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Abstract: This paper presents a method for accurately estimating the natural frequencies of bridges by
simultaneously measuring the acceleration vibration data of vehicles and bridges and applying modal
analysis theory. Vibration sensors synchronized with GPS timing were installed on both vehicles and
bridges, achieving stable and high-precision time synchronization. This enabled the computation of
the bridge’s Frequency Response Functions (FRFs) for each mode, leading to a refined estimation of
natural frequencies. The validity of the theory was confirmed through numerical simulations and
experimental tests. The simulations confirmed its effectiveness, and similar trends were observed
in actual bridge measurements. Consequently, this method significantly enhances the feasibility of
bridge health monitoring systems. The proposed method is suitable for road bridges with spans
ranging from short- to medium-span length, where the vehicle is capable of exciting the bridge.

Keywords: vibration-based structural health monitoring; modal analysis; vehicle–bridge interaction
system

1. Introduction

The development of vibration-based Structural Health Monitoring (SHM) schemes
could benefit bridge inspections, offering a cost-effective alternative to conventional meth-
ods. However, the adoption of these schemes in bridge inspections is not universally
acknowledged at present, partly because bridge inspection methods must achieve accuracy
comparable to close visual inspection in some countries.

Although the adoption of SHM is not yet widespread, its development has signifi-
cantly changed the maintenance, management, and decision-making process related to
bridge engineering. Vibration measurements are quick and cost-effective using vibration-
based SHM, making it an effective tool for bridge structural health monitoring [1,2]. Data
acquisition and processing techniques for SHM have been developed(refined), as a result
the data inaccuracy and redundancy is reduced [3,4].

Existing vibration-based SHM systems for bridge inspections primarily focus on mea-
suring the vibrations of bridge structures [5,6]. The Fourier spectrum of free vibrations
enables accurate estimation of low-order natural frequencies of a bridge [7–9]. This ap-
proach is instrumental in assessing the overall structural integrity, leveraging the dominant
low-frequency modes that are easily excited and observed in typical bridge structures.

Bridge damage can be modeled as changes in stiffness, and these changes are de-
tectable through variations in natural frequencies. However, many instances of bridge
damage are localized [10,11], and low-order vibration indicators have limited sensitivity
to such localized damage [12]. In addition, environmental factors such as changes in
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temperature and noise affect the bridge’s natural frequency estimation accuracy signifi-
cantly [13–15]. Hence it is necessary to use high-order vibration indicators for more precise
detection of localized structural damage, as these high-order modes are more responsive to
changes in localized stiffness.

Estimating high-order modes presents technical challenges. Higher-order modes
are less likely to be excited in free decay vibrations, making their observation difficult.
Additionally, these modes are often obscured by noise, compromising the accuracy of
their estimation. In medium-span bridges, traffic-induced vibrations may predominantly
excite high-order modes [16]. However, methods to estimate these modes from transient
responses have not been yet developed.

The estimation of high-order modes in bridge structures necessitates multi-point mea-
surements. Methods like Frequency Domain Decomposition (FDD) [17,18] and Stochastic
Subspace Identification (SSI) [19] are used to estimate the natural frequencies and mode
shapes of bridges from multi-point measured traffic vibrations. However, these schemes as-
sume external forces as white noise, which is a questionable assumption for traffic-induced
vibrations and thus may lack reliability. Consequently, the estimated natural frequencies
may not always be accurate and could merely represent predominant vibration frequencies.

A classical method for high-precision system identification from transient response
data involves the use of Frequency Response Functions (FRFs). In controlled excitation
systems, measuring input and output allows for the calculation of the FRF in the frequency
domain by taking their ratio. Peaks in the FRF indicate the system’s natural frequencies.
Additionally, the FRF allows the determination of mode shapes through the utilization of
multi-point measurements of input and output.

In a Vehicle–Bridge Interaction (VBI) system [20], the input can be considered as
vehicle vibrations, and the output as bridge vibrations. Nevertheless, to adopt FRF-based
strategies for bridge inspections, it is necessary to establish identification strategies that
take into account the motion of traffic loads. Furthermore, the development of reliable
methods for time synchronization between separate measurement systems installed on
vehicles and bridges is essential. This approach has the potential to enhance the accuracy
and applicability of SHM in evaluating the structural health of bridges under real-world
conditions.

