
*Corresponding author: E-mail: comolor@hotmail.com;

Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024

Asian Journal of Research in Computer Science

Volume 17, Issue 6, Page 85-95, 2024; Article no.AJRCOS.115573
ISSN: 2581-8260

Factorization Algorithm for
Semi-primes and the Cryptanalysis of

Rivest-Shamir-Adleman (RSA)
Cryptography

Richard Omollo a,b* and Arnold Okoth a,b

a Department of Computer Science and Software Engineering, School of Informatics and Innovative

Systems, Kenya.
b Jaramogi Oginga Odinga University of Science and Technology, Box 210-40601, Bondo, Kenya.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the

final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2024/v17i6458

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/115573

Received: 12/02/2024
Accepted: 16/04/2024
Published: 18/04/2024

ABSTRACT

This paper introduces a new factoring algorithm called Anorld’s Factorization Algorithm that utilizes
semi-prime numbers and their implications for the cryptanalysis of the Rivest-Shamir-Adleman
(RSA) cryptosystem. While using the concepts of number theory and algorithmic design, we
advance a novel approach that notably enhances the efficiency of factoring large semi-prime
numbers compared to other algorithms that have been developed earlier. In our approach, we
propose a three-step algorithm that factorizes relatively large semi-primes in polynomial time. We
have introduced factorization up to 12-digit semi-prime using Wolfram|Alpha, a mathematical
software suitable for exploring polynomials. Additionally, we have discussed the implications of the
new algorithm for the security of RSA-based cryptosystems. In conclusion, our research work

Original Research Article

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

86

emphasizes the important role of factoring algorithms in the cryptanalysis of RSA cryptosystems
and proposes a novel approach that bolsters the efficiency and effectiveness of semi-prime
factorization, thereby informing the development of more powerful cryptographic protocols.

Keywords: Arnold’s Factorization Algorithm (A.F.A.); modular factorial; euclidean algorithm; RSA

cryptography.

1. INTRODUCTION

RSA Cryptography was officially introduced in
1978 by Ronald Rivest, Adi Shamir, and Leonard
Adleman of MIT [1-2]. Its efficiency is based on
the difficulty of factorizing very large semi-primes.
Over 40 years later since its inception, there
have been several attempts to find efficient
algorithms to factorize these large semi-primes
[3]. The Shor Algorithm which was developed by
Peter Shor in 1994 is the only algorithm that is
currently capable of breaking RSA Cryptography
in polynomial time. However, the Shor Algorithm
is a quantum algorithm that can only work
efficiently on a quantum computer with a
sufficient number of quantum bits. Furthermore,
the quantum computer should be able to perform
its operation without interference from quantum
noise. The development of such a quantum
computer is still speculated to be years away.
However, there have been significant
improvements in the development of quantum
computers over the years [4-8]. Recently, Google
claimed to have reached ‘quantum supremacy’
by performing a mathematical calculation in just
220 seconds that would otherwise take the best
supercomputers thousands of years to calculate
[9]. IBM released a statement later in the same
week claiming that their supercomputer could
perform the same calculation in just 1.5 days. For
classical computers, the fastest known algorithm
to factorize very large integers with over 100
digits is known as the General Number Field
Sieve.

Arnold’s Factorization Algorithm [3] is a simple
three-step technique that specifically factorizes
semi-primes. The first step involves getting the
square root of the semi-prime (N). The second
step is getting the double factorial of your result
in step one. Then the final step involves finding
the GCD of your result in step two with the semi-
prime (N) using the Euclidean Algorithm [10-13].
The general Arnold’s Factorization Algorithm is

GCD(a!!, N) Eqn. 1

Implementing the algorithm step by step is not
feasible for semi-primes with more than 16 digits.

All the semi-primes with 16 digits and below can
be factorized in just a matter of seconds using
powerful online mathematical software such as
Wolfram|Alpha [14-15]. This is independent of
the in-built factorization algorithm that this
software already uses. By combining the second
step of Arnold’s Factorization Algorithm and the
first step of the Euclidean Algorithm, we reduce
the integer factorization problem to a modular
factorial problem. This gives us several options
to execute the second step without obtaining an
integer overflow through the double factorial
function. Crypt-analysis of RSA Cryptography
was also done in the second step of the
algorithm. This was done using the gamma
function instead of the double factorial function
taking into consideration the time and space
complexity [16].

