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Abstract

In this paper, AIC (Akaike’s Information Criterion) is used to judge whether a coin is biased
or not using the sequence of heads and tails produced by tossing the coin several times. It is
well known that AIC·(−0.5) is an efficient estimator of the expected log-likelihood when the true
distribution is contained in a specified parametric model. In the coin tossing problem, however,
AIC·(−0.5) works as an efficient estimator even if the true distribution is not contained in a
specified parametric model. Moreover, the judgement of fairness of coin using AIC is equivalent
to a statistical test using the Bernoulli distribution with a significance level ranging from 11% to
18%. This indicates that the judgement of the fairness of coin based on AIC leads to a higher
probability of type I errors than that given by a statistical test with a significance level of 5%.
These findings show that we judge the fairness of a coin based on AIC when we do not have any
prior knowledge about its fairness and we want to judge it from the standpoint of prediction.
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In contrast, a statistical test with a significance level of 5% is adopted when we have prior
knowledge that the coin is probably unbiased. Moreover, a statistical test with a 5% significance
level allows us to conclude that the coin is biased if we obtain sufficient evidence that permits us
to disbelieve the prior knowledge.

Keywords: Akaike’s Information Criterion; coin tossing; log-likelihood; future data; predictive
estimator; maximum likelihood estimator.

2010 Mathematics Subject Classification: 60G25, 62F10, 62M20.

1 Introduction

AIC (Akaike’s Information Criterion) is widely used as a statistic for statistical tests and model
selection. This is because AIC·(−0.5) is thought to be an approximation of the expected log-
likelihood for universal purposes (e.g. [1]). However, the general derivation of AIC (Section 3 of [2])
assumes that the data satisfy highly restrictive conditions so that AIC ·(−0.5) can be regarded as an
approximation of the expected log-likelihood. Hence, when we do not know whether the available
data satisfy such conditions, AIC · (−0.5) might not be a good approximation of the expected
log-likelihood. In fact, when we handle a simple problem that chooses between an exponential
distribution and Weibull distribution, AIC · (−0.5) cannot be used as an approximation of the
expected log-likelihood in most situations ([3]). Nevertheless, we rarely ascertain that the data at
hand satisfy such conditions when we use AIC in practice. One of the reasons for this tendency
seems to be that even if AIC · (−0.5) is not an approximation of the expected log-likelihood, AIC
works well for the purpose of model selection because it behaves like GCV (Generalized Cross-
Validation, [4]), as shown on page 242 of [5]. However, when we use AIC as a model selection
criterion on the grounds that AIC · (−0.5) is a good approximation of the expected log-likelihood,
we need to confirm that the available data satisfy the conditions for using AIC · (−0.5) as an
approximation of the expected log-likelihood. If we cannot confirm that these conditions hold, we
can hardly argue the value of AIC as a tool of model selection. Moreover, if AIC · (−0.5) is not an
approximation of the expected log-likelihood, Akaike Weights ([6]; Section 7.2 of [7]; Section 2.9 of
[1]) do not make sense.

Among such problems, we take the simple example of coin tossing, in which a coin is tossed several
times to see whether it lands heads up or tails up. The resultant data are used to judge whether
the coin is biased or not on the basis of the Bernoulli distribution. For this problem, we investigate
whether or not AIC · (−0.5) works as an approximation of the expected log-likelihood from the
perspective of analytical methods and numerical simulations. Then, the results of such analysis are
compared with a statistical test with a significance level of 5%.

2 AIC for the Coin Tossing Problem

The heads or tails probability as a result of coin tossing obeys the Bernoulli distribution. The
probability mass function of the Bernoulli distribution is represented as

f(xi|θ) = θxi(1− θ)(1−xi), (2.1)

where xi takes a value of either 0 or 1. Here, xi = 1 indicates ‘heads’, while xi = 0 indicates ‘tails’;
θ is the parameter of Bernoulli distribution; f(1|θ) denotes the probability of landing heads; and
f(0|θ) denotes the probability of landing tails. The number of trials is denoted as n. Then, the
result of the trials is written as x = (x1, x2, x3, · · · , xn).

