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ABSTRACT 
 

This paper introduces a new factoring algorithm called Anorld’s Factorization Algorithm that utilizes 
semi-prime numbers and their implications for the cryptanalysis of the Rivest-Shamir-Adleman 
(RSA) cryptosystem. While using the concepts of number theory and algorithmic design, we 
advance a novel approach that notably enhances the efficiency of factoring large semi-prime 
numbers compared to other algorithms that have been developed earlier. In our approach, we 
propose a three-step algorithm that factorizes relatively large semi-primes in polynomial time. We 
have introduced factorization up to 12-digit semi-prime using Wolfram|Alpha, a mathematical 
software suitable for exploring polynomials. Additionally, we have discussed the implications of the 
new algorithm for the security of RSA-based cryptosystems. In conclusion, our research work 
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emphasizes the important role of factoring algorithms in the cryptanalysis of RSA cryptosystems 
and proposes a novel approach that bolsters the efficiency and effectiveness of semi-prime 
factorization, thereby informing the development of more powerful cryptographic protocols. 
 

 
Keywords: Arnold’s Factorization Algorithm (A.F.A.); modular factorial; euclidean algorithm; RSA 

cryptography. 
 

1. INTRODUCTION 
 
RSA Cryptography was officially introduced in 
1978 by Ronald Rivest, Adi Shamir, and Leonard 
Adleman of MIT [1-2]. Its efficiency is based on 
the difficulty of factorizing very large semi-primes. 
Over 40 years later since its inception, there 
have been several attempts to find efficient 
algorithms to factorize these large semi-primes 
[3]. The Shor Algorithm which was developed by 
Peter Shor in 1994 is the only algorithm that is 
currently capable of breaking RSA Cryptography 
in polynomial time. However, the Shor Algorithm 
is a quantum algorithm that can only work 
efficiently on a quantum computer with a 
sufficient number of quantum bits. Furthermore, 
the quantum computer should be able to perform 
its operation without interference from quantum 
noise. The development of such a quantum 
computer is still speculated to be years away. 
However, there have been significant 
improvements in the development of quantum 
computers over the years [4-8]. Recently, Google 
claimed to have reached ‘quantum supremacy’ 
by performing a mathematical calculation in just 
220 seconds that would otherwise take the best 
supercomputers thousands of years to calculate 
[9]. IBM released a statement later in the same 
week claiming that their supercomputer could 
perform the same calculation in just 1.5 days. For 
classical computers, the fastest known algorithm 
to factorize very large integers with over 100 
digits is known as the General Number Field 
Sieve.  
 
Arnold’s Factorization Algorithm [3] is a simple 
three-step technique that specifically factorizes 
semi-primes. The first step involves getting the 
square root of the semi-prime (N). The second 
step is getting the double factorial of your result 
in step one. Then the final step involves finding 
the GCD of your result in step two with the semi-
prime (N) using the Euclidean Algorithm [10-13]. 
The general Arnold’s Factorization Algorithm is  
 

GCD(a!!, N)                      Eqn. 1 
 

Implementing the algorithm step by step is not 
feasible for semi-primes with more than 16 digits. 

All the semi-primes with 16 digits and below can 
be factorized in just a matter of seconds using 
powerful online mathematical software such as 
Wolfram|Alpha [14-15]. This is independent of 
the in-built factorization algorithm that this 
software already uses. By combining the second 
step of Arnold’s Factorization Algorithm and the 
first step of the Euclidean Algorithm, we reduce 
the integer factorization problem to a modular 
factorial problem. This gives us several options 
to execute the second step without obtaining an 
integer overflow through the double factorial 
function. Crypt-analysis of RSA Cryptography 
was also done in the second step of the 
algorithm. This was done using the gamma 
function instead of the double factorial function 
taking into consideration the time and space 
complexity [16].  
 

There are generally several algorithms each with 
different approaches to factorizing integers [17-
20]. Arnold’s Factorization Algorithm targets 
specifically semi-primes. This is because the 
implications of factorizing semi-primes are much 
greater in internet security through RSA digital 
signatures [21-23] and the Diffie-Hellman key 
agreement protocol [24-25]. The Arnold 
Factorization Algorithm aims at breaking down a 
hard mathematical problem, integer factorization, 
into feasible polynomial steps and/or procedures. 
 

