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Riemannian geometry-based
metrics to measure and reinforce
user performance changes during
brain-computer interface user
training
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Despite growing interest and research into brain-computer interfaces (BCI), their

usage remains limited outside of research laboratories. One reason for this is

BCI ine�ciency, the phenomenon where a significant number of potential users

are unable to produce machine-discernible brain signal patterns to control the

devices. To reduce the prevalence of BCI ine�ciency, some have advocated

for novel user-training protocols that enable users to more e�ectively modulate

their neural activity. Important considerations for the design of these protocols

are the assessment measures that are used for evaluating user performance and

for providing feedback that guides skill acquisition. Herein, we present three

trial-wise adaptations (running, sliding window and weighted average) of Riemannian

geometry-based user-performance metrics (classDistinct reflecting the degree of

class separability and classStability reflecting the level of within-class consistency)

to enable feedback to the user following each individual trial. We evaluated

these metrics, along with conventional classifier feedback, using simulated and

previously recorded sensorimotor rhythm-BCI data to assess their correlation with

and discrimination of broader trends in user performance. Analysis revealed that the

sliding window and weighted average variants of our proposed trial-wise Riemannian

geometry-based metrics more accurately reflected performance changes during BCI

sessions compared to conventional classifier output. The results indicate the metrics

are a viable method for evaluating and tracking user performance changes during

BCI-user training and, therefore, further investigation into how these metrics may be

presented to users during training is warranted.

KEYWORDS

brain-computer interface (BCI), electroencephalography (EEG), user training, Riemannian

geometry, user evaluation, simulation

1. Introduction

Although brain-computer interfaces (BCI) have been proposed as an access technology for
individuals with severe motor impairments (Wolpaw et al., 2002; Neuper et al., 2003), users
often struggle to produce consistent and machine-discernible neural patterns, thereby limiting
clinical adoption (Lotte et al., 2013; Jeunet et al., 2016a; Lotte and Jeunet, 2018; Sannelli et al.,
2019). This inability of classification algorithms to correctly decode user patterns with sufficient
accuracy is referred to as BCI inefficiency (Vidaurre and Blankertz, 2010; Vidaurre et al., 2011b;
Sannelli et al., 2019) and has been repeatedly observed in BCI studies since their inception
(Allison and Neuper, 2010).
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While BCI inefficiency has been tackled via sophisticated signal
processing and classification approaches, only modest improvements
to BCI decoding capability have been reported (see Lotte et al., 2018
for review). Inter-user performance differences remain significantly
larger than inter-classifier differences within users (e.g., Ang et al.,
2012; Barachant et al., 2012; Lawhern et al., 2018; Li et al., 2019)
suggesting that BCI inefficiency cannot be addressable strictly by
algorithmic enhancements. Indeed, BCI user performance has been
associated with amelange of physiological (Blankertz et al., 2010; Ahn
et al., 2013a,b; Zhang et al., 2015; Shu et al., 2018) and psychological
factors (Burde and Blankertz, 2006; Grosse-Wentrup et al., 2011;
Hammer et al., 2012; Witte et al., 2013; Jeunet et al., 2015; Kleih and
Kübler, 2015; Myrden and Chau, 2015; Ahn et al., 2018).

Increasingly, BCI task performance is being recognized as a skill
that can be learned (Lotte et al., 2013; Ono et al., 2013; Jeunet et al.,
2016b; Lotte and Jeunet, 2018; Perdikis et al., 2018; Meng and He,
2019; Nguyen et al., 2019; Benaroch et al., 2021), lending credence
to supportive skill development as a meaningful avenue to reduce
BCI inefficiency. Indeed, studies have already demonstrated that
commonly deployed user training approaches do not promote skill
learning in BCI users (Lotte et al., 2013; Jeunet et al., 2016a). Mastery
of a BCI control task can be characterized as procedural learning
(Kober et al., 2013; Hiremath et al., 2015; Casimo et al., 2017),
whereby procedural memory is developed by systematically repeating
the task until all the required actions occur automatically, without
conscious control (Eichenbaum, 2008). Fitts and Posner (1967) and
Anderson (1982) posit that the first stage of such learning entails
developing clear knowledge of the task, how it can be performed
successfully, and how to identify erroneous or poor task performance.
Thus, BCI skill learning hinges on the provision of digestible and
accurate extrinsic feedback (Lotte et al., 2013; Jeunet et al., 2016a;
Lotte and Jeunet, 2018); humans cannot intrinsically evaluate their
brain signals. However, due to the complexities of EEG interpretation
and its low signal-to-noise ratio, relatively few metrics have been
proposed as user feedback.

Specifically, we contend that BCI user feedback must:

1. Contain, but not be limited to, descriptive information regarding
the current level of performance (Lotte et al., 2013; Jeunet et al.,
2016a; Lotte and Jeunet, 2018).

2. Reflect performance change such that the learner receives
actionable guidance toward incremental improvement (Cannon
and Witherspoon, 2005; Hattie and Timperley, 2007; Ghaderi and
Farrell, 2020).

3. Be available immediately following task trial performance
(200–2,000 ms) as procedural learning relies on the timely
association between action performance and reinforcement-
induced dopamine (Schultz, 2002; Perrin and Venance, 2019).