2



Takezawa; JAMCS, 34(2): 1-12, 2019; Article no.JAMCS.52709

A hypothesis test is performed using x, and the true value of θ is represented as θ0. In this setting,
the null hypothesis is

H0: The coin is fair (i.e. not biased). That is, θ0 = 0.5.

The alternative hypothesis is

H1: The coin is biased. That is, θ0 ̸= 0.5.

We assume that we have the data x. The log-likelihood for these data is

l(θ|x) =
n∑

i=1

log
(
f(xi|θ)

)
=

n∑
i=1

(
xilog(θ) + (1− xi)log(1− θ)

)
. (2.2)

Differentiation of l(θ|x) with respect to θ gives

∂l(θ|x)
∂θ

=
1

θ(1− θ)

n∑
i=1

(xi − θ). (2.3)

When this equation is set to 0, we obtain

θ̂(x) =
1

n

n∑
i=1

xi. (2.4)

Here, θ̂(x) is the maximum likelihood estimator when x is our data. Then, the log-likelihood of
θ̂(x) in the light of x is written as

l(θ̂(x)|x) =
n∑

i=1

log
(
f(xi|θ̂(x))

)
= log

(
f(x|θ̂(x))

)
. (2.5)

Next, future data are set as x∗ = (x∗
1, x

∗
2, . . . , x∗

n). The log-likelihood of θ̂(x) in the light of x∗ is
depicted as

l(θ̂(x)|x∗) =
n∑

i=1

log
(
f(x∗

i |θ̂(x))
)
= log

(
f(x∗|θ̂(x))

)
. (2.6)

When the expectation with respect to the future data (x∗) is represented as E{x∗}

[
·
]
, a large

value of E{x∗}

[
l(θ̂(x)|x∗)

]
indicates that the estimator θ̂(x) fits well to future data. Although θ̂(x)

is guaranteed to fit well to the available data, it is not guaranteed to fit closely to future data.
However, because fitting well to future data is the most important property when using a model

for practical purposes, we should estimate the value of E{x∗}

[
l(θ̂(x)|x∗)

]
.

Then, we assume

l(θ̂(x)|x) = E{x∗}

[
l(θ̂(x)|x∗)

]
+ b. (2.7)

That is, the remainder of subtraction of the log-likelihood of θ̂(x) in the light of future data from
the log-likelihood of θ̂(x) in the light of available data is ‘b’. Because l(θ̂(x)|x) is calculated using

Eq.(2.5), derivation of b yields the value of E{x∗}

[
l(θ̂(x)|x∗)

]
. However, we have to prepare an

infinite number of future data (x∗) to obtain the value of b. Then, the expectation of both sides of
Eq.(2.8) with respect to available data (x) is taken. This yields

E{x}

[
l(θ̂(x)|x)

]
= E{x,x∗}

[
l(θ̂(x)|x∗)

]
+ b, (2.8)

where E{x,x∗}

[
·
]
indicates the expectation with respect to both of x and x∗. Expectation E{x}

[
·
]

denotes the expectation with respect to x. Hence, b is written as

b = E{x}

[
l(θ̂(x)|x)

]
− E{x,x∗}

[
l(θ̂(x)|x∗)

]
, (2.9)
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where both E{x}

[
l(θ̂(x)|x)

]
and E{x,x∗}

[
l(θ̂(x)|x∗)

]
are functions of θ0 and are nonrandom variables.

Therefore, b is also a function of θ0 and is a nonrandom variable. Because the value of θ0 is usually
unknown, the value of b is also unknown if b depends upon θ0. However, if b is independent of θ0 (it
needs some specific conditions), b is regarded as a constant independent of θ0. In such a situation, if

the value of this constant is derived, the value of E{x,x∗}

[
l(θ̂(x)|x∗)

]
is estimated because l(θ̂(x)|x)

(where x is the available data) can be used as an approximation of E{x}

[
l(θ̂(x)|x)

]
in Eq.(2.8); this

procedure does not need the value of θ0. The usefulness of AIC is based on this principle.