There are generally several algorithms each with
different approaches to factorizing integers [17-
20]. Arnold’s Factorization Algorithm targets
specifically semi-primes. This is because the
implications of factorizing semi-primes are much
greater in internet security through RSA digital
signatures [21-23] and the Diffie-Hellman key
agreement protocol [24-25]. The Arnold
Factorization Algorithm aims at breaking down a
hard mathematical problem, integer factorization,
into feasible polynomial steps and/or procedures.

2. METHODOLOGY

In this section, we established fundamental
definitions with illustrative examples and outlined
essential procedures pertinent to the research
methodology.

Definition 2.1

Arnold’s Factorization Algorithm (A.F.A.) is a
simple three-step algorithm for factorizing semi-
primes [3].

Definition 2.2

Factorial [26-27] refers to the multiplication of all
the numbers from one up to the number in which
we are obtaining its factorial. It is usually denoted
by an exclamation mark (!).

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

87

For example:

1! = 1
2! = 1×2 =2
3! = 1 × 2× 3 = 6
4! = 1× 2 × 3 × 4 = 24
5! = 1 × 2 × 3 ×4 × 5 = 120
6! = 1 × 2 × 3 × 4 × 5 × 6 = 720
7! = 1× 2 ×3 × 4× 5 × 6 × 7 = 5040
8! = 1× 2 × 3 × 4 × 5 × 6 × 7 × 8 = 40320

Definition 2.3

The Double Factorial of an integer (n) [26-27]
refers to the multiplication of all the numbers
from one up to (n) which have the same parity,
either even or odd. It is usually denoted by
double exclamation marks (n!!). It is also referred
to as semi-factorial.

For example:

1!! = 1
2!! = 2
3!! = 1 × 3 =3
4!! = 2 × 4 =8
5!! = 1 × 3 × 5 = 15
6!! = 2 × 4 × 6 = 48
7!! = 1 × 3 × 5 × 7 = 105
8!! = 2 × 4 × 6 × 8 = 384

We notice that the double factorial of a number
like 6 is significantly smaller than the factorial
of 6.

Definition 2.4

Modular Factorial [28] simply refers to the
remainder after dividing a factorial by another
integer.

For example:

5! mod 6 = 0
5!! mod 6 = 3
6! mod 7 = 6
6!! mod 7 = 6

Definition 2.5

Quantum supremacy [29] refers to the state in
which a quantum computer can perform a
programmable operation that no classical
computer can do in a feasible amount of time. It
is also referred to as quantum advantage.

Definition 2.6

Crypt-analysis [30] refers to the tactical and
mathematical analysis of ciphers and

cryptosystems to find how they work so that you
can exploit their weaknesses and eventually
break them.

Definition 2.7

Modular Exponentiation [31] is just
exponentiation calculated over modulus. It is very
crucial in public-key cryptography.

For example:

73 mod 5 = 3
73 = 343
343 mod 5 = 3

Where 3 is the exponent.

Definition 2.8

Semi-Primes [3, 32-35] refers to the product of
multiplying two prime numbers.

For example:

5 × 7 = 35 is the semi prime
101 × 103 = 10403 is the semi prime

Definition 2.9

Time and Space Complexity [36]: Time
complexity refers to the total number of
operations that a particular algorithm does to
perform its task. It is the computational time
taken to run an algorithm and is denoted by the
big O notation. Space Complexity of a computer
algorithm refers to the total space that is required
by that algorithm to run on a computer.

Definition 2.10

Cipher text [37] refers to an encrypted message
that cannot be read unless it is converted back to
plain text using an algorithm.

Definition 2.11

RSA numbers [38]: These are semi-primes used
for encryption in RSA Cryptography. The two
prime numbers used are relatively of the same
size.

3. RESULTS AND DISCUSSION

In this section, we explored the findings and
outcomes derived from the study, providing a
comprehensive analysis and interpretation of the
results obtained.

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

88

3.1 Arnold’s Factorization Algorithm

Below are the three steps for factorizing semi-
primes using Arnold Factorization Algorithm. We
are going to use the semi-primes 55, 65, and 77
throughout our examples.

Step I: Square root

1. Get the square root of a semi-prime (N).
This separates the two prime numbers of
the semi-prime with the smallest prime
number being smaller than the square root.

2. Round it off to the nearest whole number. If
the result is an even number subtract 1 to
get an odd number. (The reason for this
operation is that we are performing a
double factorial to the number in the
second step). It also has to be odd
because all the prime numbers apart from
2 are odd.