2. METHODOLOGY 
 

In this section, we established fundamental 
definitions with illustrative examples and outlined 
essential procedures pertinent to the research 
methodology. 
 

Definition 2.1 
 

Arnold’s Factorization Algorithm (A.F.A.) is a 
simple three-step algorithm for factorizing semi-
primes [3].  
 

Definition 2.2 
 
Factorial [26-27] refers to the multiplication of all 
the numbers from one up to the number in which 
we are obtaining its factorial. It is usually denoted 
by an exclamation mark (!).  
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For example:  
 

1! = 1 
2! = 1×2 =2 
3! = 1 × 2× 3 = 6 
4! = 1× 2 × 3 × 4 = 24 
5! = 1 × 2 × 3 ×4 × 5 = 120 
6! = 1 × 2 × 3 × 4 × 5 × 6 = 720 
7! = 1× 2 ×3 × 4× 5 × 6 × 7 = 5040 
8! = 1× 2 × 3 × 4 × 5 × 6 × 7 × 8 = 40320 
 

Definition 2.3 
 

The Double Factorial of an integer (n) [26-27] 
refers to the multiplication of all the numbers 
from one up to (n) which have the same parity, 
either even or odd. It is usually denoted by 
double exclamation marks (n!!). It is also referred 
to as semi-factorial. 
 

For example: 
 

1!! = 1 
2!! = 2 
3!! = 1 × 3 =3 
4!! = 2 × 4 =8 
5!! = 1 × 3 × 5 = 15 
6!! = 2 × 4 × 6 = 48 
7!! = 1 × 3 × 5 × 7 = 105 
8!! = 2 × 4 × 6 × 8 = 384 
 

We notice that the double factorial of a number 
like 6 is significantly smaller than the factorial             
of 6. 
 

Definition 2.4 
 

Modular Factorial [28] simply refers to the 
remainder after dividing a factorial by another 
integer. 
 

For example: 
 

5! mod 6 = 0 
5!! mod 6 = 3 
6! mod 7 = 6 
6!! mod 7 = 6 
 

Definition 2.5 
 

Quantum supremacy [29] refers to the state in 
which a quantum computer can perform a 
programmable operation that no classical 
computer can do in a feasible amount of time. It 
is also referred to as quantum advantage. 
 

Definition 2.6  
 

Crypt-analysis [30] refers to the tactical and 
mathematical analysis of ciphers and 

cryptosystems to find how they work so that you 
can exploit their weaknesses and eventually 
break them. 
 

Definition 2.7 
 

Modular Exponentiation [31] is just 
exponentiation calculated over modulus. It is very 
crucial in public-key cryptography. 
 

For example: 
 

73 mod 5 = 3 
73 = 343 
343 mod 5 = 3 
 

Where 3 is the exponent. 
 

Definition 2.8 
 

Semi-Primes [3, 32-35] refers to the product of 
multiplying two prime numbers. 
 

For example:  
 

5 × 7 = 35 is the semi prime 
101 × 103 = 10403 is the semi prime 
 

Definition 2.9 
 
Time and Space Complexity [36]: Time 
complexity refers to the total number of 
operations that a particular algorithm does to 
perform its task. It is the computational time 
taken to run an algorithm and is denoted by the 
big O notation. Space Complexity of a computer 
algorithm refers to the total space that is required 
by that algorithm to run on a computer. 
 
Definition 2.10 
 
Cipher text [37] refers to an encrypted message 
that cannot be read unless it is converted back to 
plain text using an algorithm. 

 
Definition 2.11 
 
RSA numbers [38]: These are semi-primes used 
for encryption in RSA Cryptography. The two 
prime numbers used are relatively of the same 
size. 
 

3. RESULTS AND DISCUSSION 
 
In this section, we explored the findings and 
outcomes derived from the study, providing a 
comprehensive analysis and interpretation of the 
results obtained. 
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3.1 Arnold’s Factorization Algorithm 
 
Below are the three steps for factorizing semi-
primes using Arnold Factorization Algorithm. We 
are going to use the semi-primes 55, 65, and 77 
throughout our examples. 
 
