
_____________________________________________________________________________________________________ 
 
*Corresponding author: Email: 153668@qq.com; 

 
J. Eng. Res. Rep., vol. 25, no. 12, pp. 60-75, 2023 

 
 

Journal of Engineering Research and Reports 

 
Volume 25, Issue 12, Page 60-75, 2023; Article no.JERR.110225 
ISSN: 2582-2926 

 
 

 

 

Toolpath Smoothing Based on 
Controlled NURBS Interpolation  

 
Yuanjie Guo a, Jihong Yan b and Xingbo Wang a,c* 

 
a Department of Mechatronic Engineering, Foshan University, Foshan, China. 

b R and D, GSK CNC Equipment Co., Ltd, Guangzhou, China. 
c Department of Intelligent Manufacture, Guangdong College of Applied Science and Technology, 

Zhaoqing, China. 
 

Authors’ contributions 
 

This work was carried out in collaboration among all authors. All authors read and approved the final 
manuscript. 

 
Article Information 

 

DOI: 10.9734/JERR/2023/v25i121041 
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  

peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/110225 

 
 

Received: 09/10/2023 
Accepted: 14/12/2023 

Published: 18/12/2023 

 
 

ABSTRACT 
 

Based on cubic non-uniform B-spline curve constrained with tolerance band, a tool path smoothing 
approach is proposed for the purpose to achieve high-speed and high-precision machining of 
consecutive short line segments. According to a given tolerance band, the approach calculates the 
control polygon of the non-uniform cubic B-spline curve to transition the corners of the short line 

segments and obtains a 2GC  continuous smooth transition for the tool path near the corners. The 

paper also designs an algorithm to realize the transition procedure. Compared with the reported 
similar approaches, this paper’s approach has advantages in reducing the fluctuations of machining 
speed and acceleration, enhancing machining  quality, and improving the processing efficiency and 
motion stability of machine tools. This approach is helpful for CNC system development, as well as 
CAD and CAM. 
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1. INTRODUCTION  
 
Computer Numerical Control (CNC) systems 
utilize NC codes generated by CAD/CAM 
software to execute the machining process[1,2,3]. 
Since CNC systems are developed with 
embedded systems, such as ARM and STM32, 
which have much smaller RAM, much lower 
computational capacity compared to workstations 
running CAD/CAM systems, it is necessary to 
enhance computing speed, smoothness, and 
other related aspects through algorithm for CNC 
treatment. Currently, most NC codes consist of 
short line segments and arc segments, although 
there are CNC systems such as FANUC and 
Siemens that can deal with the Non-Uniform 
Rational B-Splines (NURBS) segments. In 3-axis 
or multi-axis machining, the short line segments 
are the majority of the machining paths. Due to 
the corners at the adjacent points of the short 
line segments, motion control of the machine 
tools and quality control of the workpiece 
become thorny because the frequent 
acceleration and deceleration to meet the needs 
of machining the parts around the corners 
increase the frequency of motion conversion and 
decrease the machining quality. Therefore, 
smoothing the tool path that contains 
consecutive line segments has been a research 
topic in the field of CAD/CAM/CNC.  

 
Early in 2010, PATELOUP et al. [4] used a cubic 
B-spline with six control points to smooth the 
planar tool paths composed of the short line 
segments and circular arcs. In 2011, ZHANG et 
al. [5] used parametric cubic spline curves to 
smoothen the corner transitions. In 2012, BI et al. 
[6] used cubic Bezier curves for transitions to 
achieve curvature continuity of the corner path. 
In 2013, Zhao et al. [7] proposed using B-spline 
curves that satisfy curvature continuity to achieve 
corner smoothing transitions and provided 
corresponding transition strategies. In 2017, 
TANG et al. [8] proposed an optimization method 
that inserts cubic B-spline curves at adjacent 
linear positions to obtain an optimal tool position 
point spline curve that satisfy the error limit 
condition and maintains third-order continuity at 
the connection points. In 2022, CAI et al. [9] put 

forward a tool position adjustment and a 
3C  

continuous quintic B-spline curve tool path 
transition algorithm based on the tolerance band 
constraint. Huang et al. [10] proposed an 
algorithm for corner transition using B-spline 
curves with seven control points. By adjusting the 
positions of the transition curve control vertices 

within a tolerance range, the algorithm reduces 
the maximum curvature and improves machining 
efficiency. In 2023, Yan et al.[11] proposed a 
kinematically coordinated corner smoothing 
method with double asymmetrical transition 
curves for corner smoothing in five-axis short line 
segments. This approach enhances the feedrate 
at corner locations and achieves low acceleration 
and jerk of the rotary axes. 
 