3. The result from the above procedures is
denoted by the letter (a). If the semi-prime
is a square of a prime number, then the
factorization stops at step 1.

For example:

To factorize the semi-prime 55
Square root: √55 = 7.416198487…
Round off to the nearest whole number:
7.416198487 gives us 7
7 is an odd number so it becomes our (a)

To factorize the semi-prime 65
Square root: √65 = 8.062257748...
Round off to the nearest whole number:
8.062257748 gives us 8
8 is an even number so we subtract 1: 8 – 1 = 7
7 is an odd number so it becomes our (a)

To factorize the semi-prime 77
Square root: √77 = 8.77496438…
Round off to the nearest whole number:
8.77496438 gives us 9
9 is an odd number so it becomes our (a)

Therefore (a) can be defined by the following
equation:

𝑎 = ⎾√ 𝑁 ⏋ Eqn. 2

Which simply means that (a) is equal to the

smallest integer equal or greater than √ 𝑁 .
However, it is an even number you subtract one

to get an odd number which might be smaller
than the case

Step II: Double Factorial/Gamma Function

Since the value of (a) is odd we get its double
factorial. That is, we multiply all the odd numbers
from one up to (a). We can also get the factorial
but the value is much larger. In this step, the
values can become astronomically large for
larger semi-primes. In fact, in most personal
computers getting the double factorial of a 9-digit
number gives an integer overflow error. We
discussed this in later section on how to curb this
computational space complexity problem. The
result from step 2 is denoted by (a!!). Factorial
can also be expressed as a gamma function. For
our case a! = Γ (a + 1). Where the gamma
function is denoted by Γ.

For example:

To factorize the semi-prime 55

We have seen from the above examples that the
value (a) for the semi-prime 55 is 7.

Double factorial: 7!! = 1 × 3 × 5 × 7 = 105

Alternatively, the factorial: 7! = 1× 2 ×3 × 4 × 5 ×
6 × 7 = 5040

So, our (a!!) for 55 is 105, and (a!) is 5040

Both the double factorial and factorial will give
you the correct answer after the third and final
step.

To factorize the semi-prime 65

We saw from step 1 that the value (a) for the
semi-prime 65 is also 7.

Double factorial: 7!! = 1 × 3 × 5 × 7 = 105

Alternatively, the factorial: 7! = 1× 2 ×3 × 4 × 5 ×
6 × 7 = 5040

So, our (a!!) for 55 is 105, and (a!) is 5040

We notice we get the same values for both 55
and 65. This is because of the proximity of their
square root.

To factorize the semi-prime 77

From the first step, the value (a) for the semi-
prime 77 is 9.

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

89

Double factorial: 7!! = 1 × 3 × 5 × 7 × 9 = 945

Alternatively, the factorial: 7! = 1× 2 ×3 × 4 × 5 ×
6 × 7 × 8 × 9 = 362880

So, our (a!!) for 77 is 945, and (a!) is 362880.

We observe that it is only logical to use double
factorial not only because it gives us relatively
smaller values but also because prime numbers
are odd numbers.

Step III: GCD using Euclidean Algorithm

Here we get the GCD of the double factorial (a!!)
and the semi-prime (N) using the Euclidean
Algorithm. This is denoted by the expression

GCD (a!!, N)

The GCD of the expression above gives the
smallest prime number. The first step of
calculating the Euclidean Algorithm involves
getting modular factorial. That is a!! mod N = r .
Then N mod r = s is computed. This procedure is
repeated until the mod is 0. The mod before 0 is
the GCD and the smallest prime number for the
semi-prime N. No matter how big a!! is, after
getting the modular factorial r < N.

For example:

To factorize the semi-prime 55

We saw that a!! for 55 is 7!! = 105

GCD (Euclidean Algorithm): GCD (7!!, 55) or
GCD (105, 55).

105 mod 55 = 50
55 mod 50 = 5
50 mod 5 = 0

The mod before 0 is 5. Therefore, the GCD (7!!,
55) = 5

Therefore, the smallest prime number is 5.

Alternatively, we can use factorial instead of
double factorial.

GCD (Euclidean Algorithm): GCD (7!, 55) or
GCD (5040, 55).