To account for the movement of traffic loads in VBI systems [21], it is established that
decomposing the equations of motion of the bridge into modal components is an effective
approach. By applying a mode shape function as a window function to the traffic load
in the equation of motion of each modal order, the use of modal loads as inputs becomes
feasible. This procedure enables the calculation of the FRF for each modal order. However,
the modal decomposition of bridge vibration data necessitates multi-point measurements
on the bridge, and the creation of window functions requires knowledge of the vehicle’s
relative position [22–24].

Nagayama and Spencer [25] have developed a wireless sensor network (WSN) system.
It has been demonstrated that WSNs can achieve time synchronization, even in large-scale
bridge networks, using wireless communication. However, this system was designed for
multi-point measurements on bridges and does not consider time synchronization between
vehicles and bridges. Furthermore, WSNs may not be ideally suited for simultaneous vibra-
tion measurements of vehicles and bridges, as they can experience data loss during vehicle
passages depending on the wireless frequency band used. These limitations highlight the
need for further development in synchronization technology to effectively implement VBI
systems in bridge SHM.

On the other hand, the increasing number of satellites has improved the positioning ac-
curacy of Global Navigation Satellite Systems (GNSS). GNSS devices mounted on a vehicle
enable the calculation of window functions for VBI analysis [26]. Despite the improvements
in GNSS technology for time synchronization, GNSS device utilization still faces difficulties
such as signal blockages and vulnerability to jamming and spoofing activities [27]. Signal
blockages can affect the accuracy of GNSS devices which can lead to potential disruptions
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in time synchronization and impact the accuracy of natural frequency estimation; a clock
error of up to sub-20 microseconds can be observed during a complete blockage on the road
but still meets the desired requirements of most vehicular communications [27,28]. Despite
the challenges associated with their utilization, GNSS can be considered highly accurate
clocks, measuring the signal propagation time from multiple satellites to the GNSS device.
This capability allows for time synchronization between independent sensor systems on
vehicles and bridges through GNSS.

Therefore, the purpose of this study is to propose an FRF-based simultaneous monitor-
ing method for vehicles and bridges. This method aims to accurately estimate the natural
frequencies of bridges, particularly focusing on high-order modal frequencies. By utilizing
GNSS devices for time synchronization, this approach addresses the challenges in detecting
high-order modes in bridge SHM. This method demonstrates a technique for simultane-
ously measuring vehicle and bridge vibration data and estimating the bridge FRF. Methods
focusing on the estimation of FRFs have been investigated in the past. Yang et al. [29,30]
estimated vehicle FRFs and bridge FRFs from vehicle vibration data, showing the potential
for application in bridge health assessment. On the other hand, the proposed method in
this article requires the additional effort of installing sensors not only on the vehicle but
also on the bridge. However, GPS time-synchronized sensors significantly reduce the effort
of simultaneous measurement, eliminating the cost advantage of a vehicle-vibration-only
approach. The advancement in acceleration data measurement device technology enables
the practice and development of monitoring methods that have been previously avoided.
The effectiveness of the proposed method is validated through numerical simulations and
field experiments on an actual steel bridge and a 10-ton vehicle, demonstrating its potential
to enhance the precision and reliability of SHM practices for bridge inspections.

2. Basis Theory

In this study, a simultaneous monitoring method is proposed to accurately estimate the
bridge’s natural frequency based on the frequency response functions (FRFs) of the bridge.
This method exploits the possibility of measuring both vehicle and bridge vibration data
simultaneously to increase the accuracy of estimating the higher modes of bridge vibration.
The vehicle’s position as it crosses the bridge is determined by using GPS temporal and
spatial synchronization.

2.1. Vehicle Bridge Interaction System
2.1.1. Bridge System

For numerical simulation of the VBI system, the bridge system is modeled as a simply
supported Euler–Bernoulli beam Figure 1. The general equation of motion for this model is
given by Equation (1) [31,32].

ρA
..
y(x, t) +

∂2

∂x2 EI
∂2

∂x2 y(x, t) = −
n

∑
i=1

δ(x − xi(t))
{

msi
(

g − ..
zsi(t)

)
+ mui

(
g − ..

zui(t)
)}

(1)

where x is the position along the bridge, t is time, ρ is the mass density of the bridge, A is
the cross-sectional area, E is the Young’s modulus, I is the inertia moment, msi is the mass
of ith sprung mass of the vehicle body, mui is i-th unsprung mass of the vehicle, g is the
gravitational acceleration,

..
zsi(t) is the vehicle’s sprung-mass vertical acceleration,

..
zui(t) is

the vehicle’s unsprung-mass vertical acceleration, y(x, t) is the bridge’s vertical deflection,
and

..
y(x, t) are the bridge’s vertical acceleration vibrations. Applying the Galerkin method

simplifies Equation (1) to Equation (2) as follows [33]:

Mb
..
y(t) + Cb

.
y(t) + Kby(t) = fb(t) (2)

where Mb is the mass matrix, Cb is the damping matrix, Kb is the stiffness matrix for the
bridge system, and fb(t) is the contact force from the vehicle.
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Figure 1. The bridge system model with sensor locations.