Variable b (Eq.(2.10)) is estimated below along the lines of Section 3 of [2]. First, we decompose b
as follows.

b = E{x}

[
l(θ̂(x)|x)

]
− E{x,x∗}

[
l(θ̂(x)|x∗)

]
= E{x}

[
l(θ̂(x)|x)

]
− E{x}

[
l(θ0|x)

]
+E{x}

[
l(θ0|x)

]
− E{x∗}

[
l(θ0|x∗)

]
+E{x∗}

[
l(θ0|x∗)

]
− E{x,x∗}

[
l(θ̂(x)|x∗)

]
, (2.10)

where E{x∗}

[
·
]
indicates the expectation with respect to x∗.

Next, we set

D1 = E{x}

[
l(θ̂(x)|x)

]
− E{x}

[
l(θ0|x)

]
, (2.11)

D2 = E{x}

[
l(θ0|x)

]
− E{x∗}

[
l(θ0|x∗)

]
, (2.12)

D3 = E{x∗}

[
l(θ0|x∗)

]
− E{x,x∗}

[
l(θ̂(x)|x∗)

]
. (2.13)

Then, Eq.(2.10) leads to
b = D1 +D2 +D3. (2.14)

A Taylor expansion of D1 around θ̂(x) yields

D1 = E{x}

[
l(θ̂(x)|x)

]
− E{x}

[
l(θ0|x)

]
≈ E{x}

[
−(θ0 − θ̂(x))

∂l(θ̂(x)|x)
∂θ̂

− 1

2
(θ0 − θ̂(x))2

∂2l(θ̂(x)|x)
∂θ̂2

]
≈ E{x}

[
−1

2
(θ0 − θ̂(x))2

∂2l(θ̂(x)|x)
∂θ̂2

]
, (2.15)

where the following equation is used on the basis that θ̂(x) is the maximum likelihood estimator.

∂l(θ̂(x)|x)
∂θ̂

= 0. (2.16)

Differentiation of Eq.(2.3) with respect to θ gives

∂2l(θ|x)
∂θ2

=
(
− 1

(1− θ)θ2
+

1

(1− θ)2θ

) n∑
i=1

(xi − θ)− n

θ(1− θ)
. (2.17)

Then, if we set θ = θ̂(x), the equation below is obtained.

∂2l(θ̂(x)|x)
∂θ̂2

=
(
− 1

(1− θ̂(x))θ̂(x)2
+

1

(1− θ̂(x))2θ̂(x)

) n∑
i=1

(xi − θ̂(x))− n

θ̂(x)(1− θ̂(x))

= − n

θ̂(x)(1− θ̂(x))
, (2.18)
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where Eq.(2.4) is used.

Substitution of Eq.(2.18) into Eq.(2.15) leads to

E{x}

[
−1

2
(θ0 − θ̂(x))2

∂2l(θ̂(x)|x)
∂θ̂2

]
=

n

2
E{x}

[
(θ0 − θ̂(x))2

1

θ̂(x)(1− θ̂(x))

]
. (2.19)

When θ̂(x) is close to the true value, that is, θ̂(x) ≈ θ0 holds, the following equation is derived:

1

θ̂(x)(1− θ̂(x))
≈ 1

θ0(1− θ0)
. (2.20)

Substitution of Eq.(2.20) into Eq.(2.19) turns out to be

E{x}

[
−1

2
(θ0 − θ̂(x))2

∂2l(θ̂(x)|x)
∂θ̂2

]
≈ n

2θ0(1− θ0)
E{x}

[
(θ0 − θ̂(x))2

]
. (2.21)

Note that the equation below holds.