Table 1 organizes past research on EEG BCI user performance
metrics under two groups, those derived from EEG signals while the
user remains at rest, and those that depend on EEG collected during
active brain states (e.g., performance of a mental task). However, only
one approach meets all three design criteria.

A few metrics have been developed on the basis of short EEG
recordings of the resting brain to prognosticate BCI inefficiency.
These studies have shown that BCI classification accuracy is positively
correlated with an sensorimotor rhythm (SMR) predictor, i.e., the
maximum difference between the power spectral density curve
during a relax with eyes open condition and a fit of the 1/f noise

spectrum (Blankertz et al., 2010; Sannelli et al., 2019), a ratio of
frequency band signal powers, i.e., (Pα + Pβ )/(Pθ + Pγ ) (Ahn et al.,
2013b), and a single channel spectral entropy estimate over the motor
cortex during rest (Zhang et al., 2015). Despite the potential of
forecasting the accuracy of SMR BCI control, these metrics were not
designed to provide user-feedback and do not satisfy the feedback
metric design objectives.

A simple metric derived from EEG corresponding to active brain
states is the classifier output (i.e., predicted mental task label) as
initially developed by the Graz BCI group (Pfurtscheller et al., 2003).
Since the initial use of classifiers for training, others have investigated
alternative methods of using classifier feedback for training such
as providing biased feedback (Barbero and Grosse-Wentrup, 2010;
Alimardani et al., 2014) or breaking trials into multiple segments to
be classified individually and providing positive feedback only if the
individual windows have non-zero sensitivity during a trial (at least
one true positive) and maximum specificity (zero false positives) in
the periods immediately preceding or following a trial (Sburlea et al.,
2015). Unfortunately, changes in classifier output may not reflect
changes in user-performance (Lotte and Jeunet, 2018), can be difficult
to interpret due in part to a lack of explanatory feedback (Jeunet
et al., 2016a) or a lack of user understanding of algorithmic
mechanics (Lotte et al., 2013; Müller et al., 2017), and conflates the
performance of the classifier with that of the human user (Lotte and
Jeunet, 2018). Other BCI user performance metrics derived from
EEG during the execution of mental tasks do not directly relate
to task performance as in Bamdadian et al. (2014), or require a

priori determination of user-specific frequency bands, which may
preclude real-time deployment during initial user training (Shu et al.,
2018). Lotte and Jeunet (2018) proposed Riemannian geometry-
based metrics (see Congedo et al., 2017; Yger et al., 2017 for reviews
of Riemannian geometry for BCIs) to track changes in user motor
imagery skill. Advantageously, these Riemannianmetrics are agnostic
to the selection of electrode channels and BCI classifier, and do
not rely on user-specific hyperparameters. Nonetheless, these metrics
were designed to characterize user performance on the basis of a
static rather than a dynamic data set. As such, these metrics neither
integrate new data nor reflect changes in user performance as new
trials are attempted. Duan et al. (2021) rendered these metrics in
conjunction with diffusion maps to provide a visual representation of
the relative similarities and differences of recent trials to users during
online training.

In this paper, we propose alterations to the Riemannian
geometry-based metrics due to Lotte and Jeunet (2018) to admit new
data during online training. These metrics were selected for further
study due to their intuitive connection to trial performance and their
freedom from user-specific hyperparameters.

2. Materials and methods

2.1. Performance metric design

We formulate dynamic variations of the “class distinctiveness”
(classDistinct) and “class stability” (classStability) metrics introduced
by Lotte and Jeunet (2018). We first define inter- and intra-class
dispersion, as they are fundamental to the computation of the
metrics. The inter-class dispersion was defined as the distance
between class mean covariance matrices:
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TABLE 1 BCI user performance metrics.

References Metric Purpose Criteria Remark

1 2 3

R
es
ti
n
g Blankertz et al. (2010) and Sannelli

et al. (2019)
SMR predictor Predict CA X Not designed for instantaneous feedback;

requires recordings of brain at rest

Ahn et al. (2013b) (Pα + Pβ )/(Pθ + Pγ ) Predict CA X

Zhang et al. (2015) M1 spectral entropy Predict CA X

A
ct
iv
e
br
ai
n
st
at
e

Wolpaw et al. (2002) and Wolpaw
et al. (2000)

Strength of SMR suppression Feedback X X No synthesis of current and Previous
feedback

Pfurtscheller et al. (2003) and Sannelli
et al. (2019)

Classifier-based, predicted task label Feedback X May not reflect changes in user
performance; difficult to interpret

Bamdadian et al. (2014) Pre-trial onset EEG signal power Predict CA X Pre-trial activity may not reflect task
performance

Shu et al. (2018) Laterality index based on mean
event-related EEG signal power

Predict CA X Not conducive to online use—needs
user-specific frequencies

Lotte and Jeunet (2018) Riemannian interclass discriminability
and intraclass consistency

Track user skill X Classifier-independent

Duan et al. (2021) Riemannian metrics (Lotte and Jeunet,
2018) + diffusion maps

Feedback X X X Performance represented only visually;
user infers performance changes from
visualization

CA, classifier accuracy; M1, primary motor cortex; SMR, sensory motor rhythm.

interClassDisp(Ŵ̄) = δR(Ŵ̄1, Ŵ̄2) (1)

where Ŵ̄c is the mean covariance matrix for class c and δR denotes
the Riemannian distance. Note that Riemannian mean covariance
matrix is estimated using numerical methods as no closed form
solutions are known (Congedo et al., 2017; Yger et al., 2017). Intra-
class dispersion, 8c, was computed using the mean distance between
covariance matrices of individual trials from class c and the mean
covariance matrix of class c:

8c =
1

Nc

Nc
∑

i=1

δR(Ŵ̄c,Ŵc,i) (2)

where Ŵ̄c is the mean covariance matrix for class c, Ŵc,i is the ith trial
covariance matrix from class c, Nc is the number of trials belonging
to class c, and δR is again the Riemannian distance.