We have made deep research on each of the 
methods mentioned above in our research work 
of developing CNC system of high performance. 
Unfortunately, we found none of them could meet 
the needs of our practice. PATELOUP ‘s method 
[4] can merely machine 2 dimensions contours, 
not available for 3-dimensional or more high 
dimensional cases. ZHANG’s method [5] only 
ensures  continuity between the transition curve 
and short line segments, still unable to avoid the 
fluctuations of normal acceleration at the 
adjacent points of the short line segments. BI ‘s  
[6] has to solve an optimal problem to obtain 
appropriate start and end positions of the 
transition section, consuming a large amount of 
computation time. Zhao’s [7] requires a large 
computation cost and is difficult to obtain the 
optimal solution for smoothness error. TANG’s [8] 
is complicated in computing the control points of 
the transition curve and lacks global transition 
strategies. Although CAI’s method [9] utilizes 
constraints of the tolerance band to adjust the 
tool position, to reduce the approximation error of 
the short line segments, and to realize smooth 
transition of the tool path, it’s using quintic B-
spline curves results in higher computational 
costs. 
 

In mechanical manufacturing processes, it is 
difficult to achieve a 100% approximation to the 
data, thus a certain amount of machining error is 
usually allowed. Considering the wide application 
of cubic B-spline curves in industry, we 
accordingly researched an approach using cubic 
B-spline curve constrained with the tolerance 
band to generate smooth tool path. The 
approach can transition the corners of the short 

line segments, achieving 2GC  continuity smooth 

transition of the tool path. This paper introduces 
the details. 
 

The paper comprises five parts. Aside from this 
introductory part, Section 2 simply presents 
essential knowledge on B-spline curves, Section 
3 introduces our core approach and algorithm, 
Section 4 demonstrates numerical experiments, 
and Section 5 concludes the paper. 
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2. NON-UNIFORM B-SPLINE CURVES 
 
In this whole paper, our mathematical tool is the 
non-uniform B-spline curve (NURBS) introduced 

in [12]. Let ( 0,1,..., )iP i n be 1n  control points, 

which form a control polygon 0 1, ,..., nP P P  , and 

0 1 1 1{ , ,..., , ,..., , ,..., }p p n n n pU u u u u u u u    be a knot 

vector; then a p th-degree B-spline curve is 

defined by 

 

, 0

0

( ) ( ) ,    
n

i p i n p

i

C u N u P u u u 



                                                                                                (1)  

 

where , ( )i pN u  is the p th-degree B-spline basis function defined by (Eq.2). 
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When U  is taken to be 
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{ ,..., , ,..., , ,... }p n

pp
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                                                                                                        

(3) 
 

it is called a clamped knot vector resulting in  
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The derivative of (1) is  
 

1

, 1

0

( ) '( ) ( )
n

i p i

i

d
C u C u N u P

du






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Eqs (4), (5), and (6) indicate the curve ( )C u  is 1pC   continuous on interval ( , )a b  and tangent to the 

control polygon at the first and the last control points, 0P  and nP . We will utilize this property to 

construct the transition curve in later sections. 
 

During the machining process along parametric curves, it is essential to consider the variations in 
parameterizations. Geometric continuity [13] is widely employed as a metric to assess the 

smoothness of the tool path. 2GC continuity, a key aspect of geometric continuity, ensures that two 

consecutive segments exhibit identical tangent units and curvature vectors at their junction. This 
characteristic effectively mitigates discontinuities in normal acceleration. For this reason, cubic B-

spline curves are chosen due to their ability to achieve the lowest degree of 2GC  continuity, making 

them an optimal choice for maintaining smooth tool paths in the machining process. 
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3. METHODOLOGY 
 

In this section, we will present the details of our 
approach to smoothening tool paths and highlight 
its advantages. We will begin by demonstrating 
how to construct a transition curve using a cubic 
B-spline curve, which is constrained within a 
tolerance band near the corner of two line 
segments. Furthermore, we will demonstrate a 
method to precisely control the approximation 
error of the transition curve by proportionally 
adjusting the length of its control polygon. 
Additionally, we will propose a technique to 
prevent overlaps near two adjacent transition 
curves, ensuring a seamless connection. Finally, 
we will introduce a strategy for constructing a 

complete 2GC  tool path from a series of short 

line segments. To provide deeper insights, we 
will compare our approach with alternative 
methods to highlight its specific advantages. 
 

