Lahyaoui, Mouad and Sghyar, Riham and Seqqat, Yousra and Chahdi, Fouad Ouazzani and Mazzah, Ahmed and Haoudi, Amal and Saffaj, Taoufiq and Rodi, Youssef Kandri (2024) Optimizing Quinoline Derivatives for ABCB1 Inhibition: A Machine Learning Approach to Combat Multidrug Resistance in Cancer. In: Current Innovations in Chemical and Materials Sciences Vol. 9. B P International, pp. 157-184. ISBN 978-81-972870-1-5
Full text not available from this repository.Abstract
A vast array of human tumors contain multidrug resistance (MDR) proteins linked to the ATP-binding cassette family, which lead to treatment failure. One of the mechanisms of multiple drug resistance is the overexpression of efflux pumps, like ABCB1. In order to predict the inhibitory biological activity towards ABCB1, the goal of this paper is to develop a robust quantitative structure-activity relationship (QSAR) model that best describes the correlation between the activity and the molecular structures. Using various linear and non-linear machine learning (ML) regression techniques, such as k-nearest neighbors (KNN), decision trees (DT), back propagation neural networks (BPNN), and gradient boosting-based (GB) methods, a series of quinoline derivatives of eighteen compounds were examined in this regard. Their goal is to identify the source of these compounds' activity in order to create new quinoline derivatives that have a stronger effect on ABCB1. A total of sixteen machine learning (ML) predictive models were created using varying numbers of 2D and 3D descriptors. The statistical metrics root mean square error (RMSE) and coefficient of determination (R2) were used to assess the models. With one descriptor, represented by R2 and RMSE of 95% and 0.283, respectively, a GB-based model, specifically catboost, achieved the highest predictive quality among all developed models. The outward-facing p-glycoprotein (6C0V) was the target crystal structure for molecular docking studies, and the results showed strong binding affinities via both hydrophobic and H-bond interactions with the relevant compounds. At -9.22 kcal/mol, the 17 has the highest binding energy. As a result, it is possible that structure 17 will prove to be a useful potential lead structure for the synthesis and design of more effective P-glycoprotein inhibitors that can be combined with anti-cancer medications to manage cancer multidrug resistance.
Item Type: | Book Section |
---|---|
Subjects: | Open Research Librarians > Chemical Science |
Depositing User: | Unnamed user with email support@open.researchlibrarians.com |
Date Deposited: | 06 May 2024 09:31 |
Last Modified: | 06 May 2024 09:31 |
URI: | http://stm.e4journal.com/id/eprint/2647 |