5040 mod 55 = 35
55 mod 35 = 20
35 mod 20 = 15
20 mod 15 = 5
15 mod 5 = 0

The mod before 0 is 5. Therefore the GCD (7!,
55) = 5. The smallest prime number is also 5.
This still gives you the same answer as getting
the GCD of the double factorial.

To factorize the semi-prime 65

We saw that a!! for 65 is 7!! = 105

GCD (Euclidean Algorithm): GCD (7!!, 65) or
GCD (105, 65).

105 mod 65 = 40
65 mod 40 = 25
40 mod 25 = 15
25 mod 15 = 10
15 mod 10 = 5
10 mod 5 = 0

The mod before 0 is 5. Therefore, the GCD (7!!,
65) = 5

The smallest prime number is 5.

Alternatively: GCD (Euclidean Algorithm): GCD
(7!, 65) or GCD (5040, 65).

5040 mod 65 = 35
65 mod 35 = 30
35 mod 15 = 5
30 mod 5 = 0

The mod before 0 is 5. Therefore the GCD (7!,
65) = 5. The smallest prime number is also 5.

To factorize the semi-prime 77

We saw that a!! for 77 is 9!! = 945

GCD (Euclidean Algorithm): GCD (9!!, 77) or
GCD (945, 77).

945 mod 77 = 21
77 mod 21 = 14
21 mod 14 = 7
14 mod 7 = 0

The mod before 0 is 7. Therefore, the GCD (9!!,
77) = 7

The smallest prime number is 5.

Alternatively, we can use factorial instead of
double factorial.

GCD (Euclidean Algorithm): GCD (9!, 77) or
GCD (362880, 77).

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

90

362880 mod 77 = 56
77 mod 56 = 21
56 mod 21 = 14
21 mod 14 = 7
14 mod 7 = 0

The mod before 0 is 7. Therefore the GCD (9!,
77) = 7.

The smallest prime number is also 7.

That is how we factorize semi-primes using
Arnold’s Factorization Algorithm. The second and
third steps of the algorithm can be applied to
online mathematical software such as
Wolfram|alpha. This enables factorization of
semi-primes of up to 12 digits in just a matter of
seconds.

For example:

To factorize the semi-prime 300293215969.
(12 digit semi-prime)

Step 1: Square root: √300293215969
= 547990.1605…

Round off: 547990.1605 gives us 547990

547990 is an even number so we subtract 1 to
get 547989

So, our (a) value for the semi-prime
300293215969 is 547989.

This step is implemented on a Python code
shown below:

import math

semiprime=eval(input(‘semiprime’))
k=math.isqrt(int(semiprime))
print(k)
f=len(str(k))
print(f)

This code finds the integral values of the square
root of an integer with over 1000-digit numbers in
just seconds. That is, it truncates the values after
the decimal point and only prints the whole
number.

Steps II and III: This is performed on the
Wolfram|alpha online software. The digits are fed
in the form of the expression GCD (a!!, N). From
our calculation the value of a = 547989 and N =
300293215969 (Semi-prime). The result is

317617 which is the GCD and also the smallest
prime number that divides 300293215969.

3.2 Optimization of Arnold’s Factorization
Algorithm

In this section, we dedicated our discussion to
how to make Arnold’s Factorization Algorithm
more efficient. We considered several ways in
which the algorithm can be implemented to avoid
integer overflow errors.

3.2.1 Modular arithmetic

One of the properties of modular arithmetic
states that;

[(a mod N) * (b mod N) * (c mod N)] mod n =
(a * b* c) mod N Eqn 3

Where N is the semi-prime in our case. The
primitive method of implementing Arnold’s
Factorization Algorithm is by applying the right
side of the above equation. It is relatively fast
because of the factorial function however, it is
more likely to give an integer overflow error for
very large semi primes. Therefore, it is
recommended to use the left side of the equation
when writing the algorithm for relatively large
semi-primes. This means that the result after
each iteration will not be bigger than the semi-
prime N.

For example, where;

a = 7
b = 37
c = 43
N = 35

Solution (Primitive Method)

(a * b * c) mod N
(7 * 37 * 43) mod 35 = (11137) mod 35 = 7

Note that if the values of a, b, and c were large
the above method would give an integer overflow
error when run on a personal computer.

