb_gen_samples_to_
remove() function from the R package ukbtools v.0.11.3 (ref. 71) to 
choose a subset of individuals within which no pair had a kinship coef-
ficient exceeding 0.1769, to exclude predicted first-degree relatives. 
For each related pair, this function removes whichever member has the 
highest number of relatives above the provided threshold. Through 
this process, an additional 24,116 (5.1%) sequences were removed from 
downstream analyses. We predicted genetic ancestries from the exome 
data using Peddy v.0.4.2 with the ancestry-labelled 1000 Genomes 
Project as reference60. Of the 445,570 remaining UKB sequences, 24,790 
(5.3%) had a Pr(EUR) ancestry prediction of less than 0.95. Focusing 
on the remaining 420,780 UKB participants, we further restricted the 
European ancestry cohort to those within ±4 s.d. across the top four 
principal component means. This resulted in 419,387 (89.3%) partici-
pants of European ancestry who were included in these cis-CDS pQTL 
modified analyses.

To remove potential concerns of circularity, we repeated the above 
ptvolink and ptvolink2pcnt collapsing model PheWAS; however, 
this time we removed UKB participants from the PheWAS analyses 
if they were part of the UKB Proteomics cohort of 46,327 individuals 
adopted to select the 5,025 cis-CDS pQTL missense variants. These 
results are included in Supplementary Tables 15 and 16, annotated as 
‘ptvolinknoppp’ and ‘ptvolink2pcntnoppp’. The P values of the UKB-PPP 
excluded models and full models were highly correlated (R > 0.99; 
Supplementary Fig. 4).

Ethics declarations
The protocols for the UKB are overseen by the UKB Ethics Advisory Com-
mittee; for more information, see https://www.ukbiobank.ac.uk/eth-
ics/ and https://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/
EGF20082.pdf.
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Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
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able through our AstraZeneca Centre for Genomics Research (CGR) 
PheWAS Portal (http://azphewas.com/) and our pQTL browser 
(https://astrazeneca-cgr-publications.github.io/pqtl-browser). All 
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also available under dataset https://biobank.ndph.ox.ac.uk/showcase/
label.cgi?id=1838. Additional information about registration for access 
to the data is available at http://www.ukbiobank.ac.uk/register-apply/. 
Data for this study were obtained under Resource Application Number 
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Extended Data Fig. 1 | Study design. (a) Schematic depicting the overall  
study design and sample sizes for the variant-level ExWAS and the gene-level 
collapsing analyses. The number of significant gene-level pQTLs corresponds 

to the number of unique genes associated with at least one protein abundance. 
(b) Depiction of cis-, trans-, and cis-position trans-CDS pQTLs.



Extended Data Fig. 2 | ExWAS pQTL effect sizes. (a) Effect size distributions of cis- versus trans-CDS pQTLs stratified by allele frequency. (b) Effect sizes of rare 
(MAF ≤ 0.1%) pQTLs.
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Extended Data Fig. 3 | Missense cis-CDS pQTLs. (a) Enrichment of ClinVar 
pathogenic and likely pathogenic (P/LP) variants among missense cis-CDS 
pQTLs. P-values calculated via two-tailed binomial test and are uncorrected. 
(b) REVEL scores of cis-CDS missense pQTLs. P-values were calculated with the 

Mann-Whitney U test (two-sided) and are not corrected for multiple testing. 
The appropriate Bonferroni-adjusted p-value threshold is p < 0.017. The 
boxplots show the median (centre line) and interquartile ranges (IQR) (box 
limits).



Extended Data Fig. 4 | Overlap between pQTLs detected in the ExWAS  
and collapsing analysis. (a) Number of unique gene-phenotype associations 
among non-synonymous pQTLs in the ExWAS versus the collapsing analysis. 

(b) Number of unique gene-phenotype associations among rare (MAF ≤ 0.1%) 
PTV-driven pQTLs in the ExWAS and ptv collapsing model.
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Extended Data Fig. 5 | pQTL atlas and interactive browser. (a) Illustration of 
potential applications of this trans-CDS pQTL atlas to drug development. The 
chord diagram represents trans-CDS pQTLs detected in the collapsing analysis 
(p ≤ 1 × 10−8). Created using biorender.com (b) The AstraZeneca pQTL browser, 

highlighting LDLR as an example query. Users can browse pQTLs from both  
the ExWAS and gene-based collapsing analyses using an intuitive range of 
parameters and thresholds.



Extended Data Fig. 6 | pQTL-informed collapsing analyses. The p-values of 
gene-level associations for quantitative traits in which the p-values improved in 
the ptvolink model compared to the ptv model. For comparison, we also include  
p-values for the flexdmg model, which includes PTVs and rare (MAF < 0.1%) 
missense variants predicted to be damaging via REVEL (REVEL > 0.25), and the 
flexnonsyn model, which includes PTVs and missense variants without a REVEL 

cutoff. An additional 17 genes were not among the 87 significantly associated 
genes in the ptvolink models, and only 9 of these were not already captured by 
the ptv model. P-values were generated via linear regression and were not 
corrected for multiple testing. The dashed line indicates the study-wide 
significance threshold of p ≤ 1 × 10-8.
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Extended Data Table 1 | Collapsing analysis models

* reflects the gnomAD global_raw MAF unless otherwise specified. ̂  reflects the maximum proportion of UKB exome sequences permitted to either have ≤ 10-fold coverage at variant site or 
carry a low-confidence variant that did not meet one of the quality-control thresholds applied to collapsing analyses (see methods). # reflects collapsing models newly introduced compared to 
Wang et al. (Nature 2021).