E{x}

[
(θ0 − θ̂(x))2

]
= E{x}

[(
θ0 −

∑n
i=1 xi

n

)2]
= θ20 − 2θ0

n
E{x}

[ n∑
i=1

xi

]
+

1

n2
E{x}

[( n∑
i=1

xi

)2]
= θ20 − 2θ0

n
E{x}

[ n∑
i=1

xi

]
+

1

n2
E{x}

[ n∑
i=1

x2
i

]
+

1

n2
E{x}

[ n∑
i,j=1(i ̸=j)

xixj

]
= θ20 − 2θ20 +

θ0
n

+
θ20(n

2 − n)

n2

=
θ0(1− θ0)

n
, (2.22)

where
∑n

i,j=1(i ̸=j) indicates the summation with respect to both i and j except for the cases when

i = j. Substitution of Eq.(2.22) into Eq.(2.21) leads to

D1 ≈ E{x}

[
−1

2
(θ0 − θ̂)2

∂2l(θ̂(x)|x)
∂θ̂2

]
≈ 1

2
. (2.23)

Because x and x∗ are samples from the same population, Eq.(2.12) becomes

D2 = E{x}

[
l(θ0|x)

]
− E{x∗}

[
l(θ0|x∗)

]
= 0. (2.24)

The Taylor expansion of D3(Eq.(2.13)) around θ0 provides

D3 = E{x∗}

[
l(θ0|x∗)

]
− E{x,x∗}

[
l(θ̂(x)|x∗)

]
≈ E{x,x∗}

[
−(θ̂(x)− θ0)

∂l(θ0|x∗)

∂θ0
− 1

2
(θ̂(x)− θ0)

2 ∂
2l(θ0|x∗)

∂θ20

]
≈ E{x}

[
−(θ̂(x)− θ0)

]
E{x∗}

[∂l(θ0|x∗)

∂θ0

]
− E{x}

[1
2
(θ̂(x)− θ0)

2
]
E{x∗}

[∂2l(θ0|x∗)

∂θ20

]
.

(2.25)

Equation (2.3) leads to

E{x∗}

[∂l(θ0|x∗)

∂θ0

]
=

1

θ0(1− θ0)
E{x∗}

[ n∑
i=1

(x∗
i − θ0)

]
= 0. (2.26)
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Hence, Eq.(2.25) becomes

D3 ≈ −E{x}

[1
2
(θ̂(x)− θ0)

2
]
E{x∗}

[∂2l(θ0|x∗)

∂θ20

]
. (2.27)

Equation (2.17) yields

E{x∗}

[∂2l(θ0|x∗)

∂θ20

]
=

(
− 1

(1− θ0)θ20
+

1

(1− θ0)2θ0

)
E{x∗}

[ n∑
i=1

(x∗
i − θ0)

]
− n

θ0(1− θ0)

= − n

θ0(1− θ0)
. (2.28)

Substitution of Eq.(2.22) and Eq.(2.28) into Eq.(2.27) gives

D3 ≈ 1

2
. (2.29)

Substitution of Eq.(2.23), Eq.(2.24), and Eq.(2.29) into Eq.(2.14) yields

b = D1 +D2 +D3 ≈ 1. (2.30)

By substituting this result into Eq.(2.8), we obtain

E{x,x∗}

[
l(θ̂(x)|x∗)

]
≈ E{x}

[
l(θ̂(x)|x)

]
− 1. (2.31)

The result of only n trials (that is, one set of data) is available in ordinary situations. Therefore,

l(θ̂(x)|x) is used as an approximation of E{x}

[
l(θ̂(x)|x)

]
. Using this approximation and multiplying

by (−2), we obtain the statistic defined as AIC. Hence, when θ̂(x) is used as an estimate of the
parameter (θ0) of the Bernoulli distribution, AIC is obtained as

AIC = −2 · l(θ̂(x)|x) + 2. (2.32)

That is, b (Eq.(2.8)) becomes a constant independent of θ0.