3.1 Construction of Transition Curves 
 

Assume three data points 0Q , 1Q , and 2Q  

constitute two adjacent short line segments, as 
shown in Fig. 1. The lengths of the line segments 

0 1Q Q  and 1 2Q Q  are denoted by 0L  and 1L , 

respectively. Take five control points,
0P , 

1P , 
2P , 

3P , and 4P , on 0 1Q Q  and 1 2Q Q  to construct a 

cubic B-spline curve ( )C u  to be the transitional 

curve at the corner formed by 0 1Q Q  and 1 2Q Q . 

The control points ( 0,1, 2,3, 4)
i

P i   are constrained 

with 
1 2

Q P  and 
0 1 1 2 2 3 3 4

P P PP P P P P L    , 

where L  indicates the lengths of the edges of 

the control polygon. Thus, points 0P , 2P  , and 4P  

form an isosceles triangle 0 2 4P P P . The knot 

vector is set to {0,0,0,0,0.5,1,1,1,1}U  so that 

( )C u  is symmetric. 

 

Since points 0 1 2, ,P P P  and points 2 3 4, ,P P P  are 

collinear with lines 0 1Q Q  and 1 2Q Q , respectively, 

( )C u  is 2C  continuous. Meanwhile, it passes 

through 0P  and 4P . Therefore, the required the 

smooth transition tool path is formed by the 

blended curve 0 0 4 2( )Q P C u P Q   , which is simply 

denoted by 0 0 4 2( )Q PC u P Q . It is surely a 2GC  

continuous. 

 
3.2 Selection of Control Points 

 

It is seen that the two short line segments 0 1Q Q  

and 1 2Q Q  directly affect the control polygon of 

the transition curve ( )C u . Geometrically,                 

there are three possible relationships, 0 1L L , 

0 1L L , and 0 1L L . Then selection of the 

control points  shall be in  terms of each  case as          
follows. 

 

 
0Q

 
1 2( )Q P

 
2Q

 
0P

 
1P  

3P

 
4P

 ( )C u

 L

 L  L

 L

 
 

Fig. 1. Transition curve 



 
 

 
 

Guo et al.; J. Eng. Res. Rep., vol. 25, no. 12, pp. 60-75, 2023; Article no.JERR.110225 

 

 

 
64 

 

(1) If 0 1L L , let 0

1

L

L
  ; then set 0 0P Q , 1 0 1 0

1
( )

2
P Q Q Q   , 2 1P Q , 4 1 2 1( )P Q Q Q    , and 

3 2 4 2

1
( )

2
P P P P   . Fig. 2(a) illustrates this case. It should be noted that 1P   and 3P  are the 

midpoints of 
0 2P P  and 

2 4P P , respectively, and that both 
0 2P P  and 

2 4P P  have the same length as 

0L . 

(2) If 0 1L L , then set 0 0P Q , 1 0 1 0

1
( )

2
P Q Q Q   , 2 1P Q , 3 1 2 1

1
( )

2
P Q Q Q   , and 4 2P Q . Fig. 

2(b) illustrates this case.  
 

(3) If 0 1L L , let 1

0

L

L
  ; then set 0 1 0 1( )P Q Q Q   , 2 1P Q , 1 0 2 0

1
( )

2
P P P P   , 

3 1 2 1

1
( )

2
P Q Q Q   , and 4 2P Q . The case can be seen in Fig. 2(c). 1P   and 3P  are the 

midpoints of 0 2P P  and 2 4P P , respectively, and that both 0 2P P  and 2 4P P  have the same length as 

1L . 

 
 

1 2( )Q P
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0 0( )Q P

 
1P  

3P
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1L ( )C u

 
 

Fig. 2(a). 0 1L L  
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2 4( )Q P

 
 

Fig. 2(b). 0 1L L  
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1P

 
1 2( )Q P

 
0P

 
3P

 
2 4( )Q P

 
0Q

 
0L

 
1L

 ( )C u

 
 

Fig. 2(c). 0 1L L  

 
Fig. 2. Transitional curves constructed under three conditions 

 
3.3 Controlling of Approximation Errors 
 
The transition curve is ensured to fall within                 
the tolerance band via controlling the 
approximation error, denoted with symbol e . 