The classDistinct metric was defined as the ratio of inter- to
intra-class dispersions:

classDistinct(Ŵ,8) =
δR(Ŵ̄1, Ŵ̄2)

81 + 82
. (3)

while the classStability of class c was computed as the inverse of the
cognate intra-class dispersion, namely,

classStability(8c) =
1

1+ 8c
. (4)

Note that these equations apply to two-class BCIs; however, they
can be extended to more than two classes (Lotte and Jeunet, 2018). As
defined here, metrics (3) and (4) use a static set of trials to assess user
performance at a particular point in time. To ensure that incremental,
time-dependent feedback is available shortly after each new trial and
to provide an indication of whether performance is improving over
time, we propose three different methods of dynamically updating
these metrics.

Consider that there are NC classes or separate BCI tasks and that
a session contains N blocks (or runs). Let Ŵ̄k,c refer to the sessional
mean covariance matrix for BCI class c, c = 1, . . . ,NC after block k,
k = 1, . . . ,N. 8k,c refers to the sessional intra-class dispersion for
class c after block k and φk,c refers to mean deviation from the mean
for the class c trials of block k.

The first trial-wise adaption method (hereafter referred to as the
running classDistinct/classStability method) adds each new trial to a
set of trials from the previous k − 1 blocks and current kth block
and recomputes (3)–(4). While simple to implement, this method
has potential disadvantages. Primarily, as there will generally be a
greater proportion of trials from previous blocks, the changes in
the metrics due to new trials may be muted. Furthermore, with
respect to the classStability metric, this method may penalize users
for exploring different mental task strategies by artificially inflating
the intra-class dispersion.

The second proposed approach is to use a slidingwindow of trials
to compute the metrics. With this approach, a fixed-length queue
of the most recent trials for each class are retained, ensuring that
past trials do not unduly influence metric values. After a new trial
is added to (and the oldest trial removed from) the queue, (1)–(4) are
recomputed using the trials within the queue.

The final proposed approach is to use a weighted average

of past and recent trials for both the post-trial mean and intra-
class dispersion. Queues are again utilized to maintain a set of the
most recent trials for each class. However, the post-trial mean is
computed as:

Ŵ̄
1
2
k−1,c

(

Ŵ̄
−

1
2

k−1,cγi,cŴ̄
−

1
2

k−1,c

)α1

Ŵ̄
1
2
k−1,c (5)

where Ŵ̄k−1,c is the mean for class c from the previous block of trials
and γi,c is the mean of the most recent trials for class c within the
queue upon completion of the ith trial within the kth block (Figure 1).
α1 ∈ [0, 1] is a constant controlling the relative weights of the
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FIGURE 1

Depiction of the trials used to compute Ŵ̄k−1,c (the mean covariance matrix for class c based on trials from the previous block) and γi,c (the mean

covariance matrix for the most recent trials for class c after the ith trial). These are the key quantities in the weighted average classDistinct metric. Ŵ̄k−1,c

remains constant as the trials of the kth block are performed. The trials within the dashed rectangle represent the queue of the most recently performed

trials. γi,c is updated using the trials within the queue after each new trial within the kth block.

two means. This update equation is equivalent to the convex sum
(1−α1)Ŵ̄k−1,c+α1γc in Euclidean geometry (Congedo et al., 2017). At
the beginning of a block, the queue contains primarily trials from the
previous block and thus, the sets of trials used to compute Ŵk−1,c and
γi,c have large intersection. As more trials are completed, the relative
influence of trials from the previous block aremore gradually reduced
than in the moving average approach. The intra-class dispersion is
computed using:

(1− α2)8k−1,c + α2φk,c (6)

where α2 ∈ [0, 1] is a constant, φk−1,c is the intra-class dispersion
for the class c trials of the (k − 1)th block, and φk,c is the intra-class
dispersion of class c trials completed only during the current (kth)
block. This estimate does not artificially penalize users for exploring
different mental task strategies among blocks as means and mean
deviations from the means are computed for trials within each block
independently before being combined.

2.2. Experimental design

The experimental goal was to assess how accurately trial-wise
reinforcement signals reflect longer-term (i.e., over the course
of several trials) performance changes. The term “reinforcement
signals” will be used rather than “feedback” because our focus in
this study was to assess the numerical values that would be used
to generate feedback; we did not evaluate how to present the
reinforcement signals to users nor how these would be interpreted
by users.