Step I: Square root 
 

1. Get the square root of a semi-prime (N). 
This separates the two prime numbers of 
the semi-prime with the smallest prime 
number being smaller than the square root. 
 

2. Round it off to the nearest whole number. If 
the result is an even number subtract 1 to 
get an odd number. (The reason for this 
operation is that we are performing a 
double factorial to the number in the 
second step). It also has to be odd 
because all the prime numbers apart from 
2 are odd. 
 

3. The result from the above procedures is 
denoted by the letter (a). If the semi-prime 
is a square of a prime number, then the 
factorization stops at step 1. 

 
For example: 
 
To factorize the semi-prime 55 
Square root: √55 = 7.416198487… 
Round off to the nearest whole number: 
7.416198487 gives us 7 
7 is an odd number so it becomes our (a) 
 
To factorize the semi-prime 65 
Square root: √65 = 8.062257748... 
Round off to the nearest whole number: 
8.062257748 gives us 8 
8 is an even number so we subtract 1: 8 – 1 = 7 
7 is an odd number so it becomes our (a) 
 
To factorize the semi-prime 77 
Square root: √77 = 8.77496438… 
Round off to the nearest whole number: 
8.77496438 gives us 9 
9 is an odd number so it becomes our (a) 
 
Therefore (a) can be defined by the following 
equation: 
 

𝑎 = ⎾√ 𝑁 ⏋      Eqn. 2 
 
Which simply means that (a) is equal to the 

smallest integer equal or greater than  √ 𝑁 . 
However, it is an even number you subtract one 

to get an odd number which might be smaller 
than the case  
 
Step II: Double Factorial/Gamma Function 
 
Since the value of (a) is odd we get its double 
factorial. That is, we multiply all the odd numbers 
from one up to (a). We can also get the factorial 
but the value is much larger. In this step, the 
values can become astronomically large for 
larger semi-primes. In fact, in most personal 
computers getting the double factorial of a 9-digit 
number gives an integer overflow error. We 
discussed this in later section on how to curb this 
computational space complexity problem. The 
result from step 2 is denoted by (a!!). Factorial 
can also be expressed as a gamma function. For 
our case a! = Γ (a + 1). Where the gamma 
function is denoted by Γ. 
 
For example: 
 
To factorize the semi-prime 55 
 
We have seen from the above examples that the 
value (a) for the semi-prime 55 is 7. 
 
Double factorial: 7!! = 1 × 3 × 5 × 7 = 105 
 
Alternatively, the factorial: 7! = 1× 2 ×3 × 4 × 5 × 
6 × 7 = 5040 
 
So, our (a!!) for 55 is 105, and (a!) is 5040 
 
Both the double factorial and factorial will give 
you the correct answer after the third and final 
step. 
 
To factorize the semi-prime 65 
 

We saw from step 1 that the value (a) for the 
semi-prime 65 is also 7. 
 

Double factorial: 7!! = 1 × 3 × 5 × 7 = 105 
 

Alternatively, the factorial: 7! = 1× 2 ×3 × 4 × 5 × 
6 × 7 = 5040 
 
So, our (a!!) for 55 is 105, and (a!) is 5040 
 

We notice we get the same values for both 55 
and 65. This is because of the proximity of their 
square root. 
 

To factorize the semi-prime 77 
 

From the first step, the value (a) for the semi-
prime 77 is 9. 
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Double factorial: 7!! = 1 × 3 × 5 × 7 × 9 = 945 
 

Alternatively, the factorial: 7! = 1× 2 ×3 × 4 × 5 × 
6 × 7 × 8 × 9 = 362880 
 

So, our (a!!) for 77 is 945, and (a!) is 362880. 
 

We observe that it is only logical to use double 
factorial not only because it gives us relatively 
smaller values but also because prime numbers 
are odd numbers. 
 

Step III: GCD using Euclidean Algorithm 
 

Here we get the GCD of the double factorial (a!!) 
and the semi-prime (N) using the Euclidean 
Algorithm. This is denoted by the expression 
 

GCD (a!!, N) 
 

The GCD of the expression above gives the 
smallest prime number. The first step of 
calculating the Euclidean Algorithm involves 
getting modular factorial. That is a!! mod N = r . 
Then N mod r = s is computed. This procedure is 
repeated until the mod is 0. The mod before 0 is 
the GCD and the smallest prime number for the 
semi-prime N. No matter how big a!! is, after 
getting the modular factorial r < N. 
 