Equation (2.32) is derived when the following regression equation is assumed:

f(xi|θ̂(x)) = θ̂(x)xi(1− θ̂(x))(1−xi). (2.33)

The use of Eq.(2.32) allows us to approximate the expected log-likelihood as AIC · (−0.5) when
θ̂(x), given by the maximum likelihood method, is adopted as the parameter.

We also consider the regression equation given below.

f(xi|θ = 0.5) = 0.5xi · 0.5(1−xi) = 0.5 (2.34)

This equation is based on the assumption that a coin is not biased. This assumption turns Eq.(2.10)
into

b = E{x}

[
l(θ̂(x)|x)

]
− E{x,x∗}

[
l(θ̂(x)|x∗)

]
= E{x}

[ n∑
i=1

(
xilog(0.5) + (1− xi)log(1− 0.5)

)]
−E{x,x∗}

[ n∑
i=1

(
x∗
i log(0.5) + (1− x∗

i )log(1− 0.5)
)]

= nlog(0.5)− nlog(0.5)

= 0. (2.35)
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Hence, we have

E{x,x∗}

[
l(θ̂(x)|x∗)

]
= E{x}

[
l(θ̂(x)|x)

]
. (2.36)

By substituting θ = 0.5 into Eq.(2.2), AIC in this setting becomes

AIC = −2 · l(0.5|x) = −2nlog(0.5). (2.37)

Note that when Eq.(2.34) is assumed, Eq.(2.35), Eq. (2.36), and Eq.(2.37) hold even if the
population (that is, the true distribution) that generates x∗ is described as θ0 = θ1 (θ1 ̸= 0.5).

That is, when we assume the model of θ0 = 0.5, Eq.(2.36) gives an approximation of the expected
log-likelihood in both situations: i) the true distribution satisfies θ0 = θ1 (θ1 ̸= 0.5) and ii) the true
distribution satisfies θ0 = 0.5.

The general derivation of AIC uses the condition that the specified model contains the true
distribution as a special case. This is because Eq.(3.105) on page 61 in [2] is derived using this
condition.

However, the model of θ0 = 0.5 does not contain that of θ0 = θ1 (θ1 ̸= 0.5) as a special case.
Nevertheless, when the model of θ0 = 0.5 is assumed for a Bernoulli distribution, AIC · (−0.5),
which is given by Eq.(2.37), works as an approximation of the expected log-likelihood if the true
distribution satisfies θ0 = 0.5 and if the true distribution satisfies θ0 = θ1 (θ1 ̸= 0.5).

Therefore, in the coin tossing problem, if the model of θ0 = 0.5 is assumed (that is, the coin is not
biased), we can use Eq.(2.37) regardless of whether or not the coin is actually biased. Moreover,
when we assume that the coin may be biased (i.e. θ0 = θ̂), the specified model contains the true
distribution as a special case. Hence, we can use Eq.(2.32).

The findings above show that in the coin tossing problem, a comparison of the AIC given by
Eq.(2.32) with that given by Eq.(2.37) enables us to estimate the fairness of a coin using the
expected log-likelihood.

3 Numerical Simulations

Using Eq.(2.2), Eq.(2.4), Eq.(2.5), and Eq.(2.6), b (Eq.(2.10)) is approximated as

b = E{x}

[
l(θ̂(x)|x)

]
− E{x,x∗}

[
l(θ̂(x)|x∗)

]
≈ 1

K

K∑
k=1

n∑
j=1

(
xjklog

( 1

n

n∑
i=1

xik

)
+ (1− xjk)log

(
1− 1

n

n∑
i=1

xik

))

− 1

KQ

Q∑
q=1

K∑
k=1

n∑
j=1

(
x∗
jqlog

( 1

n

n∑
i=1

xik

)
+ (1− x∗

jq)log
(
1− 1

n

n∑
i=1

xik

))
, (3.1)

where {xik} denotes the available data and {x∗
iq} denotes future data. In addition, {xik} and {x∗

iq}
are realizations of the Bernoulli distribution with parameter θ = θ0. In this numerical simulation,
θ0 is one of {0.3, 0.4, 0.5} and n is one of {50, 200}. Furthermore, K = 100 and Q = 20 are set. By
varying the initial number of pseudo-random values, the values of b (Eq.(3.2)) are calculated 2, 000
times. Note that we exclude the case when