To quantify “longer-term performance changes,” we computed
performance metrics for non-overlapping blocks of 40 trials (20 per

class) and then computed a “block-wise performance change” by
computing the change in different metrics between adjacent blocks.
Note that computing performance metrics in this manner with
disjoint sets of trials is often how user performance is tracked in BCI
studies (e.g., Vidaurre et al., 2011a; Lotte and Jeunet, 2018; Meng and
He, 2019).

To assess the level of agreement between the trial-wise
reinforcement signals and the block-wise changes, we computed a
reinforcement signal for each trial within a block, then summed all
these individual trial reinforcement signals, and finally compared the
sum of trial-wise reinforcement signals to the block-wise change.
More specifically, we evaluated the extent to which: (i) trial-
wise reinforcement signal sums correlated to performance changes
computed over a block of trials and (ii) trial-wise reinforcement
signal sums correctly discriminated between positive and negative
block-wise performance changes. The calculation of block-wise
performance changes and trial-wise reinforcement signal sums is
summarized in Figure 2.

Sums of the trial-wise reinforcement signals were used in the
analysis rather than the single trial reinforcement signals as the intent
was to investigate the cumulative reinforcement over a larger set of
trials. In practice, the cumulative reinforcement is likely to be a more
reliable training tool than single-trial feedback, which can be sensitive
to noise and other spurious factors (e.g., covariate shifts).

2.3. Simulated EEG data

Simulated EEG data were generated using the simBCI software
library (Lindgren et al., 2018). Simulation parameters were set
according to BCI Competition IV data generation example described
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FIGURE 2

Illustration of block-wise performance change and trial-wise reinforcement signal sum calculations. To the left of the dashed line, the single trial

reinforcement signals are computed using the ith trial within a block and the set of all previously performed trials. The trial-wise reinforcement signals for

each trial within the block are summed to generate a trial-wise reinforcement sum for the block. To the right of the dashed line, the Block-wise metrics,

classDistinct, classStability, and run-wise classification accuracy (RWCA, see Section 2.5) are computed using all of the trials within a single block, and the

block-wise performance change is computed as the di�erence between the kth and (k− 1)th block-wise metric values. The objective of this study was to

evaluate how closely the trial-wise reinforcement sums reflected the block-wise performance changes.

in Lindgren et al. (2018) with the following modifications: trial
lengths were set to 4,000ms, sampling frequency set to 250Hz, and all
eye movement/blink effects removed. All simulations were run using
the MRI volume-derived leadfield model contained in the “leadfield-
mediumRefinement.mat” file available for download with the simBCI
software. All analyses were performed on electrodes 18, 33, 47, 84, 91,
104, 145, 188, and 218 approximating positions Fz, F4, C4, Cz, P4, Pz,
P3, C3, and F3, respectively.

BCI session blocks were generated to simulate three levels
of BCI-user performance: (i) low, (ii) moderate, and (iii) high
performance. Table 2 outlines the characteristics of each of these
performance levels. 100 blocks of 40 trials (20 per class) for each
of these performance levels were generated. Pairs of these blocks

were then used to form 700 simulated two-block BCI sessions. To
simulate changing performance conditions, 100 sessions of each
of the following block pairs were created: low-moderate, low-
high, moderate-low, moderate-high, high-low, and high-moderate
(hereafter abbreviated as LM, LH, ML, MH, and HM respectively).
Another 100 sessions were created using low-low, moderate-
moderate, high-high pairs (abbreviated as NC, for “no change”)
to simulate constant performance conditions. Table 3 provides a
summary of each of the simulated session types.

These simulated sessions were not intended to represent
realistic BCI-user learning capabilities; indeed, such pronounced
performance changes would be unlikely in adjacent blocks with
real users. Rather these simulated sessions provide meaningful and
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TABLE 2 Descriptions of the three simulated performance levels.

Performance
level

Description Interpretation

Low Both “left” and “right” hand motor imagery tasks result in ERDs in the right
motor cortex

A user who produces similar EEG patterns for multiple tasks

Moderate “Left” motor imagery tasks consistently produce ERDs in the right motor cortex
while “right” motor imagery tasks elicit a left motor cortex ERD in half the trials
and a right motor cortex ERD in the other half

A user who has achieved good performance with one task but
lacks consistency with a second task

High “Left” and “right” motor imagery tasks consistently trigger a contralateral ERD A user with idealized performance

ERD, event-related desyncrhonization.

TABLE 3 Simulated session types.

Name Block 1
performance level

Block 2
performance level

LM Low Moderate

LH Low High

ML Moderate Low

MH Moderate High

HL High Low

HM High Moderate

NC Low, moderate, or high Same as block 1

controlled scenarios which can be used to evaluate the response of
the different metrics to performance changes.

Prior to analysis, the EEG data were zero-phase filtered using
fourth order Butterworth filters with a passband of 8–30 Hz. Data
were epoched into trial segments consisting of the middle two
seconds of the four second trial.

2.4. Real EEG data

The proposed metrics were also evaluated using previously
published (Cho et al., 2017) SMR-EEG data (52 subjects, left and
right hand motor imagery tasks, 64 Ag/AgCl active electrodes). Each
participant completed 100 or 120 trials of each motor imagery task
in blocks of 40 trials (20 per task). Within each seven second trial,
participants were instructed to perform a three second imagined
left or right hand finger movement sequence. At the end of each
block of trials, participants were given the classification results of the
latest block of trials. Full participant and instrumentation details are
provided by Cho et al. (2017).