2.1.2. Vehicle System

The vehicle model used in this study is a half-car model Figure 2. In this model, zs1, zs2
are the front and rear sprung-mass vertical accelerations, respectively; ks1, ks2 are the front
and rear spring stiffness coefficients; cs1, cs2 are the front and rear damping coefficients; ku1,
ku2 are the front and rear unsprung stiffness coefficients; u1, u2 are the front and rear axle
input profiles; and θ is the pitch angle of the vehicle body. The equation of motion of this
vehicle model can be written as follows:

Mv
..
z(t) + Cv

.
z(t) + Kvz(t) = fv(t) (3)

where Mv is the mass matrix, Cv is the damping matrix, Kv is the stiffness matrix for the
vehicle system, and fv(t) is the restoring force due to the input profile. If ms is the vehicle
body mass, then ms1 = d2ms

d1+d2
and ms2 = d1ms

d1+d2
. The components of these matrices and

vectors are shown as follows:

Mv =


ms1 0

0 ms2
O

O
mu1 0

0 mu2

 (4)

Cv =


cs1 0 −cs1 0
0 cs2 0 −cs2

−cs1 0 cs1 0
0 −cs2 0 cs2



Kv =


ks1 0 −ks1 0
0 ks2 0 −ks2

−ks1 0 ks1 + ku1 0
0 −ks2 0 ks2 + ku2



z(t) =


zs1(t)
zs2(t)
zu1(t)
zu2(t)

, fv(t) =


0
0

ku1u1(t)
ku2u2(t)


where ui(t) is i-th input profile.
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2.1.3. Interactions

(a) Contact forces

The contact force vector fb(t), which is the input to the bridge system, is calculated as
an equivalent nodal force. Details on how to calculate the nodal contact force vector are
given here [34].

(b) Input profiles

The inputs to the vehicle’s equation of motion consist of road unevenness (road
profile) and bridge deflections. In the numerical simulation, the road profile is given by the
following equation [35,36]:

r(x) =
N

∑
ξ=1

√
Φ
(
Ωξ

)
∆Ωπsin

(
Ωξ x − ϕξ

)
(5)

where ϕξ are the random phase angles, Ωξ is the angular spatial frequency, and Φ(Ωi) is
the power spectral density of the road unevenness. The input profile ui(t) is given by the
following formula [30]:

ui(x) = r(xi(t)) + y(xi(t), t) (6)

3. The Proposed Method
3.1. The Basic Theory of the Proposed Method

Equation (2) is used in numerical simulations to calculate bridge vibrations at any
given location x and time t. However, in practical scenarios, measuring bridge vibrations at
each node is challenging. A simpler equation that correlates the bridge vibrations at sensor
locations with another measurement, vehicle vibrations, is preferable.

Therefore, this study proposes a monitoring scheme based on modal analysis theory [8].
By applying modal analysis theory to Equation (1), the following equation is derived:

..
qk(t) + ω2

k qk(t) =
n

∑
i

mi
M

ϕk(xi(t))svi(t) (7)

ω2
k =

(
kπ

L

)4 EI
ρA

where qk(t) is the k-th order modal response of the bridge, ωk is the angular natural
frequency of the bridge, mi is the vehicle mass, M = ρAL/2, ϕk(xi(t)) is the window
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function based on k-th mode shape of the bridge, and si is the sensor measurement of
vehicle vibration given by the following equation:

svi(t) =
(

g − ..
zi(t)

)
(8)

This approach simplifies the relationship between the bridge and vehicle vibrations,
making it more feasible for practical applications in SHM. The derived equation assumes
that bridge vibrations, vehicle vibration, and position are simultaneously measured.