According to the idea of [6], e  is usually 

estimated by calculating the distance between 
some sampling points and the original linear tool 

path. Since the transition curve ( )C u  is 

symmetric with respect to the angular bisector of 

0 2P P  and 2 4P P , e  depends on the distance 

between 1 0 0 0( , , )Q x y z  and the shoulder point 

1 1 1(0.5) ( , , )C x y z of the transition curve. The 

calculation is given by 
 

2 2 2

0 1 0 1 0 1( ) ( ) ( )e x x y y z z                       (7)                                                      

Let 2  be the permissive tolerance band of the 

short line tool path, as shown in Fig. 3. Then the 
distance from the corner of the tolerance band to 

1Q  is 
sin





 , where   is half the angle at the 

corner of the short line tool path. Consider 
adjusting e  based on an initial transition curve 

0 ( )C u  constructed by means of subsection 3.1. 

By property of the similar triangle, e  is scaled by 

  times when the control polygon of 0 ( )C u  is 

enlarged or lessened by   the times. By this 

means and with a routine described in Fig. 4, we 
can control e  to satisfy e   so that the 

constructed transition curve falls in the tolerance 
band. In the routine, we need only adjust the 

value of L   to construct a new transition curve 
until e  . 

 

 
1 2( )Q P

0Q

 
0P

1P  ( )C u 3P

 
4P

 
2Q

 

 

 4.79L 

 1.73 

 
 

Fig. 3. Construct a tolerance band in figure 1 
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Start

Input data points
      and  

0 1 2, ,Q Q Q 

Compute  L

Compute  control 
points   

0 1 2 3 4, , , ,P P P P P

Construct  
0 ( )C u

Compute         
           by Eq.1

 
0 (0.5)C

Compute     by Eq.7 e

 e 

 L L

No

Yes

End

 
 

Fig. 4. Computing routine to adjust the approximation error 

 
To make the process clear, we here demonstrate 
an example of controlling e . Taking the data in 

Fig. 1 as an example. Suppose the maximum 

value of  is set to be 0.01mm  ; then 

0 1 2

1
35

2
Q Q Q      yielding 0.0173

sin
mm





  . 

Taking 0.0479L mm  results in the initial 

approximation error of the transition curve    

0 ( )C u
 
is 0 0.0195e mm , saying 0 ( )C u

 
is out of   

the tolerance band. 
 

Assume * 1
0.005

2
e mm  is the ideal 

approximation error; let 
*

0

0.005
0.256

0.0195

e

e
    . Then 

keep the control point 2P  unchanged and 

calculate on 0 1Q Q  and 1 2Q Q  the new control 

points * * *

0 1 3, ,P P P , and *

4P  such that 
* * *

0 1
L P P

* * * *

1 2 2 3 3 4
0.0123P P P P P P L mm     . Set the 

knot vector still by *
{0,0,0,0,0.5,1,1,1,1}U   and 

construct a new transition curve * ( )C u  as shown 

in Fig. 5. 

 

This time, a new transition curve * * *

0 0 4 2( )Q P C u P Q  

is constructed to satisfy * 0.005e mm . It is surely 

within the tolerance band and 2GC  continuous. 

 

 * 0.0123L mm

 *

1 2( )Q P

 * 0.005e mm

0Q 2Q

 *( )C u

*

0P

*

1P
*

3P

*

4P

 
 

Fig. 5. The new transition curve 
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3.4 Avoidance of Overlaps 
 
When smoothing the tool path of consecutive 
short line segments, two neighboring transition 
curves might be overlapped, as seen In                
Fig. 6. Such overlap is forbidden in practical 
machining. 
 

To avoid the overlap, the end-point 
0

eP  of 0 ( )C u  

and the start-point 
1

sP  of 1( )C u  shall be treated 

to keep a directional distance 1 0

s ed P P   such 

that  
 

2 0( )ed Q P  0 1                                        (8)                                                                                                   

The value of   is first determined based on the 

actual machining, and whenever a transition 

curve ( )iC u  is constructed, 

1 2( )s e e

i i i iP P Q P     is calculated to construct 

the next transition curve 
1
( )

i
C u


. Then, if the 

approximation error of 
1
( )

i
C u


 does not meet the 

tolerance band constraint, it is made to fall within 
the tolerance band using the method in 

subsection 3.3. And if 2

e

i iP Q  , a corner point 

will be formed at 2iQ   due to insufficient 

processing space for the next smooth transition, 

as shown in Fig. 7. In this case, set 
1

2
   to 

adjust the value of the control polygon of ( )iC u  to 

avoid appearing the corner point. 