We considered data from a subset of channels, namely, F3, Fz,
F4, C3, Cz, C4, P3, Pz, and P4. All data were zero-phase filtered
using fourth order Butterworth filters with a passband of 8–30 Hz.
Subsequently, all data were downsampled from 512 to 256 Hz. All
analysis was performed using the central two seconds of the three
second motor imagery tasks.

Finally, as our Riemannian geometry-based performance metrics
are sensitive to artifacts, a two stage procedure was applied to remove
trials containing artifacts. The first step was to remove any of the
trials flagged as containing measurement or movement artifacts
by Cho et al. (2017). In the second step, the offline Riemannian

Potato Field signal quality procedure (Barthélemy et al., 2019)
was applied. Seven individual “potatoes” were defined according to
the recommendations from Barthélemy et al. (2019): five electrode
contact loss detectors using paired electrode channels (F3-C3, P3-Pz,
Fz-F4, Cz-C4, and C4-P4) bandpass filtered between 1 and 20 Hz and
three general artifact detectors using groups of four electrodes (F3-
C3-P3-Pz, Fz-F4-Cz-C4, and P4-Pz-Fz-F4) bandstop filtered between
8 and 38 Hz. Each potato filter was calibrated using a subject’s
entire set of trials. Any trial identified by the algorithm as containing
artifacts was excluded from further analysis.

2.5. Block-wise performance evaluation

The classDistinct and classStability metrics were computed for
blocks of 40 trials (20 per class) for each simulated session and for
each individual in the real dataset. An overall classStability metric
was constructed by calculating the average of the metric between
imagery tasks.

An additional block-wise performance metric, inspired by the
run-wise classification accuracy (RWCA) metric (Lotte and Jeunet,
2018), was computed. Using only trials from each individual
block, we computed leave-one-trial-out cross-validation classification
accuracy with a common spatial pattern feature-regularized linear
discriminant analysis classifier (CSP-rLDA) (Blankertz et al., 2008).
The CSP feature extraction pipeline comprised four spatial filters.

2.6. Trial-wise reinforcement calculations

Trial-wise reinforcement signals were derived from classifier
output and our proposed running, sliding window, and weighted
average classDistinct and classStabilitymetrics for blocks of simulated
and real EEG. The sum of the trial-wise reinforcement signals for each
method was then computed for each block of trials. For the weighted
average classDistinct (5) and classStability (6) metrics, α1 and α2, were
both set to 0.9.

Trial-wise reinforcement signals for the classDistinct and
classStabilitymetrics were computed as:

M′

k,i −Mk−1

where M′

k,i is the value of the metric after incorporating the ith
trial within the kth block according to the procedures outlined in
Section 2.1, and Mk−1 is the corresponding value of classDistinct
or classStability computed using the trials from the (k − 1)th
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block. The accumulation of reinforcement signals for each block
yielded the trial-wise reinforcement sum for the block. Under
this reinforcement calculation scheme, users would be given
positive or negative feedback when the metrics were increasing
or decreasing, respectively, relative to the start of the block. The
metric value at the start of the block, rather than the value after
the previous trial, was used as the reference point to emphasize
gradual trends in performance rather than potentially volatile
trial-wise changes.

Single trial classifier reinforcement outputs were counted as either
+1 (reward for correct prediction) or −1 (punishment for incorrect
prediction). Classifier outputs for the kth block in a session were
generated using CSP-rLDA classifiers trained using data from the
participant’s previous k − 1 blocks. All CSP feature extraction used
four spatial filters. A three-fold cross-validation on the training data
identified the best temporal sub-band (8–11 Hz, 9–13 Hz, 11–19 Hz,
17–30 Hz or 8–30 Hz) for classification.

2.7. Statistical analysis

For simulated EEG data, the agreement between block-
wise metric changes and the different trial-wise reinforcement
sums was estimated by Spearman correlation whereas for
real EEG data, repeated measures correlations (Bakdash and
Marusich, 2017), which controls for inter-participant variance,
was invoked. Using 1,000 bootstrap samples, we generated 95%
confidence intervals for the difference between coefficients, e.g.,
rweighted−avg − rrunning . These confidence intervals were Bonferroni-
corrected to maintain a family-wise type I error of 5%. Significant
differences were identified if the confidence intervals did not
include 0.

To evaluate the extent to which the reinforcement sums could
be used to discriminate between positive or negative block-wise
changes in performance, we generated empirical receiver-operator
characteristic (ROC) curves, with the sign of the block-wise metric
change serving as the ground truth label and the trial-wise sums as the
discriminating signal. The area under the ROC curve (AUC) for the
different metrics were compared using DeLong’s test (DeLong et al.,
1988; Robin et al., 2011).

The ROC curves indicate the discrimination ability of the
reinforcement sums with arbitrary boundary thresholds. However,
in practice a threshold of zero would likely be more intuitive for
users to interpret. Therefore, we also compared the proportion
of reinforcement sums which had the same sign as the block-
wise metric change using McNemar’s exact tests (McNemar,
1947; Agresti, 2003). Unless stated otherwise, the Holm method
(Holm, 1979) was applied to adjust all p values for multiple
pairwise comparisons.