For example: 
 

To factorize the semi-prime 55 
 

We saw that a!! for 55 is 7!! = 105 
 

GCD (Euclidean Algorithm): GCD (7!!, 55) or 
GCD (105, 55). 
 

105 mod 55 = 50 
55 mod 50 = 5 
50 mod 5 = 0 
 

The mod before 0 is 5. Therefore, the GCD (7!!, 
55) = 5 
 

Therefore, the smallest prime number is 5.  
 

Alternatively, we can use factorial instead of 
double factorial. 
 

GCD (Euclidean Algorithm): GCD (7!, 55) or 
GCD (5040, 55). 
 

5040 mod 55 = 35 
55 mod 35 = 20 
35 mod 20 = 15  
20 mod 15 = 5 
15 mod 5 = 0 

The mod before 0 is 5. Therefore the GCD (7!, 
55) = 5. The smallest prime number is also 5. 
This still gives you the same answer as getting 
the GCD of the double factorial. 
 
To factorize the semi-prime 65 
 
We saw that a!! for 65 is 7!! = 105 
 
GCD (Euclidean Algorithm): GCD (7!!, 65) or 
GCD (105, 65). 
 
105 mod 65 = 40 
65 mod 40 = 25 
40 mod 25 = 15 
25 mod 15 = 10 
15 mod 10 = 5 
10 mod 5 = 0 
 
The mod before 0 is 5. Therefore, the GCD (7!!, 
65) = 5 
 
The smallest prime number is 5.  
 
Alternatively: GCD (Euclidean Algorithm): GCD 
(7!, 65) or GCD (5040, 65). 
 
5040 mod 65 = 35 
65 mod 35 = 30 
35 mod 15 = 5 
30 mod 5 = 0 
 
The mod before 0 is 5. Therefore the GCD (7!, 
65) = 5. The smallest prime number is also 5.  
 
To factorize the semi-prime 77 
 
We saw that a!! for 77 is 9!! = 945 
 
GCD (Euclidean Algorithm): GCD (9!!, 77) or 
GCD (945, 77). 
 
945 mod 77 = 21 
77 mod 21 = 14 
21 mod 14 = 7 
14 mod 7 = 0 
 
The mod before 0 is 7. Therefore, the GCD (9!!, 
77) = 7 

 
The smallest prime number is 5.  

 
Alternatively, we can use factorial instead of 
double factorial. 

 
GCD (Euclidean Algorithm): GCD (9!, 77) or 
GCD (362880, 77). 
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362880 mod 77 = 56 
77 mod 56 = 21 
56 mod 21 = 14 
21 mod 14 = 7 
14 mod 7 = 0 
 
The mod before 0 is 7. Therefore the GCD (9!, 
77) = 7.  
 
The smallest prime number is also 7.   
 
That is how we factorize semi-primes using 
Arnold’s Factorization Algorithm. The second and 
third steps of the algorithm can be applied to 
online mathematical software such as 
Wolfram|alpha. This enables factorization of 
semi-primes of up to 12 digits in just a matter of 
seconds.  
 
For example: 
 
To factorize the semi-prime 300293215969.           
(12 digit semi-prime) 
 
Step 1: Square root: √300293215969                            
= 547990.1605… 
 
Round off: 547990.1605 gives us 547990 
 
547990 is an even number so we subtract 1 to 
get 547989 
 
So, our (a) value for the semi-prime 
300293215969 is 547989. 
 
This step is implemented on a Python code 
shown below: 
 
import math 
 
semiprime=eval(input(‘semiprime’)) 
k=math.isqrt(int(semiprime)) 
print(k) 
f=len(str(k)) 
print(f) 

 
This code finds the integral values of the square 
root of an integer with over 1000-digit numbers in 
just seconds. That is, it truncates the values after 
the decimal point and only prints the whole 
number. 

 
Steps II and III: This is performed on the 
Wolfram|alpha online software. The digits are fed 
in the form of the expression GCD (a!!, N). From 
our calculation the value of a = 547989 and N = 
300293215969 (Semi-prime). The result is 

317617 which is the GCD and also the smallest 
prime number that divides 300293215969.  
 