 
1Q

 
0Q

 
1

sP

 
0

sP

 
0 ( )C u

 
0

eP
 

1( )C u

 
2Q

 
1

eP

 
3Q

 
 

Fig. 6. The overlapping phenomenon between transition curves 
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iP
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3iQ 

 
1

e
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4iQ 

 
 

Fig. 7. Corner point at 2iQ   
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3.5 A Whole GC2 Tool Path 
 
Assuming a set of n  short line segments with 

data points , 0,1,...,iQ i n , which require 1n  

transition curves, say ( ), 0,1,2,..., 2iC u i n   . 

Suppose the tolerance band is 2 and 

, 0,1,2,..., 2
sin

i

i

i n





   , where i  and i  are 

as stated before. Denote *e  to be the ideal 

approximation error and , 0,1,..., 2ie i n  , to be 

respectively the initial approximation errors for 

( )iC u , and , 0,1,2,..., 2iL i n   to be the edge 

length of ( )iC u ’s control polygon; let 
*

,i

i

e

e
   

0,1,2,..., 2i n   be the ratio to control the 

approximation error and   be the value set to 

avoid the overlap of transition curves.  
 
For convenience, we use symbol A   B to 

mean calculating B from A.  The whole 2GC  tool 

path within the tolerance 2  is constructed by 

following three routines. 

 

Routine 1: Process the first three points. 
 

Step 1:  

0 1 2

0 0 0 0 0

0 1 2 3 4

0 0

0

,
, ,

, , , ,

sinQ Q Q

P P P P P

 







 







with 
0 0 0 0 0 0 0 0

0 0 1 1 2 2 3 3 4
L P P P P P P P P    . 

Step 2:
00 0 0 0 0

0 1 2 3 4 0

0 2 0

( )
, , , ,

(0.5)

C u
P P P P P

e P C


  



. 

Step 3: If 0 0e   , then  

 
0 0 0 0 0 0* 0* 0* 0* 0* *

0 1 2 3 4 0 1 2 3 4 0
, , , , , , , , ( )P P P P P P P P P P C u   ,with 

* 0* 0* 0* 0* 0* 0* 0* 0*

0 0 1 1 2 2 3 3 4 0 0
L P P P P P P P P L     .  

Otherwise(namely,
0 0

e  ), for case 0

4 2
P Q  set 

* 0* 0* 0* 0* 0* 0* 0* 0*

0 0 1 1 2 2 3 3 4 0

1

2
L P P P P P P P P L     , and 

for the case 
0

4 2P Q designate 
0

4P  to be 
0*

4P of the next transition curve if needed.  

 

Fig. 8 is to describe the whole routine. 
 

Start

Input data points 

Compute control 
points  

Construct 
       and compute

 
0 ( )C u

Compute      and       

End

Yes

No

 
0 1 2, ,Q Q Q

0 0 0 0 0

0 1 2 3 4, , , ,P P P P P

No

0L

Yes

 
0 0 0L L

 
0 0

1

2
L L 0

4 2P Q

 
0

 
0 0e 

0e

 
 

Fig. 8. Flowchart of Routine 1 
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Routine 2: Processing the intermediate points. 
 

Step 1:  
 

1 0* 0*

0 4 2 4( )P P Q P   . 

 

Step 2:  
 

1 11
10 2 3

1 1 1 1 1

0 1 2 3 4

,
sin, ,

, , , ,

P Q Q
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Step 4:  
 

If 1 1e   , then  
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1 0 1 1 2 2 3 3 4 1 1L P P P P P P P P L     .  

 

Otherwise(namely, 1 1e  ), for case
1

4 3
P Q  set 

* 1* 1* 1* 1* 1* 1* 1* 1*

1 0 1 1 2 2 3 3 4 1

1

2
L P P P P P P P P L     ,  and for the 

case 
1

4 3P Q designate 
1

4P  to be 
1*

4P of the next transition curve if needed. 