3. Results

3.1. Correlation between trial-wise
reinforcement signal sums and block-wise
performance change

Figure 3 plots the block-wise change in the classDistinct (top row)
and classStability (bottom row) metrics against their cognate sum

of trial-wise reinforcement signals for the simulated EEG data. In
the classDistinct case only, discernible clusters for each session type
emerged according to the simulated changes in user performance
(i.e., lower reinforcement values for decreasing performance as
in ML, HM, and HL sessions, and higher reinforcement values
for increasing performance as in LM, MH, and LH sessions). In
contrast, for both metrics, the reinforcement sums for the classifier
output generally hovered around zero regardless of simulated
user performance.

Block-wise changes for both metrics were positively correlated
(p < 0.05) with their cognate running, sliding window, and weighted
average trial-wise reinforcement sums. In contrast, the block-wise
changes were slightly negatively correlated (p < 0.05) with trial-
wise classifier output reinforcement sums. All pairwise comparisons
between reinforcement sums were significant (p < 0.05). Similar
relationships were observed for block-wise RWCA changes.

Similar significant relationships between the block-wise changes
in classDistinct and classStability and trial-wise reinforcement sums
were observed for the real EEG data, as depicted in Figure 4.
Correlations involving trial-wise classDistinct and classStability

reinforcement sums remained significantly greater (p < 0.05) than
those for classifier reinforcement.

3.2. Trial-wise reinforcement sum
discriminatory ability

The top row of Figure 5 shows the ROC curves and
corresponding AUC values for discriminating the sign of the
block-wise changes in classDistinct (left) and classStability (right)
using different trial-wise reinforcement sums for the simulated EEG
sessions. The AUC values in the upper left graph of Figure 5 indicate
that classDistinct reinforcement sum variants could discriminate
positive from negative block-wise changes with arbitrary (i.e., non-
zero) thresholds. AUC values in the upper right graph of Figure 5
reveal that weighted classStability reinforcement outperformed the
other metrics for discriminating the sign of block-wise classStability
changes. Pairwise differences between AUC values were significant
for both classDistinct (p < 0.05, Delong’s tests) and classStability

(p < 0.0001, Delong’s tests) ROC curves.
The bottom row of Figure 5 shows the ROC and AUC

curves for discriminating the sign of the block-wise changes in
classDistinct (left) and classStability (right) using the different trial-
wise reinforcement sums in the real EEG-BCI sessions. AUC
values for predictions of block-wise metric changes using trial-
wise classifier reinforcement were significantly smaller than those
of the other reinforcement metrics (p < 0.0001) in both
classDistinct and classStability cases. Sliding window classDistinct

AUC values were significantly larger than the running classDistinct

metrics (p < 0.01).
The ability to discriminate block-wise performance changes using

a fixed threshold of zero varied across the proposed Riemannian
geometry metrics. Table 4 indicates in bold the number of times that
the signs of trial-wise reinforcement sums agreed with the signs of
block-wise changes for different metrics.

For simulated EEG data, McNemar’s tests revealed that all
pairwise comparisons of counts between different reinforcement
sums were significant (p < 0.0001). The running classDistinct
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FIGURE 3

Block-wise change in classDistinct (top row) and classStability (bottom row) for di�erent trial-wise reinforcement signals from simulated data sessions.

All trial-wise reinforcement sums are normalized to [−1, 1]. Long dashed lines represent lines of best fit. Vertical gray dashed line separates classifier

reinforcement sums (left) and classDistinct/classStability reinforcement sums (right).

reinforcement sum had a bias toward smaller/more negative sums,
resulting in lower agreement with the sign of the corresponding
block-wise change. The differences between the sliding window and
weighted average proportions all emerged from the MH and NC
sessions. The weighted average classStability trial-wise reinforcement

sum appeared to be themost effective in discriminating the sign of the
block-wise classStability change (Table 4; Figure 3). Exact McNemar’s
tests revealed that the counts for the weighted average classStability
reinforcement sums were significantly different from the counts for
each of the other three reinforcement sums (p < 0.0001). Both
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FIGURE 4

Block-wise change in classDistinct (top row) and classStability (bottom row) for di�erent trial-wise reinforcement signals from real EEG data. All

trial-wise reinforcement sums are normalized to [−1, 1]. Long dashed lines represent lines of best fit. Vertical gray dashed line separates classifier

reinforcement sums (left) and classDistinct/classStability reinforcement sums (right).

the running and sliding window classStability reinforcement sums
appeared to have a strong bias toward negative values, with the sum
being negative in 700 and 694 of the blocks for the running and
sliding window variants, respectively.

In the real EEG data, the sliding window and weighted average
classDistinct and classStability trial-wise sums outperformed the
corresponding classifier and running reinforcements (Table 4; p <

0.05, exact McNemar’s tests).
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FIGURE 5

ROC curves and AUC values for prediction of the sign of block-wise classDistinct (left column) and classStability (right column) changes, using di�erent

trial-wise reinforcement sums in simulated (top row) and real (bottom row) EEG sessions.