3.2 Optimization of Arnold’s Factorization 
Algorithm 

 
In this section, we dedicated our discussion to 
how to make Arnold’s Factorization Algorithm 
more efficient. We considered several ways in 
which the algorithm can be implemented to avoid 
integer overflow errors.  
 
3.2.1 Modular arithmetic 
 
One of the properties of modular arithmetic 
states that; 
 

[(a mod N) * (b mod N) * (c mod N)] mod n = 
(a * b* c) mod N       Eqn 3 

 
Where N is the semi-prime in our case. The 
primitive method of implementing Arnold’s 
Factorization Algorithm is by applying the right 
side of the above equation. It is relatively fast 
because of the factorial function however, it is 
more likely to give an integer overflow error for 
very large semi primes. Therefore, it is 
recommended to use the left side of the equation 
when writing the algorithm for relatively large 
semi-primes. This means that the result after 
each iteration will not be bigger than the semi-
prime N.  
 
For example, where;  
 
a = 7 
b = 37 
c = 43 
N = 35 
 
Solution (Primitive Method) 
 
(a * b * c) mod N 
(7 * 37 * 43) mod 35 = (11137) mod 35 = 7 
 
Note that if the values of a, b, and c were large 
the above method would give an integer overflow 
error when run on a personal computer. 
 
(Optimized Algorithm Method) 
 
[(a mod N) * (b mod N) * (c mod N)] mod N 
 
[(7 mod 35) * (37 mod 35) * (43 mod 35)] mod 35 
= [(7) * (2) * (8)] mod 35 = 7 
 
(112) mod 35 = 7 
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Alternatively 
 

(((a mod N) * (b mod N)) mod N * (c mod N) mod 
N) 
 

(((7 mod 35) * (37 mod 35)) mod 35 * (43 mod 35) 
mod 35) which can also be written in the 
following sequence. The result of an initial step is 
the start of the subsequent step. 
 

1. 7 mod 35 = 7 
 

2. 7 * (37 mod 35) mod 35 = (7 * 2) mod 35             
= 14 
 

3. 14 * (43 mod 35) mod 35 = (14 * 8) mod 35 
= 7 

 

Both methods give the same answer however 
the optimized algorithm method gives a smaller 
number of which the result after an operation is 
always smaller than the semi-prime. This is seen 
in the alternative of the Optimized Algorithm 
Method. This is very crucial in the 
implementation of the second and third steps of 
the AFA. 
 

3.2.2 Sequencing and gamma function 
 

In this section, we optimize the second step of 
AFA. Both factorial and double factorial involve 
multiplying numbers with a common difference 
between them. Thus, we apply properties of 
arithmetic sequencing or progression.  
 

For example:  
 

(Factorial)  
 

5! = 1×2×3×4×5 = 120 
 

Here we see that the sequence is 1, 2, 3, 4, and 
5 with a common difference of 1. The first term is 
1 and the number of terms is 5. In other words, 
factorial simply means getting the product of the 
arithmetic sequence above. 
 

(Double Factorial) 
 

5!! = 1×3×5 = 15  
 
In this case, the common difference is 2. The 
number of terms is 3 and the first term is 1.  
 
The formula for getting the product of an 
arithmetic sequence is as follows: 
 

𝑃 = 𝑑𝑛 ×  
𝛤(

𝑎1

𝑑
+𝑛)

𝛤(
𝑎1

𝑑
)

                     Eqn 4 

Where: 
 

d is the common difference. 
n is the number of terms. 
a1 is the value of the first term. 
𝛤 is the gamma function. 
P is the product of the arithmetic sequence. 
 

We now embark on the properties of the gamma 
function which are critical in our crypt-analysis 
process.  
 

They include: 
 

1. 𝛤 (
1

2
) = √ 𝜋 ;  

 
2. 𝛤(𝛼 + 1) = 𝛼𝛤(𝛼) ; 

 
3. 𝛤(𝑏) = (𝑏 + 1)! 

 

In the example below we look at the application 
of double factorial, gamma function, and 
sequencing as an optimization of AFA. 
 