Step 5: Repeat Step 1~4 from 4Q  until 1nQ   is reached. 

 

Fig. 9 is to describe the whole routine. 
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Fig. 9. Flowchart of Routine 2 
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Routine 3: Processing the endpoint.  
 
Step 1:  
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Step 4:  
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Fig. 10 is to describe the whole routine. 
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Fig. 10. Flowchart of Routine 3 
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By such means, a group of short line segment 

tool paths can be transformed into a 2GC

continuous path constraint with the tolerance 
band. Fig. 11 shows an example of 4 short line 
segments. In the figure, the newly-generated tool 
path is a mixed path consisting of reasonably 
connected short line segments and B-spline 

curves 0 ( )C u , 1( )C u  and 2 ( )C u . 
 

3.6 Advantages of the Algorithm 
 

Compared with the methods reported in [5-9], our 
approach exhibits several advantages: 
 

1. Better smoothness. The method in [5] 

guarantees only 1C  continuity between the 

transition curve and the short line segment, 

ours can generate a globally 2GC  

continuous smooth tool path. 
2. Less computation. The method in [6] has 

to solve an optimal problem to obtain 
appropriate start and end positions of the 
transition section, consuming a large 
amount of computation time. The method 
in [9] uses quintic B-spline curves and that 
in [8] requires calculation of the first and 
the second derivatives of the cubic B-
spline curve to constrain the boundary 
conditions. They surely need more 
computation than ours. 

3. Easier control of the approximation error. 
The method in [7] uses adaptive binary to 
adjust the transition curve to meet the 
given approximation error and curvature. 

Except for a large computational cost, it is 
not easy to implement in programming. 
Our method ensures precise 
approximation error control through 
proportional adjustments to the control  
polygon of the transition curve, thereby 
enhancing implementation simplicity. 

 

4. NUMERICAL SIMULATION 
 
This section exhibits the effectiveness of our 
approach by using 2-D tool paths and 3-D tool 
paths. 
 

4.1 D Cases 
 
We use the butterfly-shaped profile comprising 
80 short line segments, illustrated in Fig. 12(a). 
With a tolerance band 0.05mm  , we achieve 

the smooth transitions. Fig. 12(b) is the 
effectiveness at the corners marked with the 
square in Fig. 12(a). It  is  seen   that the smooth 
transitions are  within the tolerance band. 
 

4.2 D Cases 
 

We use a closed 3-dimensional hexagon with 

connection points iQ , 0,1,...,6i  , as shown in 

Fig. 13(a) (depicted by the blue solid line). By 
setting a tolerance band 0.05mm  , we obtain 

five transition curves, ( ), 0,1,2,3,4iC u i  . We also 

obtain the curvature profiles of the five transition 
curves and show them in Fig. 13(b). 
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Fig. 11. Application of the algorithm in 4 short line segments 
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Fig. 12(a). butterfly-shaped profile 
 

 
 

Fig. 12(b). smoothed result 
 

Fig. 12. 2-D tool path for experimental validation 
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Fig. 13(a). 3-D linear path and transition curves 
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Fig. 13(b). The curvature profiles of the five transition curves 
 

Fig. 13. 3-D tool path for experimental validation 
 
Seen in Fig. 13, the cubic B-spline transition 
curves are consistently smooth and exhibit 
uniform curvature. These results indicate that our 

approach successfully achieves 
2GC  continuity 

for smooth transitions in short line segment tool 

paths. Being smooth and 
2GC  continuity, the 

transition curves surely have better motion 
performance than the line segments. 

5. CONCLUSION 
 

In order to avoid the feedrate fluctuations and 
acceleration oscillations that are caused by the 
discontinuities of tangency and curvature existing 
in the short line tool path, CNC developers have 
tried to obtain smooth tool path. Facing the 
problems existed in the many reported 
literatures, we made our own researches to meet 
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the needs of our development and gained the 
approach introduced in this paper. Experiments 
show our approach demonstrates expected 
performance. We hope it helpful for the 
CAD/CAM/CNC developers in the world.  
 
However, this algorithm still unavoidably has the 
drawbacks linked to local corner smoothing, such 
as high computational complexity, large resulting 
data size that cannot be effectively compressed, 
and the inability to achieve curvature continuity 
along the entire toolpath. Exploring optimization 
strategies for the algorithm to overcome these 
limitations is a key direction for future research in 
local corner smoothing methods. 
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