The proposed method uses the Frequency Response Function (FRF) to identify the
natural frequencies of the bridge structure. The possibility of simultaneously monitoring
the vehicle and bridge dynamic response is explored, unlike the existing method that
uses only the bridge’s dynamic response. By performing a modal analysis of the bridge’s
frequency response due to the vehicle’s excitation, the modal frequencies of the bridge can
be identified. The vertical displacement of the bridge y(x, t), in Equation (2), is expressed
in terms of modal coordinates by Equation (9).

sbi(t) =
..
y(Xi, t) =

nb

∑
k=1

ϕk(Xi)
..
qk(t) (9)

where sbi(t) is the measurement of i-th sensor on the bridge, qk(t) is the k-th order basis
coordinate, k is the modal number, and ϕk(x) is k-th mode shape. ϕk(x) is also of a
sinusoidal form given by Equation (7).

Aik =
nb

∑
k=1

ϕk(Xi) =
nb

∑
k=1

sin
(

kπXi
L

)
(10)

where Xi is the measurement point on the bridge (i-th sensor’s location), and L is the bridge
span length. In this formula, x = 0 indicates the entrance of the bridge. This process
assumes that the bridge mode shapes are sine curves.

Then, the bridge modal response
..
q(t) (=

[
. . .

..
qk(t) . . .

]T) is given by the following
Equation (11):

..
q(t) = A−1sb(t) (11)

where A is the mode matrix, of which the (i, k) component is Aik, and sb(t) = [. . . sbi(t) . . .]T.

3.2. Window Functions and Modal Loads

The window function ϕk(xi(t)) helps to accurately extract the portion of vehicle
vibration data when the vehicle crosses the bridge. This function is given as a sinusoidal
function by Equation (12).

ϕk(xi(t)) =
n

∑
k=1

sin
(

nkπxi(t)
L

)
(12)

where k is the modal number, L is the bridge span length and xi(t) corresponds to the front
and rear wheel position over time. On the other hand, the modal load is calculated as a
product of the window function and the sensor measurement of vehicle vibration given in
Equation (9). Thus, the modal load is given by Equation (13).

fk(t) =
n

∑
i

ϕk(xi(t))svi(t) (13)

The influence of M in Equation (7) is ignored but it does not affect the accuracy of
estimating bridge natural frequencies.
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3.3. Procedure of the Proposed Method

The proposed method procedure is described in the following diagram. After the
acceleration data for both the bridge and vehicle system are obtained, the bridge modal
response and modal contact force are calculated from the formulae given in the diagram
Figure 3 and then the modal FRF is estimated as the ratio of modal response to modal
contact force in the frequency domain.
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4. Numerical Simulation
4.1. VBI Simulation

While the VBI system is nonlinear, it is possible to simulate vehicle and bridge vi-
brations by iteratively, solving the vehicle system and bridge system separately using
direct integration schemes such as Newmark-β or Wilson-θ. For a more comprehensive
understanding of this approach based on Equations (2) and (3), readers should refer to the
detailed procedure in [33,34].

4.2. VBI Models

The system parameters of the vehicle and bridge models are shown in Tables 1 and 2
respectively. In this study, a half-car model of 13,560 kg body mass is used. On the other
hand, the bridge model is assumed to be a Euler–Bernoulli beam of varying parameters.

The bridge parameters are varied to give insight into the performance of the proposed
method to bridges of different span lengths, weights, flexural rigidity, and so on. In the
simulation, four configurations of bridge spans, medium (40 m) and small (20 m), that
are easily excited by vehicle vibrations, are prepared. Different vehicles and different
bridges are expected to produce entirely different complex stochastic processes. However,
the modal FRFs, under ideal conditions, should theoretically be the same. The system
parameters are selected with reference to previous publications with modification [37]. The
road bridge specified by Okabayashi and Yamaguchi [37] has span lengths of 20 m to 70 m,
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and the bridge parameters are adopted according to the design specifications in Japan. The
compiled bridge models are presented in Table 2.

Table 1. Vehicle system parameters.

Parameter Name Symbol Value SI Unit

Body mass ms 13,560 kg
Unsprung mass (front) mu1 751 kg
Unsprung mass (rear) mu2 469 kg

Suspension stiffness (front) ks1 456 × 103 N/m
Suspension stiffness (rear) ks2 41.0 × 104 N/m

Suspension damping (front) cs1 29.0 × 103 Ns/m
Suspension damping (rear) cs2 24.2 × 103 Ns/m

Tire stiffness (front) ku1 431 × 104 N/m
Tire stiffness (rear) ku2 431 × 104 N/m

Distance from the front axle to the center of gravity d1 2.00 m
Distance from the rear axle to the center of gravity d2 2.40 m

Velocity v 10.0 m/s

Table 2. Bridge model system parameters.