Example: 
 

Given: 
d = 2 
a1 = 1 
n = 3 
 

Which is the sequence 1, 3, 5. 
 

Using the formula for getting the product of an 
arithmetic sequence we get: 
 

𝑃 = 23 ×  
𝛤 (

1
2

+ 3)

𝛤 (
1
2

)
 

 

Adding the numbers in brackets we get: 
 

𝑃 = 8 ×  
𝛤 (

7
2

)

𝛤 (
1
2

)
 

 

From the first property of the gamma function we 

see that the denominator becomes √ 𝜋 therefore 
our equation becomes: 
 

𝑃 = 8 ×  
𝛤 (

7
2

)

√ 𝜋 
 

 

From the second property of the gamma function 
we can be able to re-write the numerator as 
follows: 
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𝛤 (
7

2
) = 𝛤 (

5

2
+ 1)  

 

=
5

2
. 𝛤 (

5

2
)  

=
5

2
. 𝛤 (

3

2
+ 1)  

=
5

2
.

3

2
. 𝛤 (

3

2
)  

=
5

2
.

3

2
. 𝛤 (

1

2
+ 1)  

=
5

2
.

3

2
.

1

2
. 𝛤 (

1

2
)  

 

Using the first property we get: 
 

=
5

2
.

3

2
.

1

2
. √ 𝜋  

 =
15

8
. √ 𝜋 

 

The whole equation now becomes: 
 

𝑃 = 8 ×  

15
8

. √ 𝜋

√ 𝜋
 

 

This can be simplified to get: 
 

𝑃 = 8 ×
15

8
  

𝑃 = 15  
 

Therefore, the product of the sequence 1, 3, 5 is 
15. 
 

We have proved that the formula of getting the 
product of an arithmetic sequence can be 
simplified by using gamma properties.  
 

We can also derive the double factorial of the 
value of a using the formula for getting the 
product of an arithmetic sequence. Since it is 
obtaining the double factorial, the following 
values are always constant. 
 

a1 = 1 
d = 2  
 

P will be the double factorial of a 
 

Replacing these values on the arithmetic 
sequence product formula we get the following 
formula: 
 

(𝑎)‼ = 𝑑𝑛 ×  
𝛤 (

1
2

+ 𝑛)

𝛤 (
1
2

)
                              (𝐸𝑞𝑛 5) 

 

Where 𝑛 > 1. 
 

Remember that  𝑎 = ⎾√ 𝑁 ⏋ 

Where N is the semi-prime and the value of (a) is 
a whole odd number. It is obtained by getting the 
square root of N and rounding it off to the nearest 
whole number. If it is even, 1 is added to get an 
odd number which becomes our value for a. We 
thus obtain our value for n from the equation 
below. 
 

𝑛 =
𝑎 + 1

2
                                                       (𝐸𝑞𝑛 6) 

 
This can also be written as: 
 

𝑎 = 2𝑛 − 1                                                      (𝐸𝑞𝑛 7) 
 
Replacing the value of a in (equation i) we obtain: 
 

(2𝑛 − 1)‼ = 𝑑𝑛 ×  
𝛤(

1

2
+𝑛)

𝛤(
1

2
)

                       (Eqn 8) 

 
Therefore, the formula of getting the double 
factorial using the number of terms now becomes: 

 
(2𝑛 − 1)‼                                              (Eqn 9) 

 

4. CRYPT-ANALYSIS OF RSA 
CRYPTOSYSTEM USING ARNOLD’S 
FACTORIZATION ALGORITHM 

 
In this section, our main focus was on what 
renders the factorization of semi-primes pivotal in 
the cryptanalysis of the RSA cryptosystem. The 
significance was apparent from the capability to 
decrypt ciphertexts speedily upon obtaining one 
of the prime numbers employed in encryption. 
Moreover, we explored the salient properties 
inherent in RSA numbers used for encryption. 
These include: 

 
1. The two prime numbers used are relative 

of the same size (number of digits). 
 

2. The prime numbers are not too close to 
each other otherwise they can be easily 
factorized using Fermat’s Factorization 
Method [39]. 
 