∑n
i=1 xik = 0 because log-likelihood is unavailable when

θ̂ = 0. The resultant histograms of the value of b are illustrated in Fig. 1. The average of the value
of b is approximately 1 and the values of b are distributed close to 1. These graphs indicate that
AIC · (−0.5) is regarded as an approximation of the expected log-likelihood. They also show that
when the value of θ0 is 0.3, that is, a coin is considerably biased, the variance of b is large.
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Fig. 1. Distribution of the value of b derived by Eq.(3.2). The three graphs on the
left-hand side are obtained when n = 50 and θ0 is one of {0.3, 0.4, 0.5}. The three

graphs on the right-hand side are obtained when n = 200 and θ0 is one of {0.3, 0.4, 0.5}.
Here, b̄ stands for the average of 2, 000 values of b

100 200 300 400 500

0
50

10
0

15
0

20
0

n

ŝ

Fig. 2. Relationship between the number of trials (n) and ŝ (the maximal s in the
critical region where s < 0.5n holds)

Next, we assume that the number of trials is n and the number of 1’s in {xi} is s. Then, the
number of 0’s in {xi} is (n− s). Using this setting, we compare the AIC (Eq.(2.32)) given by the
maximum likelihood estimator (Eq.(2.4)) with the AIC (Eq.(2.37)) given by θ0 = 0.5. Here, the
AIC defined by Eq.(2.37) is called AIC0 and the AIC defined by Eq.(2.2), Eq.(2.4), and Eq.(2.32)
is called AIC1. That is, AIC0 and AIC1 are respectively defined as
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AIC0 = −2nlog(0.5), (3.2)

and

AIC1 = −2

( n∑
i=1

(
xilog(θ̂(x)) + (1− xi)log(1− θ̂(x))

))
+ 2

= −2

( n∑
i=1

(
xilog

( 1
n

n∑
j=1

xj

)
+ (1− xi)log

(
1− 1

n

n∑
j=1

xj

)))
+ 2

= −2

( n∑
i=1

(
xilog

( s
n

)
+ (1− xi)log

(
1− s

n

)))
+ 2, (3.3)

where s (0 ≤ s ≤ smax) stand for the number of times of the coin lands heads up when the number
of trials is n, smax is the maximal number of integers that are less than 0.5n. In contrast, when a
coin is not biased, that is, θ0 = 0.5 holds, p(s), which is the probability that the number of times
the coin lands heads up is less than or equal to s, is

p(s) =

s∑
i=0

(
nCi · 0.5i · (1− 0.5)(n−i)

)
= 0.5n

s∑
i=0

nCi. (3.4)

Because AIC1 cannot be defined when we assume s = 0, s is set to one of {1, 2, 3, . . . , smax − 1} to
find the minimal value of s that satisfies

(AIC1(s)−AIC0) · (AIC1(s+ 1)−AIC0) < 0. (3.5)

The resultant s is termed as ŝ. Here, ŝ is the maximal value of s that is located in the critical region
where s < 0.5n holds. Substitution of ŝ into s in Eq.(3.4) leads to the value of p(ŝ). Since this
test is two-sided, 2 · p(ŝ) is the significance level of the hypothesis test regarding the assumption
of a Bernoulli distribution. Fig. 2. illustrates the relationship between n and ŝ when the number
of trials (n) is one of {20, 40, 60, · · · , 500}, and Fig. 3. illustrates the relationship between n and
2 · p(ŝ).