(Optimized Algorithm Method)

[(a mod N) * (b mod N) * (c mod N)] mod N

[(7 mod 35) * (37 mod 35) * (43 mod 35)] mod 35
= [(7) * (2) * (8)] mod 35 = 7

(112) mod 35 = 7

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

91

Alternatively

(((a mod N) * (b mod N)) mod N * (c mod N) mod
N)

(((7 mod 35) * (37 mod 35)) mod 35 * (43 mod 35)
mod 35) which can also be written in the
following sequence. The result of an initial step is
the start of the subsequent step.

1. 7 mod 35 = 7

2. 7 * (37 mod 35) mod 35 = (7 * 2) mod 35
= 14

3. 14 * (43 mod 35) mod 35 = (14 * 8) mod 35
= 7

Both methods give the same answer however
the optimized algorithm method gives a smaller
number of which the result after an operation is
always smaller than the semi-prime. This is seen
in the alternative of the Optimized Algorithm
Method. This is very crucial in the
implementation of the second and third steps of
the AFA.

3.2.2 Sequencing and gamma function

In this section, we optimize the second step of
AFA. Both factorial and double factorial involve
multiplying numbers with a common difference
between them. Thus, we apply properties of
arithmetic sequencing or progression.

For example:

(Factorial)

5! = 1×2×3×4×5 = 120

Here we see that the sequence is 1, 2, 3, 4, and
5 with a common difference of 1. The first term is
1 and the number of terms is 5. In other words,
factorial simply means getting the product of the
arithmetic sequence above.

(Double Factorial)

5!! = 1×3×5 = 15

In this case, the common difference is 2. The
number of terms is 3 and the first term is 1.

The formula for getting the product of an
arithmetic sequence is as follows:

𝑃 = 𝑑𝑛 ×
𝛤(

𝑎1

𝑑
+𝑛)

𝛤(
𝑎1

𝑑
)

 Eqn 4

Where:

d is the common difference.
n is the number of terms.
a1 is the value of the first term.
𝛤 is the gamma function.
P is the product of the arithmetic sequence.

We now embark on the properties of the gamma
function which are critical in our crypt-analysis
process.

They include:

1. 𝛤 (
1

2
) = √ 𝜋 ;

2. 𝛤(𝛼 + 1) = 𝛼𝛤(𝛼) ;

3. 𝛤(𝑏) = (𝑏 + 1)!

In the example below we look at the application
of double factorial, gamma function, and
sequencing as an optimization of AFA.

Example:

Given:
d = 2
a1 = 1
n = 3

Which is the sequence 1, 3, 5.

Using the formula for getting the product of an
arithmetic sequence we get:

𝑃 = 23 ×
𝛤 (

1
2

+ 3)

𝛤 (
1
2

)

Adding the numbers in brackets we get:

𝑃 = 8 ×
𝛤 (

7
2

)

𝛤 (
1
2

)

From the first property of the gamma function we

see that the denominator becomes √ 𝜋 therefore
our equation becomes:

𝑃 = 8 ×
𝛤 (

7
2

)

√ 𝜋

From the second property of the gamma function
we can be able to re-write the numerator as
follows:

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

92

𝛤 (
7

2
) = 𝛤 (

5

2
+ 1)

=
5

2
. 𝛤 (

5

2
)

=
5

2
. 𝛤 (

3

2
+ 1)

=
5

2
.

3

2
. 𝛤 (

3

2
)

=
5

2
.

3

2
. 𝛤 (

1

2
+ 1)

=
5

2
.

3

2
.

1

2
. 𝛤 (

1

2
)

Using the first property we get:

=
5

2
.

3

2
.

1

2
. √ 𝜋

 =
15

8
. √ 𝜋

The whole equation now becomes:

𝑃 = 8 ×

15
8

. √ 𝜋

√ 𝜋

This can be simplified to get:

𝑃 = 8 ×
15

8

𝑃 = 15

Therefore, the product of the sequence 1, 3, 5 is
15.

We have proved that the formula of getting the
product of an arithmetic sequence can be
simplified by using gamma properties.

We can also derive the double factorial of the
value of a using the formula for getting the
product of an arithmetic sequence. Since it is
obtaining the double factorial, the following
values are always constant.

a1 = 1
d = 2

P will be the double factorial of a

Replacing these values on the arithmetic
sequence product formula we get the following
formula:

(𝑎)‼ = 𝑑𝑛 ×
𝛤 (

1
2

+ 𝑛)

𝛤 (
1
2

)
 (𝐸𝑞𝑛 5)

Where 𝑛 > 1.