TABLE 4 Cross-tabulation of the sign of block-wise changes and the sign of the trial-wise reinforcement sums, for simulated and real EEG data sets, and for

classDistinct and classStability metrics.

D
a
ta

Metric

Block- Reinforcement

wise Classifier Running Sliding window Weighted average

change Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.

Si
m
ul
at
ed

classDistinct
Pos. 187 87 195 151 318 28 335 11

Neg. 190 74 0 354 18 336 11 343

classStability
Pos. 183 89 0 357 6 351 198 159

Neg. 194 72 0 343 0 343 1 342

R
ea
l

classDistinct
Pos. 65 9 24 60 76 8 78 6

Neg. 52 9 0 65 18 47 29 36

classStability
Pos. 55 8 21 48 46 23 41 28

Neg. 62 10 1 79 8 72 4 76

Bold numbers indicate sign alignment between the block-wise metric changes and a trial-wise reinforcement sums. Sums precisely equal to zero were omitted from the counts.
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4. Discussion

4.1. Sensitivity to performance changes:
Trial-wise Riemannian metrics outperform
classifier output

The correlation and ROC curve analyses demonstrated that
classifier-based reinforcement failed to reflect the block-wise trend
in user performance changes. This result in itself is unsurprising
as the CSP-rLDA classifier, like other commonly deployed SMR-
BCI classifiers, relied on the assumption of stationary and consistent
data distributions. In the presence of time-dependent distributions,
the classifier is ill-equipped to track changes in class distributions.
The proposed Riemannian metrics, on the other hand, dynamically
update inter- and intra-class dispersion estimates and as a result are
more suited to detecting changes to distributions. The classDistinct

and classStability metrics yield continuous-valued reinforcement
signals. This means that small distributional changes due to noise
are muted in comparison to larger data shifts due to evolving ERD
activations, thereby, assigning more weight to changes that are most
relevant to the user. In contrast, with predicted class label feedback,
each trial is equally weighted as a correct or incorrect prediction.

Our results concerning classifier feedback, however, should not
be interpreted as being irreconcilable with findings of others who
have observed that classifier-based feedback can be harnessed to
improve performance (e.g., Vidaurre and Blankertz, 2010; Müller
et al., 2017; Meng and He, 2019). In cases where users are at
least moderately proficient and data distributions are stable, users
could plausibly observe changes in their block-wise classification
accuracies that guide them toward improved performance. However,
our results accentuate the conclusions of others (Lotte et al., 2013;
Jeunet et al., 2016a) that classifier feedback is particularly challenging
to utilize for initially poor performers, in part, because their data
are poorly separable and consequently, classifier output will likely
appear random, even when separability of the data is improving. In
light these findings, future research may investigate a hybrid feedback
approach where the Riemannian metrics are deployed during the
early stages of training to facilitate user exploration, until a moderate
level of user performance is achieved, at which point traditional
classifier feedback could be introduced to support the fine tuning of
mental activity.

4.2. Accurately reinforcing block-wise
performance trends: Sliding window and
weighted Riemannian metrics yield favorable
results

In comparison to the other proposed variants, the running
classDistinct and classStability metrics had a bias toward lower,
more negative reinforcement sums, resulting in lower discrimination
of the direction of performance changes. The precise origin of
this phenomenon is unclear. One potential hypothesis is that the
estimated class mean covariance matrices may have overfit the noise
within the set of individual trials. As the set of trials used to estimate
the mean expands, the estimated mean becomes less sensitive
to noise within individual trials. Consequently, the classStability

would tend to decrease as overfitting subsides. Further, spurious

differences between class means due to noise would decrease, causing
inter-mean distances to converge and classDistinct to decrease.
Because the running classDistinct and classStability reinforcement
sums had higher probability of being negative, providing feedback
based on these metrics could be detrimental. For lower-performing
users, consistent negative reinforcement could be discouraging or
frustrating (Lotte et al., 2013). Such changes to mental state and
engagement with the technology could induce degradation in the
performance of the BCI (Hammer et al., 2012; Ahn and Jun, 2015;
Myrden and Chau, 2015).

With the simulated data, the sliding window classStability

reinforcement sum also tended to negative values and poorly
discriminated the sign of the block-wise metric change. This could
in part be attributed to the composition of the simulated sessions.
The HL and LH sessions had approximately constant consistency
when analyzed at a block-wise level; however, in both of these
sessions, a significant shift in one of the class means occurred
between sessions. Within the block, therefore, the sliding window
class covariance matrix moved slowly away from the previous block’s
cluster to the current block’s cluster, resulting in inflated estimates of
intra-class dispersion. The ML and MH sessions also exhibited this
phenomenon, thereby masking stability improvements.