100 200 300 400 500

0.
10

0.
12

0.
14

0.
16

0.
18

n

2
⋅p

(ŝ
)

Fig. 3. Relationship between the number of trials (n) and 2 · p(ŝ)

Next, we carried out a numerical simulation in which the experiment of tossing a coin n times was
repeated 10, 000 times to derive AIC0(Eq.(3.2)) and AIC1(Eq.(3.3)) and counted the number of
times that AIC0 > AIC1 holds; the result of the counting is denoted by m. The resultant values
of m when the number of trials (n) in each experiment is {20, 40, 60, · · · , 500} are given in Fig. 4.
This graph looks similar to the one in Fig. 3.
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100 200 300 400 500

10
00

14
00

18
00

n

m

Fig. 4. Relationship between m and n when the experiment of tossing a coin n times
was repeated 10, 000 times

Both Fig. 3 and Fig. 4 show that the probability of wrongly identifying a fair coin as a biased coin
does not tend to decline as the number of trials increases. This tendency corresponds to the fact
that AIC does not provide a consistent estimator of orders ([8]; [9]; [10]; page 74 in [2]). This is not
a defect in AIC. Because the significance level of a significance test is usually set at 5% regardless
of the number of data, AIC has a similar characteristic to that of a significance test in the sense
that the significance level of a significance test that is equivalent to AIC is hardly affected by the
number of data.

4 Conclusions

The discussion above shows that, to determine whether or not a coin is biased using the results
of coin tossing, AIC can be used from the perspective of fitting closely to future data because
AIC · (−0.5) is regarded as the approximation of the expected log-likelihood. It also reveals that
determination of the fairness of a coin using AIC is almost equivalent to a statistical test with a
significance level ranging from 11% to 18% as shown in Fig.3 and Fig.4. We are tempted to feel
that if the probability of wrongly identifying a fair coin as a biased coin is located between 11%
and 18%, this is too high, especially in comparison to 5%, which is a common significance level for
a significance test. However, we conclude that when we do not tentatively assume that the coin is
unbiased, a significance level between 11% and 18% is appropriate if fitting well to future data is
our only concern. In contrast, if we suspect that the coin is not biased, we determine that the coin
is biased only if we obtain evidence that disproves this suspicion with certainty. A significance test
with a significance level of 5% is usually used for such a situation. This means that when we suspect
that the coin is not biased, the significance level is set at a lower level than it would be if our purpose
were prediction. In this sense, however, the significance level can be 8% or 3%, for example. The
main reasons a significance level of 5% is currently popular are that 5% is psychologically acceptable
and has been used historically (e.g. [11]).

One thing we can say for sure is that for the coin-tossing problem, AIC and a significance test
with a significance level of 5% should be used differently. If we think of AIC and the 5% test
as belonging to different paradigms ([12]), this obscures the essential notion that the difference is
based on that of significance level; the difference should be attributed to the problem setting and
the goal. Moreover, about the selection of the predictive variables of multiple regression analysis,
Section 8.2.1 of [13] says:
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If prediction performance is the goal, then a 15 to 20% cutoff may work best, although methods
designed more directly for optimal prediction should be preferred.

Section 7.4 of [14] states that the threshold for the backward selection method should be set between
10% and 15%.

In contrast, [15] says:

AIC optimization corresponds to significance-based selection at a significance level of 0.157.

This is because Wilks’ theorem ([16]) shows that the probability of misidentifying a fair coin as
a biased coin is 15.73% if the number of trials is very large. Section 5.6 of [5] derives similar
results and shows that GCV leads to a similar tendency. Therefore, the backward selection method
for creating multiple regression equations yields beneficial results if AIC is adopted as a selection
criterion. However, this does not necessarily mean that AIC performs well as an approximation of
the expected log-likelihood (Section 5.2 of [5]). We should always keep in mind that the general
procedure for deriving AIC (Section 3 of [2]) needs the assumption that restrictive conditions are
satisfied.

Although AIC is widely used for practical purposes (e.g., [17]; [18]), little attention has been paid
to how AIC performs in each problem. The simple problem of coin tossing treated here clarifies
one aspect of AIC. We expect that the characteristics of AIC will be examined in more various
practical activities.
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