Remember that 𝑎 = ⎾√ 𝑁 ⏋

Where N is the semi-prime and the value of (a) is
a whole odd number. It is obtained by getting the
square root of N and rounding it off to the nearest
whole number. If it is even, 1 is added to get an
odd number which becomes our value for a. We
thus obtain our value for n from the equation
below.

𝑛 =
𝑎 + 1

2
 (𝐸𝑞𝑛 6)

This can also be written as:

𝑎 = 2𝑛 − 1 (𝐸𝑞𝑛 7)

Replacing the value of a in (equation i) we obtain:

(2𝑛 − 1)‼ = 𝑑𝑛 ×
𝛤(

1

2
+𝑛)

𝛤(
1

2
)

 (Eqn 8)

Therefore, the formula of getting the double
factorial using the number of terms now becomes:

(2𝑛 − 1)‼ (Eqn 9)

4. CRYPT-ANALYSIS OF RSA
CRYPTOSYSTEM USING ARNOLD’S
FACTORIZATION ALGORITHM

In this section, our main focus was on what
renders the factorization of semi-primes pivotal in
the cryptanalysis of the RSA cryptosystem. The
significance was apparent from the capability to
decrypt ciphertexts speedily upon obtaining one
of the prime numbers employed in encryption.
Moreover, we explored the salient properties
inherent in RSA numbers used for encryption.
These include:

1. The two prime numbers used are relative

of the same size (number of digits).

2. The prime numbers are not too close to
each other otherwise they can be easily
factorized using Fermat’s Factorization
Method [39].

3. The RSA numbers are very large being at
least 300 digits and above.

4. The prime numbers are normally half the
size of the RSA numbers.

Since the prime numbers are large and are
relatively of the same size, we didn’t start
multiplying numbers from one up to the square

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

93

root of that number. For illustration purposes, we
used the semi-prime 300293215969 we had
used earlier as our RSA number.

Example:

Crack the RSA number 300293215969. A 12-digit
semi-prime.

By applying the first step of AFA we are first
going to get the square root of the RSA number.

Step 1: Square root: √300293215969 =
547990.1605…

Round off: 547990.1605 gives us 547990

547990 is an even number so we subtract 1 to
get 547989

So, our (a) value for the semi-prime
300293215969 is 547989.

Step 2: Using the fourth property we know that
the prime numbers have half the number of digits
as the RSA numbers except ±1 digit always.
Therefore, instead of getting the double factorial
of 547989, we used the Eqn 4. This means that
the first term should be the least odd number
with 6 digits since the semi-prime has 12 digits.

Our equation is as follows:

𝑎‼ = 2273995 ×
𝛤 (

100001
2

+ 273995)

𝛤(
100001

2
)

Where:

d = 2
a = 547989

𝑛 =
547989+1

2
= 273995

a1 = 100001
N = 300293215969

Step 3: We now apply the Euclidean Algorithm to
obtain the GCD (a!!, N).

(2273995 ×
𝛤(

100001

2
+273995)

𝛤(
100001

2
)

) 𝑚𝑜𝑑 300293215969 =

210086811799

300293215969 mod 210086811799 =
 90206404170

210086811799 mod 90206404170 =
 29674003459
90206404170 𝑚𝑜𝑑 29674003459 = 1184393793

29674003459 𝑚𝑜𝑑 1184393793 = 64158634

1184393793 𝑚𝑜𝑑 64158634 = 29538381
64158634 𝑚𝑜𝑑 29538381 = 5081872

29538381 𝑚𝑜𝑑 5081872 = 4129021

5081872 𝑚𝑜𝑑 4129021 = 952851

4129021 𝑚𝑜𝑑 952851 = 𝟑𝟏𝟕𝟔𝟏𝟕
952851 𝑚𝑜𝑑 317617 = 0

The mod before 0 is 317617 which is the
smallest prime number and factor of the semi-
prime 300293215969.

Dividing 300293215969 by 317617 we get
945457 which is the other prime factor.

As we can see both the prime numbers have six
digits and they are relatively not too close to
each other.

It is important to note that AFA optimizes
multiplication in comparison to the traditional trial
division (brute force) which takes a relatively
longer time. This is because multiplication falls
under polynomial problems.

