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In this paper, we investigate properties of  with closed range satisfying the operator 

equations , ,  we investigate 

the invertibility of  with closed range where the Moore-Penrose inverse of T turns out to be the 

usual inverse of T under some classes of operators. We also deduce the Moore-Penrose inverse of a 

perturbed linear operator  with closed range where  such that  has closed 

ranges and S  satisfying some given conditions. The relation between the ranges and null 

spaces of these operators is also shown. 
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INTRODUCTION 
 
The invertibility of linear operators is useful in finding the 

solution to the operator equation  where y is a 
given vector and x an unknown vector. The inverse of T 
exists and is unique if and only if T is bijective. If 

 the operator equation has no solution. Also, if 

, then  has many solutions. In such 
cases generalized inverses of T are used.  It is known 

that the generalized inverse of  exist if and only 
if the range of T is closed. However, there exists a unique 
generalized inverse called the Moore-Penrose inverse 
which gives the best approximate solution. That is 

 such  that     for  all    is  of 

minimum norm  where    is  the  Moore- 
Penrose inverse of T.  

The Moore-Penrose inverse of operators with closed 
range has been considered by several authors among 
them: Moore (1920) and Penrose (1955) came up with 
operator equations satisfied by the Moore-Penrose 

inverse. That is the operator is the solution to the 
following equations: 
 

, ,  and 

  
 

Generalized  inverses  for  matrices  and  linear operators 
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have  been  studied  by  several  scholars   among  them: 
 

Campbell and Meyer (1991), Roger and Johnson (1985), 
Rao et al. (1971), James (1978) among others. Drazin 
(1958), (2012), and (2016) studied Pseudo-inverses in 
associative rings and semigroups. The author gave a 
theory for a large class of uniquely-defined outer 
generalized inverses. Moreover, Drazin (2016) gave a 
way to define left and right versions of the large class of 
(b, c)-inverses. Wang et al. (2017) gave some 
characterizations of the (b, c)-inverse in terms of the 
direct sum decomposition, the annihilator and the 
invertible elements. Baksalary and Trenkler (2010) 
introduced the notion of the core inverse as an option to 
the group inverse and gave its properties. Mary (2011) 
studied generalized inverses on semigroups by means of 
green’s relations. The author first defined an inverse 
along an element and studied its properties. Penrose et 
al. (1955) described a generalized inverse of a non-
singular matrix as a unique solution for some operator 
equations. Rakic et al. (2014) showed that the core 
generalized inverses are closely related and also gave 
several characterizations of these inverses.  

The reverse order of Moore-Penrose inverse, 

 has been investigated by several authors 

among them: Israel and Greville (2003), Djordjevic and 
Dijana (2011). The authors gave conditions which 

imply . Brock (1990) gave a 

characterization of an EP operator in Hilbert spaces. In 
particular, the author showed equivalent conditions for a 

bounded linear operator with closed range. Koliha (2000) 

gave different conditions which imply that an operator is 
an EP operator. The author specifically gave equations 
which imply each other for an upper semi-Fredholm 
operator. That is, for an upper semi-Fredholm operator T, 

then, , ,  implies 
the other. 

Several authors have discussed results on perturbation 
of operators in Hilbert spaces and Banach spaces among 
them: Chen and Xue (1997), Chen et al. (1996), Ding 
(2003), Ding and Huang (1997), Stewart (1977), Wei 
(2003), Wei and Chen (2001), Zhou and Wang (2007), 
Wei and Ding (2001) came up with a detailed formula for 
the generalized inverse of the perturbed operator under 
some conditions. Deng and Wei (2010) generalised the 
result of Wei and Ding (2001) under different conditions. 
Shani and Sivakumar (2013) discussed rank-one 
perturbations of closed range operators and obtained the 
Moore-Penrose inverse of the operators. Kulkarni and 
Ramesh (2015) gave an equation for Moore-Penrose 
inverse of a perturbed linear operator 

as  where S  is a 

perturbation of T and satisfies some given conditions.  
They also gave the relation between the range of the 

operators. That is, conditions under which the closed 
range   of   T   implies   closeness  of  range  of  T+S.  We  

 
 
 
 
contribute to this study by showing that the Moore-
Penrose inverse of an EP operator can be the usual 
inverse of the operator under the given conditions. Under 
perturbation of linear operators, we give the Moore-

Penrose inverse of  where  with 

closed ranges and S  under some given conditions 

distinct from the ones used by Kulkarni and Ramesh 
(2015). We come up with corollaries relating to these 

theorems and also show that is 

closed. 
 
 
NOTATIONS AND TERMINOLOGY 
 

We will use H to denote a Hilbert space, 

 of linear operators with closed range on H and B(H) the 

space of bounded linear operators on . The range of  

will be denoted by  and  its closure, its null 

space by ) and the orthogonal complement of its null 

space by . If  has dense range then 

. 