Bridge Model Flexural Rigidity
EI [N/m2]

Mass Per Unit
Length

ρA [kg/m]

Span Length
L [m]

Damping
Coefficient 1

α

Damping
Coefficient 2

β

Model 1 12.369 × 109 6624 30 1.2 × 10−1 1.0 × 10−6

Model 2 6.0850 × 109 2417 20 1.2 × 10−1 1.0 × 10−6

Model 3 12.170 × 109 2583 30 1.2 × 10−1 1.0 × 10−6

Model 4 23.920 × 109 2667 40 1.2 × 10−1 1.0 × 10−6

The damping coefficients α and β are the coefficients of Rayleigh damping for the
mass matrix and stiffness matrix, respectively. The damping matrix is C = αM + βK. The
natural frequencies of the vehicle and bridge models are also shown in Table 3.

Table 3. The natural frequencies of the vehicle and bridge models.

First Mode (Hz) Second Mode (Hz) Third Mode (Hz) Fourth Mode (Hz)

Vehicle 1.210 2.549 12.694 15.980

Bridge Model 1 2.259 9.039 20.338 36.156
Bridge Model 2 6.231 24.924 56.078 99.695
Bridge Model 3 3.589 14.359 32.307 57.435
Bridge Model 4 2.940 11.761 26.462 47.044

4.3. Simulated Signals

This section presents the simulated vehicle and bridge vibration data for all four bridge
models considered. In this section, note that the vibration data of sprung and unsprung
mass are used separately to compare how they affect the accuracy of estimating bridge
natural frequencies.

Figure 4 shows the numerically simulated vibration data of the vehicle’s sprung mass
ms1 and ms2. According to this figure, it is observed that the sprung-mass accelerations
remain unchanged, even when the bridge model is altered. This phenomenon can be
attributed to the dominance of road profiles affecting vehicle vibrations. In this simulation,
the same road unevenness is assumed throughout.
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Figure 4. Vehicle’s sprung-mass acceleration vibration for the 4 bridge models shown in Table 2:
(a) Model 1, (b) Model 2, (c) Model 3, and (d) Model 4.

From Table 4, it is evident that the dominant frequencies of the sprung vibration
do not coincide with the natural frequencies of the bridge. Additionally, different peaks
are observed for the front and rear wheels. This suggests that identifying the natural
frequencies of the bridge from the vehicle’s sprung vibrations is challenging. The variations
in vibration frequencies between the front and rear wheels further complicate this task,
indicating that the vehicle’s response does not straightforwardly reflect the bridge’s natural
frequencies. This finding underscores the complexity of extracting bridge characteristics
from vehicle vibrations within the VBI system.

Table 4. Dominant frequencies of the vehicle’s sprung-mass acceleration for the 4 bridge models
shown in Table 2.

Axle Dominant
Frequency Order

Bridge
Model 1

Bridge
Model 2

Bridge
Model 3

Bridge
Model 4

Front
Axle

First 3.4 3.4 3.4 3.4
Second 8.15 8.15 8.15 8.15
Third 15.15 15.15 15.15 15.15
Forth 20.75 20.75 20.75 20.75

Rear Axle

First 2.25 2.25 2.25 2.25
Second 8.15 8.15 8.15 8.15
Third 15.15 15.15 15.15 15.15
Forth 20.75 20.75 20.75 20.75

Figure 5 similarly displays numerically simulated data of vehicle unsprung-mass
vibrations mu1 and mu2. These figures also illustrate that identifying the bridge’s natural
frequencies from the dominant frequencies of these unsprung-mass vibrations is still
challenging Table 5. Usually, VBI systems are not significantly affected by the frequency
characteristics of bridges, but the road profiles.
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Figure 5. Vehicle’s unsprung-mass acceleration for the 4 bridge models shown in Table 2: (a) Model 1,
(b) Model 2, (c) Model 3, and (d) Model 4.

On the other hand, three bridge sensors are simulated installed on the bridge. They
collect bridge vibration on fixed points that are equally spaced, as shown in Figure 6.
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Table 5. Dominant frequencies of the vehicle’s unsprung-mass acceleration for the 4 different bridge
models shown in Table 2.