3. The RSA numbers are very large being at 
least 300 digits and above. 
 

4. The prime numbers are normally half the 
size of the RSA numbers. 

 
Since the prime numbers are large and are 
relatively of the same size, we didn’t start 
multiplying numbers from one up to the square 



 
 
 
 

Omollo and Okoth; Asian J. Res. Com. Sci., vol. 17, no. 6, pp. 85-95, 2024; Article no.AJRCOS.115573 
 
 

 
93 

 

root of that number. For illustration purposes, we 
used the semi-prime 300293215969 we had 
used earlier as our RSA number. 
 

Example: 
 

Crack the RSA number 300293215969. A 12-digit 
semi-prime. 
 

By applying the first step of AFA we are first 
going to get the square root of the RSA number.  
 

Step 1: Square root: √300293215969 = 
547990.1605… 
 

Round off: 547990.1605 gives us 547990 
 

547990 is an even number so we subtract 1 to 
get 547989 
 

So, our (a) value for the semi-prime 
300293215969 is 547989. 
 

Step 2: Using the fourth property we know that 
the prime numbers have half the number of digits 
as the RSA numbers except ±1 digit always. 
Therefore, instead of getting the double factorial 
of 547989, we used the Eqn 4. This means that 
the first term should be the least odd number 
with 6 digits since the semi-prime has 12 digits.  
 

Our equation is as follows: 
 

𝑎‼ = 2273995 ×  
𝛤 (

100001
2

+ 273995)

𝛤(
100001

2
)

  

 

Where: 
 

d = 2 
a = 547989 

𝑛 =
547989+1

2
= 273995  

a1 = 100001 
N = 300293215969 
 

Step 3: We now apply the Euclidean Algorithm to 
obtain the GCD (a!!, N). 
 

(2273995 ×  
𝛤(

100001

2
+273995)

𝛤(
100001

2
)

) 𝑚𝑜𝑑 300293215969 =

210086811799   
 

300293215969 mod 210086811799 =
 90206404170  

210086811799 mod 90206404170 =
 29674003459  
90206404170 𝑚𝑜𝑑 29674003459 =  1184393793  

29674003459 𝑚𝑜𝑑 1184393793 =  64158634  

1184393793 𝑚𝑜𝑑 64158634 =  29538381  
64158634 𝑚𝑜𝑑 29538381 =  5081872  

29538381 𝑚𝑜𝑑 5081872 =  4129021  

5081872 𝑚𝑜𝑑 4129021 =  952851  

4129021 𝑚𝑜𝑑 952851 =  𝟑𝟏𝟕𝟔𝟏𝟕   
952851 𝑚𝑜𝑑 317617 =   0  

 
The mod before 0 is 317617 which is the 
smallest prime number and factor of the semi-
prime 300293215969.  

 
Dividing 300293215969 by 317617 we get 
945457 which is the other prime factor. 

 
As we can see both the prime numbers have six 
digits and they are relatively not too close to 
each other. 

 
It is important to note that AFA optimizes 
multiplication in comparison to the traditional trial 
division (brute force) which takes a relatively 
longer time. This is because multiplication falls 
under polynomial problems. 

 
5. CONCLUSION 
 
In this paper, we have demonstrated that the 
Arnold Factorization Algorithm has the potential 
to optimize the factorization process of 
considerably large semi-prime numbers. We 
argue confidently that it effectively mitigates 
integer overflow errors and significantly reduces 
computational time. The effects of a fully 
optimized Arnold Factorization Algorithm expand 
far beyond just algorithmic efficiency, pervading 
both the realms of Mathematics and Computer 
Science. Consequently, there arises an 
imperative to protect existing cryptosystems, 
thereby guaranteeing enhanced security 
measures across various digital platforms 
including e-commerce websites, email 
communication, virtual private networks (VPNs), 
online banking platforms, and the HTTPS 
protocol for web browsers. 

 
Additionally, even in the theoretical case where 
quantum computers capable of factorizing such 
large semi-primes become apparent, the viability 
and cost-effectiveness of the Arnold Factorization 
Algorithm remain exceptional. Given its capacity 
to run on personal computers, the Arnold 
Factorization Algorithm stands as a resilient and 
accessible solution, offering a robust defense 
against potential cryptographic vulnerabilities 
posed by quantum computing advancements. 
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