5. CONCLUSION

In this paper, we have demonstrated that the
Arnold Factorization Algorithm has the potential
to optimize the factorization process of
considerably large semi-prime numbers. We
argue confidently that it effectively mitigates
integer overflow errors and significantly reduces
computational time. The effects of a fully
optimized Arnold Factorization Algorithm expand
far beyond just algorithmic efficiency, pervading
both the realms of Mathematics and Computer
Science. Consequently, there arises an
imperative to protect existing cryptosystems,
thereby guaranteeing enhanced security
measures across various digital platforms
including e-commerce websites, email
communication, virtual private networks (VPNs),
online banking platforms, and the HTTPS
protocol for web browsers.

Additionally, even in the theoretical case where
quantum computers capable of factorizing such
large semi-primes become apparent, the viability
and cost-effectiveness of the Arnold Factorization
Algorithm remain exceptional. Given its capacity
to run on personal computers, the Arnold
Factorization Algorithm stands as a resilient and
accessible solution, offering a robust defense
against potential cryptographic vulnerabilities
posed by quantum computing advancements.

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

94

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Sattar J Aboud, Mohammad A AL-

Fayoumi, Mustafa Al-Fayoumi, Haidar S
Jabbar. An efficient RSA public key
encryption scheme. Fifth international
conference on information technology:
New generations. IEEE Computer Society;
2008.

2. Michael NJ, Ogoegbulem O, Obukohwo V,
Egbogho HE. Number Theory in RSA
Encryption Systems. GPH – International
Journal of Mathematics. 2023;6:11.

3. Richard Omollo, Arnold Okoth. Large Semi
Primes Factorization with Its Implications
to RSA Cryptosystems. BOHR
International Journal of Smart Computing
and Information Technology. 2022;3(1):1–
8.

4. Douglas R, Stinson, Maura B. Paterson.
Cryptography Theory and Practice 4th
Edition. CRC Press; 2019.

5. Dirk B, Artur E, Anton Z. The Physics of
Quantum Information. XIV – 315, Springer;
2000.

6. Matthew H. Quantum Computing and
Shor’s Algorithm. 2015;1-7.

7. Adjie Wahyu Wicaksono, Arya Wicaksana.
Implementation of Shor’s quantum
factoring algorithm using project Q
framework. International Journal of
Engineering and Advanced Technology
(IJEAT) ISSN: 2249-8958 (Online). 2019;
8(6S3).

8. Arun Bhalla, Kenneth Eguro, Matthew
Hayward. Quantum Computing, Shor’s
Algorithm, and Parallelism; 2015.

9. Gil Kalai, Yosef Rinott, Tomer Shoham.
Google’s 2019 Quantum Supremacy
Claims: Data, Documentation, and
Discussion; 2022.
Available:https://www.arxiv.org

10. Jeffrey Shallit. Origins of the Analysis of
the Euclidean Algorithm. Historia
Mathematica. 1994;21:401-419.

11. Carlos M Falcon Rodriguez, Maria A.
Garcia Cruz, Claudia Falcon. Full
Euclidean Algorithm by Means of a Steady
Walk. Applied Mathematics. 2021;12:
269-279

12. Anton Iliev, Nikolay Kyurkchiev, Asen
Rahnev. A New Improvement Euclidean

Algorithm for Greatest Common Divisor. I.
Neural, Parallel, and Scientific
Computations. 2018;26(3):355-362.
ISSN: 1061-5369

13. Franz Lemmermeyer. The Euclidean
Algorithm in Algebraic Number Fields.
Mathematics Subject Classification; 2004.

14. Wan Nur Shaziayani Wan Mohd Rosly,
Sharifah Sarimah Syed Abdullah, Fuziatul
Norsyiha Ahmad Shukri. The uses of
Wolfram Alpha in Mathematics. Articles of
Teaching and Learning in Higher
Education. 2020;1:96 – 103.

15. Hiyam, Bataineh, Ali Zoubi, Abdalla
Khataybeh. Utilizing MATHEMATICA
Software to Improve Students’ Problem
Solving Skills of Derivative and its
Applications. International Journal of
Education and Research. 2019;7(11):
57– 70.

16. Mohammed Muniru Iddrisu, Kodjoe Isaac
Tetteh. The Gamma Function and Its
Analytical Applications”. Journal of
Advances in Mathematics and Computer
Science. 2017;23(3):1-16.