Axle Dominant
Frequency Order

Bridge
Model 1

Bridge
Model 2

Bridge
Model 3

Bridge
Model 4

Front
Axle

First 10.65 10.65 10.65 10.65
Second 11.85 11.85 11.85 11.85
Third 13.37 13.37 13.37 13.37
Forth - - - -

Rear Axle

First 15.15 15.15 15.15 15.15
Second 16.65 16.65 16.65 16.65
Third 17.25 17.25 17.25 17.25
Forth - - - -
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To calculate the contact forces shown in Figure 7, both sprung-mass and unsprung-
mass vertical vibration are considered. Even though the bridge models are varied, the
contact force characteristics are not changed. This means that the influence of bridge
deflection in vehicle responses is small enough relative to the road unevenness.
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Figure 7. Vehicle contact forces from sprung mass for the 4 bridge models shown in Table 2:
(a) Model 1, (b) Model 2, (c) Model 3, and (d) Model 4.

4.4. Numerical Results and Discussion

The modal contact force calculated from Equation (13) is shown in Figure 8. It can be
shown that the force magnitude is zero when the vehicle is outside the bridge span. Note
that the mass of the vehicle is ignored in this scheme because the magnitude of the modal
contact force itself does not affect the result.

The following Figure 9 shows the FRFs estimated by numerical experiments obtained
by directly calculating the ratio of Fourier transforms of vehicle and bridge responses, while
Figure 10 presents the modal FRFs obtained from the proposed method; the red vertical
dashed line indicates where the bridge’s natural frequency is expected to be found.
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From these figures, the proposed method can identify higher bridge natural frequen-
cies up to the third mode accurately. However, it is not possible to accurately locate the
natural frequencies using the non-modal based method and it is difficult in the case of direct
calculation of the ratio of Fourier transforms of vehicle and bridge responses. Different
studies explain that this is because higher modes of vibration are not excited and thus
cannot be identified by normal treatment [6,20]. This justifies, numerically, the aim of this
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study which is to improve the accuracy of estimating higher mode of vibration to facilitate
the identification of localized bridge damage. Table 3 shows the targeted bridge mode of
vibration. They are the values of the natural frequencies of the bridge model used in the
numerical simulation.

These results demonstrate the feasibility of the application of modal FRFs for esti-
mating bridge natural frequencies from simultaneous monitoring. Environmental factors
such as changes in temperature and noise affect the bridge’s natural frequency estimation
accuracy. However, it should be noted that these factors are not considered during the nu-
merical simulation. This will be considered in the future work where environmental noise
will be added to the numerical simulated measured data to mimic real bridge environment
conditions.

5. Field Experiment
5.1. Experimental Preparation and Setting

The experiment was carried out on a 30.82 m span bridge, using a 10-ton truck. During
the field experiment with the truck, a multipoint data measurement was performed. The
vibration measurement system consisted of ZYBOZynq-7010 (manufactured by XILINX.,
San Jose, CA, USA) used as an FPGA (Field Programmable Gate Array) board equipped
with an ARM processor which is CORTEX-A9 (manufactured by Arm Holdings plc.,
Cambridge, UK) and an expansion board equipped with an accelerometer module and a
GNSS receiver. The ADXL355 (manufactured by Analog Devices Inc., Norwood, MA, USA)
was used as a three-axis accelerometer module. This module has a 20-bit ADC resolution
and ±8 G range. The GNSS receiver used was AE-GYSFDMAXB (manufactured by Taiyo
Yuden, Tokyo, Japan). The sampling rate for time, position information, and acceleration
vibration data was 300 Hz. Since the GNSS receiver receives satellite signals at 1Hz, it is
converted to 300 Hz by interpolation. Time synchronization between vehicles and bridges
was corrected by referring to the acquisition time of the PPS (Pulse Per Second) signal from
the GNSS receiver.

A total of 12 bridge sensors were installed along the sidewalk of the monitored bridge,
6 sensors on each side separated by approximately 4.3 m, and were named B1 to B12, as is
shown in Figures 11 and 12. The sensor system consisted of accelerometers and GPS sensors.
The GPS sensors were installed on the truck and helped in temporal synchronization and
vehicle location tracking with respect to the monitored bridge.
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Figure 12. Sensor installation and vehicle pathways.

5.2. Obtained Data

The sampling rate of the sensor used is 330 Hz. The following figures present the
measurement signals which show 1 G (gravitational acceleration) data upward shift due to
the sensor settings. Figure 13 shows the vehicle’s measured vertical acceleration for the
front and rear axle, and Figure 14 shows the frequency content of the measured vehicle’s
vertical acceleration of all four rounds for 6 s duration.
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Figure 14. Vehicle-measured vibration spectrum for four runs: (blue) front axle, (red) rear axle.