Extended Data Table 2 | NLRC4 allelic series

The three trans-CDS pQTLs in NLRC4 associated with changes in IL-18 levels from the ExWAS. MAF = minor allele frequency. CI = confidence interval; MAF = minor allele frequency. P-values 
calculated via linear regression and were not corrected for multiple testing; the study-wide significance threshold is p ≤ 1 × 10−8.
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* Conversion of sequencing data in BCL format to FASTQ format and the assignments of paired-end sequence reads to samples based on 10-
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*  read alignment and variant calling performed on lllumina DRAG EN Bio-IT Platform Germline Pipeline v3.0.7 to align the reads to the 
GRCh38 genome reference and perform small variant SNV and indel calling. SNVs and indels were annotated using SnpEFF v4.3 against 
Ensembl Build 38.92. We further annotated all variants with their gnomAD minor allele frequencies (gnomAD v2.l.1 mapped to GRCh38).  
*  For ancestry, we used PEDDY v0.4.2 with the ancestry labelled lK Genomes Project reference sequence data for genetic ancestry 
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enhancement of PHESANT. PEACOK 1.0.7 can be found: https://github.com/astrazeneca-cgr-publications/PEACOK 
• Large-scale compute was done using AWS Batch computing environment.  
• We used the kinship algorithm included in KING v2.2.3 to infer relatedness.  
• Various downstream analysis and summarization were performed using R v3.6.1 https://cran.r-project.org. R library data.table (vl.12.8), 
MASS (7.3-51.6), tidyr (l.1.0) and dplyr(I.0.0) were also used.  
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Association statistics generated in this study are publicly available through our AstraZeneca Centre for Genomics Research {CGR) PheWAS Portal (http:// 
azphewas.com/) and our pQTL browser (https://astrazeneca-cgr-publications.github.io/pqtl-browser). All whole-exome sequencing data described in this paper are 
publicly available to registered researchers through the UKB data access protocol. Exomes can be found in the UKB showcase portal: https://biobank.ndph.ox.ac.uk/ 
showcase/label.cgi?id=170. The Olink proteomics data are also available in the shocase portal: https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1838. 
Additional information about registration for access to the data is available at http://www.ukbiobank.ac.uk/register-apply/. Data for this study were obtained under 
Resource Application Number 26041.  
 
We also used data from DrugBank (https://go.drugbank.com), MTR (http://mtr-viewer.mdhs.unimelb.edu.au), REVEL, gnomAD (https://gnomad.broadinstitute.org), 
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Reporting on sex and gender All analyses included males and females. We report that sex was used as a covariate in the pQTL analyses. For the clinical trait 
pQTL-augmented collapsing analyses, as described in the manuscript, we matched controls by sex when the percentage of 
female cases was significantly different (Fisher’s exact two-sided P < 0.05) from the percentage of available female controls. 
This included sex-specific traits in which, by design, all controls would be the same sex as cases.

Population characteristics The average age was 57, and 54% of the cohort was female. 94% of the cohort is of European ancestry.

Recruitment Participants were recruited to the UK Biobank on a voluntary basis. Approx 500K individuals 40-69 years of age in 2006-2010 
volunteered. Informed consent was obtained for all participants. It has previously been observed that participants are less 
likely to live in socioeconomically deprived areas than non-participants, and they tend to be healthier than non-participants, 
which may impact some of the reporting rates in comparison to what could be observed through random sampling from the 
UK population.  
Fry et al (10.1093/aje/kwx246).  
 
Proteomic profiling on blood plasma samples collected from 54,219 UKB participants using the Olink Explore 3,072 platform.  
This included a randomised subset of 46,595  UKB participants at baseline visit, 6,376 individuals at baseline selected by the 
UKB-PPP consortium members, and 1,268 individuals who participated in the COVID-19 repeat imaging study at multiple 
visits 

Ethics oversight The protocols for UK Biobank are overseen by The UK Biobank Ethics Advisory Committee (EAC), for more information see 
https://www.ukbiobank.ac.uk/ethics/ and https://www.ukbiobank.ac.uk/wp-content/up1oads/2011/05/EGF20082.pdf 
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Sample size We analyzed the 50,065 UK Biobank participants for whom Olink proteomics data and whole-exome sequencing data were available. We 
further subset the cohort based on QC metrics as described in the manuscript. No sample size calculations for power were performed. Sample 
sizes were based on all available data in UK Biobank with protoemic and exome sequencing data. 

Data exclusions At the sample level, we excluded samples based on predefined exclusion criteria as detailed in the manuscript. Briefly, we excluded those that 
did not pass sequencing quality control thresholds. 
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Replication To test the robustness of the ExWAS and collapsing analysis pQTLs, we compared the correlation between the effect sizes of common variants 
derived from a GWAS on the same cohort and observed very strong correlation. The effect sizes (β) of nominally significant ExWAS pQTLs 
(p<1x10-4) strongly correlated with the GWAS-derived pQTLs (r2=0.96, Supplementary Fig. 2). Furthermore, 90% of the more common study-
wide associations (MAF>0.1%) in our study were also significant in the GWAS.

Randomization This study is observational. Randomization was not applicable to this study. 

Blinding This study is observational, using coded de-identified data. Blinding was not applicable to this study.
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