17. Yingpu Deng and Yanbin Pan. An
Algorithm for Factoring Integers.
CiteSeerX; 2018.

18. Peter L. Montgomery. A Survey of Modern
Integer Factorization Algorithms. CWI
Quarterly. 1994;7(4):337 – 365.

19. David CW Muir. Factoring Integers using
Geometry; 2022.

20. Seema Kute, Chitra Desai, Mukti Jadhav.
Analysis of factoring algorithms for number
factorization. International Journal of
Creative Research Thoughts. 2023;11(3):
735 – 740.

21. Abdelmajid Hassan Mansour. Analysis of
RSA Digital Signature Key Generation
using Strong Prime. International Journal
of Computer (IJC). 2017;24(1):28-36.

22. Venkateswara Rao Pallipamu, Thammi
Reddy K, Suresh Varma P. Design of RSA
Digital Signature Scheme Using A Novel
Cryptographic Hash Algorithm.
International Journal of Emerging
Technology and Advanced Engineering.
June 2014;4(6).

23. Farah Jihan Aufa; Endroyono, Achmad
Affandi. Security System Analysis in
Combination Method: RSA Encryption and
Digital Signature Algorithm. 4th
International Conference on Science and
Technology (ICST); 2018.

24. Om Pal and Bashir Alam. Diffie-Hellman
Key Exchange Protocol with Entities

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573

95

Authentication. International Journal of
Engineering and Computer Science. April
2017;6(4):20831-20839

25. Chiradeep Gupta, Subba Reddy NV.
Enhancement of security of Diffie-hellman
key exchange protocol using RSA
Cryptography. Journal of Physics:
Conference Series; 2021.

26. Shahid Mubeen, Abdur Rehman. (n, k)-
FACTORIALS. Journal of Inequalities and
Special Functions 2014;5(3):14-20.

URL: http://www.ilirias.com

ISSN: 2217-4303

27. Babu G. Properties of Combination Using
Double Factorial. International Journal of
Science and Research (IJSR); 2016.

28. Bo Xiong, Yimin Huang, Steffen Staab,
Zhenguo Li. MOFA: Modular Factorial
Design for Hyper-Parameter Optimization;
2020;

Available:https://www.arxiv.org

29. Man-Hong Yung. Quantum supremacy:
Some fundamental concepts. Oxford
University Press; 2017.

30. Neetu Settia. Cryptanalysis of modern
cryptographic algorithms. International
Journal of Computer Science and
Technology. 2010;1(2):166 – 169.

31. Ibrahim Marouf, Mohammed Mosab Asad,
Qasem Abu Al-Haija. Comparative Study
of Efficient Modular Exponentiation
Algorithms. COMPUSOFT. An
International Journal of Advanced
Computer Technology. August 2017;6(8):
2381– 2389.

32. Anthony Overmars, Sitalakshmi
Venkatraman. A New Method for
Factorizing Semi-Primes Using Simple
Polynomials. 3rd International Conference

on Research in Applied Science. 2020;25
– 30.

33. Anthony Overmars, Sitalakshmi
Venkatraman. A fast factorisation of semi-
primes using sum of squares.
Mathematical and Computational
Application; 2019.

34. Anthony Overmars, Sitalakshmi
Venkatraman. New Semi-Prime Factoriza-
tion and Application in Large RSA Key
Attacks. Journal of Cybersecurity and
Privacy; 2021.

35. A Fast Factorization of Semi Primes Using
Sum of Squares. 2019;11-12.

36. Adeniyi Abidemi Emmanuel, Okeyinka
Aderemi E, Adebiyi Marion O, Asani
Emmanuel O. A Note on Time and Space
Complexity of RSA and El Gamal
Cryptographic Algorithms. IJACSA)
International Journal of Advanced
Computer Science and Applications.
2021;12(7).

37. Keita Emura, Atsuko Miyaji, Kazumasa
Omote, Akito Nomura, Masakazu Soshi. A
Ciphertext-Policy Attribute-Based
Encryption Scheme with Constant
Ciphertext Length. Conference Paper in
International Journal of Applied
Cryptography· November 2009. Japan
Advanced Institute of Science and
Technology; 2009.

38. Zhengping Jay Luo, Ruowen Liu, Aarav
Mehta. Understanding the RSA algorithm”.
ACM Vol. 1, No. 1, Article. Publication
date: August 2023; 2023.

39. Robert Erra, Christophe Grenier. The
Fermat factorization method revisited;
2009.
Available:https://eprint.iacr.org/2009/318.p
df

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/115573