From Figure 14, it can be shown that the vehicle’s predominant frequencies do not vary
much, especially since the last two rounds show the same frequencies for both the rear and
front axles. The following Figure 15 shows the bridge’s vertical acceleration vibrations. As
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expected, the bridge vibrations were around free vibration before and after the monitored
truck entered the bridge. The vibration recorded before might be due to the presence of
other vehicles on the bridge and similarly, after the truck has left the bridge.
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yi(t) (Round 1).

The added red and blue lines indicate when the vehicle enters and leaves the bridge
span. This is made possible using GNSS devices mounted on the vehicle. In this figure,
the bridge vibration shows a similar trend at all measured points, which suggests that it is
not possible to identify bridge vibration characteristics by simply looking at acceleration
signals.

Table 6 summarizes the dominant frequencies from the power spectrum of measured
bridge vibration data. The highest, in the range of 0 − 50 Hz frequencies, varies between
12.07 Hz and 17.41 Hz. These figures reveal that all the bridge vibration data have the same
trends at different frequencies across all rounds. The presence of distinctive frequency peaks
for both lower and higher frequencies suggest the possibility of identifying the bridge’s
natural frequency after the application of the proposed method to the measured data.
Furthermore, the predominant frequency may change depending on loading conditions
and should not be confused with the bridge’s natural frequencies.

Table 6. The observed first dominant frequencies of bridge vibration data in each round.

Round
Sensor Number

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

1 17.36 12.07 12.07 12.07 12.07 17.00 17.36 17.36 12.07 12.07 17.36 17.36
2 13.12 13.12 12.26 12.26 12.26 12.26 16.80 16.68 12.26 12.14 12.26 16.80
3 17.41 17.41 12.07 12.07 17.41 17.07 17.41 17.41 11.96 12.07 - 17.41
4 16.98 16.98 16.98 11.97 16.98 16.98 16.98 16.98 11.97 11.97 - 16.98

5.3. Results and Discussion

This section presents and discusses the obtained results. Figures 16 and 17 present the
window functions used. Since the bridge was constantly crossed by other vehicles, which
were not part of the experiment, the time during which the experiment truck crossed the
bridge was extracted and the window function, which is a sinusoidal function, was used
to eliminate unwanted signals from other vehicles. This allowed the calculation of modal
forces in the time window when the vehicle was on the bridge span length.
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The following Figures 18 and 19 present the modal forces which are the inputs to
the bridge system. The modal forces are calculated from Equation (13). These forces are
essential for the analysis of the dynamic behavior of bridges under the moving vehicle. The
modal forces are usually modeled as a series of moving concentrated loads, but under the
current analysis, the vehicle position is considered so that the modal force is a time-varying
quantity.
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After the calculation of modal forces, the bridge modal response can be calculated
from Equation (11). Figure 20 presents the calculated bridge modal responses. According
to this figure the modes of vibration are very close and difficult to distinguish. Hence the
application of frequency analysis methods that do not consider modal analysis will not be
effective, which suggests that a modal-based FRF scheme is appropriate in this case.
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Figures 21 and 22, as well as Table 7, present the results obtained by directly calculating
the ratio of the Fourier spectra of vehicle vibration and bridge vibration, ignoring the effect
of vehicle movement, in other words, vehicle position which changes with time. The FRF
shown in these figures is incorrect in that it does not accurately calculate the external force
acting on the bridge. Such a process results in a pseudo FRF with many peaks, significantly
reducing the accuracy of the estimates of the natural frequencies.

Table 7. The estimated natural frequencies of the direct-calculation method.

Round
Modal Order (k)

1 2 3 4 5 6 7 8 9 10 11 12
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Figure 22. Directly calculated ratio of Fourier transforms of vehicle and bridge responses in the field
experiment (Round 2).

The modal FRFs estimated by the proposed method, for all four rounds of the experi-
ment, are presented in Figures 23 and 24. These figures clearly show identifiable frequency
peaks, suggesting that the proposed method can identify the higher modes of vibration of
the bridge. The identification of frequency peaks is essential for the frequency characteriza-
tion of the bridge vibration modes. The ability to identify the higher modes of vibration
that are sensitive to localized bridge damage helps in understanding the bridge’s dynamic
characteristics and informing SHM and maintenance efforts. The distinguishable frequency
peaks in the estimated modal FRFs demonstrate the potential of the proposed method for
modal identification and analysis.
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The modal FRFs estimated by the proposed method, even though incomplete, showed
a reduction in the number of peaks in each FRF graph. Ideally, each modal FRF is expected
to have a single peak. Bridges are complex structures, and it has been confirmed that fully
estimating modal FRFs is challenging. In addition, the process of estimating modal FRFs
used in the proposed method involves strong assumptions, such as treating the mode
shapes as sine curves. In the future, by modifying these assumptions, it is conceivable that
more plausible modal FRFs can be estimated.