The sliding window classStability reinforcement sums also tended
to be negative in the NC sessions where a shift in the mean was
not due to variation in task performance or location of event-
related desynchronization. Further investigation showed that the
bias toward negative sums were driven by covariate shifts between
blocks of the data generated by the simulator. As a result, the
distributions of SMRs and noise had higher similarity within trials
in the same block and thereby fueled the shifts in the means over
time and inflated the sliding window classStability. The weighted
classStability reinforcement metric was less sensitive to these effects
because it computed individual covariance means for trials from
their respective blocks and then calculated a weighted average of the
variances about these means. In contrast, the two variants performed
comparably with the real data suggesting that both may be suitable in
scenarios where user performance changes more gradually between
blocks and large inter-recording session covariate shifts are not
present. Nonetheless, as such covariate shifts in data distributions
are well documented in EEG-BCIs (e.g., Shenoy et al., 2006; Li
et al., 2010; Raza et al., 2016), the finding of inflated classStability

highlights a potential limitation of the sliding window classStability

metric, particularly if the sliding window spans trials performed over
multiple recording sessions. Alternatively, such distribution drift-
induced metric changes could potentially be mitigated via adaptive
rebiasing (Benaroch et al., 2021) to reduce inter-block and inter-
session covariance distribution shifts.

Both the sliding window and weighted classDistinct

reinforcement metrics achieved favorable results with simulated and
real data. With the simulated data, the weighted variant performed
slightly better with higher correlation and sign discrimination of
the block-wise change. This superiority is, as discussed above, partly
due to the tendency of the sliding window’s intra-class variation
estimate to increase. However, the damping effect of the weighted
average method rendered it less susceptible to spurious variations
during early stages of the blocks and more likely to respond to
sustained changes to inter-class dispersion. Conversely, the lack of a
damping effect may explain the sliding window reinforcement sums’
higher correlation with block-wise classDistinct changes for real EEG
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FIGURE 6

Common spatial patterns (Haufe et al., 2014) for both left and right

hand motor imagery tasks across three blocks for participant 15 from

the real EEG-BCI dataset. The classDistinct metric for blocks 1–3 was

0.327, 0.423, and 0.454 respectively. The gradual performance

improvement in the metric is reflected in the increasing di�erence

between the amplitudes of the unsuppressed ipsilateral SMR and

suppressed contralateral SMR (event related desynchronization) in

each successive blocks. Patterns are shown in arbitrary units, scaled

such that the largest absolute value is 1.

data. As the block-wise changes were relatively muted compared
to the simulated data (e.g., Figure 6), the damping effect could
have contributed to less sensitivity to smaller magnitude changes
in performance.

4.3. Limitations and additional
considerations

While the Riemannian geometry-based metrics provided
interpretable changes in performance, their absolute values are
not meaningful (Lotte and Jeunet, 2018). Nonetheless, providing
learners with an indication of the target level of performance
and the gap to target is critical effective learning (Hattie and
Timperley, 2007; Lotte et al., 2013). Therefore, it may be beneficial
to intermittently supplement trial-wise user-training feedback
with classifier-based measures of data separability (e.g., block-wise
classifier accuracy) to provide an absolute reference point to users
throughout training.

Moreover, while the absolute values of the metrics are not
interpretable by users, it is relevant to consider how metric values
may be impacted by the number of channels and trial length, which

were both fixed in this analysis. Generally, increasing the number
of channels will increase the Riemannian distance between trial
covariance matrices (Congedo et al., 2017). However, the impact
of the number of channels on the classDistinct and classStability

metrics would be heavily influenced by the channel locations and
the mental tasks employed. For example, if the electrical activity
captured by an additional channel is similar (different) for all mental
tasks, then inclusion of that channel would likely reduce (increase)
the difference between class means and dampen (amplify) relative
changes in the metrics.

Similarly, the influence of the trial length would be dependent
upon themental task and the variation in the signal covariancematrix
throughout the trial. Generally, however, longer trials would result in
lower relative metric changes as the covariance estimates, benefiting
from the additional samples, would be more stable and less sensitive
to short term signal anomalies. Conversely, if trials are excessively
long, there is risk that users fail to sustain the neural modulation for
the entirety of the trial. The covariance estimates and metrics would
then less accurately reflect EEG signal properties associated with the
mental tasks, thereby artificially reducing the value of the metrics. It
would be recommended, therefore, when utilizing these metrics to
judiciously determine a trial length that is sufficiently long to mitigate
sensitivity to short term anomalies and sufficiently short to minimize
the influence of superfluous non-task related data.

Additionally, the reinforcement sums calculated here were purely
theoretical and only their numerical values were considered during
analysis. In real training scenarios, variation in user interpretation
of feedback would influence the effectiveness of the reinforcement
sums at guiding training. Furthermore, in scenarios such as motor
imagery where the control tasks have expected and stereotyped
patterns, it may be prudent to review common spatial pattern
visualizations (Haufe et al., 2014) after each block to confirm
whether the numerical metric changes have physiologically plausible
interpretations (as in the example in Figure 6). Nonetheless, our
findings encourage future exploration of effective presentations of
these numerical metrics as feedback and their impact on user learning
during BCI training.

5. Conclusion

Motivated by the persistent challenge of BCI inefficiency, we
introduced and evaluated variants of Riemannian geometry-based
metrics of SMR-BCI user performance. The adapted metrics were
designed in conformity to guidelines from skill acquisition literature
and instructional design. In analyses of simulation and real SMR-
BCI data, we found that our proposed weighted and sliding window
classDistinct and classStability trial-wise reinforcement metrics
outperformed classifier-based and running classDistinct/classStability
metrics in accurately reflecting block-wise trends in user performance
changes. Future studies should investigate how to effectively present
these performance metrics as feedback to users and assess whether
such feedback can improve BCI-user learning rates.
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