Comparing the results of the proposed method, Figures 23 and 24, and the results from
directly calculating the ratio of the Fourier spectra of vehicle vibration and bridge vibration,
Figures 21 and 22, the implications of the above results become clear. In simultaneous
vibration measurements, it is necessary to measure the relative position of the vehicle on the
bridge at the time. Furthermore, it is important to estimate natural frequencies to properly
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consider the changes in traffic load due to the vehicle’s position based on modal analysis
theory and to determine the FRFs accordingly.

Even though the frequency peaks are clearly identifiable, it is still difficult to confirm
whether the identified frequencies shown in Table 8 are the natural frequencies of the
monitored bridge. The modal parameters need to be compared with the basis values
to confirm their accuracy. The basis values can be the vibration mode values recorded
before the bridge is open to traffic or the value from a free-vibration test conducted with
precision. In this case, there were no basis values for the vibration mode of the monitored
bridge, which made it difficult to confirm the accuracy of the proposed method using field
experimental data.

Table 8. The estimated natural frequencies of the bridge from modal FRFs.

Round
Modal Order (k)

1 2 3 4 5 6 7 8 9 10 11 12

1 4.31 5.17 11.21 14.16 38.42 41.87 49.51 - - - - -
2 4.42 5.15 11.65 17.42 26.12 35.69 49.92 - - - - -
3 3.02 5.11 11.84 16.95 37.96 36.80 48.76 - - - - -
4 4.28 5.01 11.84 17.34 25.16 38.11 46.78 - - - - -

Each modal FRF is supposed to have a single peak. However, the estimated modal
FRFs have multiple peaks, suggesting several technical challenges remain, including as-
sumptions about mode shapes being sine curves, noise, and errors in position measurement.
Nevertheless, the fact that we could demonstrate the feasibility of calculating modal FRFs is
significant, offering new options for bridge maintenance. Future research should focus on
developing the method further by using different vehicles and combining bridge vibrations
with vibrations from each vehicle, to reliably identify the same FRFs.

6. Conclusions

This paper proposes a new FRF-based simultaneous monitoring method that aims
to enhance the accuracy of estimations of a bridge’s higher-order modal frequencies by
utilizing a GNSS device for time synchronization. The proposed method was tested by
numerical simulations and field experiments. The numerical simulation results show that
the proposed method is effective in the estimation of bridge modal frequencies up to the
third mode. Contrary to the existing method, which does not consider modal analysis, it is
difficult to identify the bridge modal frequency.

On the other hand, the results from the application of the proposed method to the
field experimental data clearly show distinct frequency peaks for each set of sensor data
analyzed. Unfortunately, it is not easy to confirm that the identified frequency peaks
correspond to the monitored bridge’s modal frequencies. The reason is that the basis
value, or in other words, the value for the intact case, was not available for the monitored
bridge. The use of GNSS for time synchronization and simultaneous monitoring presents
an innovative direction in bridge structure health monitoring and damage detection.

However, it is crucial to note that simultaneous vibration measurement using GNSS is
only effective under conditions where traffic vibration is predominant. That is, in cases like
long-span bridges where wind loads are significantly greater than traffic loads, the proposed
method is not necessary. In such cases, bridge vibrations should exhibit peaks near their
natural frequencies due to random white noise input, allowing for direct estimation of the
bridge’s natural frequencies from the measurements of bridge vibrations. However, for
short- and medium-span bridges, where traffic vibrations are predominant, it is necessary
to estimate higher-order modes. In such cases, estimating modal FRFs is important, and
now that the vehicle and bridge vibrations can be measured simultaneously, this issue will
be solved. Unfortunately, the experimental results suggest that the modal FRFs were not
calculated correctly, likely due to the bridge being more complex than anticipated. Some
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of the assumptions made may need to be reconsidered more cautiously. This study, as an
initial step, has demonstrated that the scheme for estimating modal FRFs is feasible. In the
future, to reliably and accurately estimate modal FRFs, more advanced schemes, such as
identification using multiple vehicles, need to be developed.
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