If two operators T and S commute, then 

. We denote the commutants of T 

by ..  is bounded from below if for a scalar 

 we have   for all x in H. Given an 

operator  with closed range, we define the 

generalized inverse of T as the operator  
Satisfying . Also there exists a unique operator 

 called the Moore-Penrose inverse of T which is a 

unique operator satisfying the following four conditions: 
 

 

 such that  is 

an orthogonal projection on  and , 

We use W(T) for numerical range of T. The Drazin 

inverse of T is a unique element  satisfying the 
following conditions: 

 for some non-

negative integer . An operator T is said to have a 

spectral idempotent   at 0 if  is 

quasinilpotent,   is invertible. 

An operator T is: 
 

(1) simply polar if where  

(2) upper semi-Fredholm if its range is closed and either 
its kernel or codimension of R(T) is finite. 

(3) An EP operator if  

(4) R- quasi- EP operator if . 



 
 
 
 

(5) L-quasi EP operator if . 

(6) Partial isometry if  or . 

 (7) Quasinormal if  

(8) Quasinilpotent if its spectrum contains only the zero 
scalar. 
 
 

MAIN RESULTS 
 

Theorem 1 
 

Let  with closed range and T  its generalized 

inverse. If: 
 

(i) T is one to one, then T'T=I. 

(ii) , then . 
 
 

Proof 
 

(i) The generalized inverse of  satisfies . This 

implies  and . Since T is 

one-to-one, then . Thus . 

(ii) If B(H) is the generalized inverse of T∊C(H) with 

closed  range, then  

Thus, R(T)= R . If T has a closed range that is 

dense in H, then T its onto. This implies that 

 Thus,  implying 

. Since , 

then T≠ 0 and hence, . Implying. . 
 

We note that since , 

, then   is defined on H. 

It is known that an operator T has a right inverse if 
R(T)=H. 
 
 

Corollary 1 
 

Let  with closed range and  be the Moore-

Penrose inverse of T. If T is a quasiaffinity, then 

. 
 
 

Proof 
 

 being a quasiaffinity implies that it has a dense range 

and is one-to-one. From Theorem 1, . 

Since is a unique generalized inverse of  

then  
 
 

Remark 1 
 

In Corollary 1, we have deduced  that    for  the  
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case of a quasiaffinity. In Theorem 2, we relax the 
condition of quasiaffinity in Corollary 1 to operator with 
either dense range or injective under the proviso that T is 
an EP operator. 
 
 
Theorem 2 
 

If  with closed range is an EP operator and  

its Moore-Penrose inverse, then in each of 

these cases: 
 
(i) T is one-to-one. 

(ii) . 

 
 
Proof 
 

The Moore-Penrose inverse of T satisfies . If T 

is an EP operator, then  This implies, 

and   Thus, 

 and  

Also, and  

If is  

Thus ,  Also, if T 

has a closed range and  , then it is onto 

implying  and  where  is defined on 

H. Hence . 

In Corollary A, Brock (1990) gave a characterization of 
EP operator as follows. 
 
 
Corollary A (Brock (1990)) 
 

The following statements are equivalent for  with 

a closed range.  
 

(i) . 

(ii) . 

(iii) . 

(iv)  

 
 

Corollary 2 
 

If it is either one-to-one 

or has a dense range, then  in each of the 

cases listed: 
 

(i) . 

(ii) . 

(iii)  
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Proof 
 
From Corollary A above, each of conditions (i) – (iii) 
implies T is an EP operator. Thus, the proof of Theorem 2 
carries through. 
 
 

Corollary B (Koliha (2000)) 
 
The following statements are equivalent for T, an upper 
semi-Fredholm operator on H. 
 

(i) . 

(ii) . 

(iii)  
 
 

Remark 2 
 
In Corollary 3, we use the result of Koliha (2000) in 
Corollary B which uses another special inverse called the 

Drazin inverse and the spectral idempotent of  at 0 to 

show that the Moore-Penrose inverse of an operator is 
the same as inverse of an operator under some 
conditions.  
 
 
Corollary 3  
 

If  is an upper semi-Fredholm operator on H 

with a closed range and either 0 

or . Then in each of the cases: 

 
(i) T is one to one. 

(ii) . 

 
 
Proof  
 
From Corollary B, T is an EP operator hence the proof of  
Theorem 2 carries through. 
 
 
Theorem C (Wong ((1986)) 
 

  if and only if its Moore-

Penrose inverse is a polynomial of T provided that H has 
a finite dimension.  
 
 

Remark 3 
 
From Theorem C we note that every subspace of a finite 

dimensional space is closed hence if  where H 

is a finite dimensional space, then it has a closed range 
and if its range is dense in H, then it’s surjective. Again, if  

 
 
 
 
T is one to one, then it follows that T is invertible. Hence, 

 

 
 
Theorem D (Khalagai and Sheth (1987)) 
 

If  satisfy , then  in each 

of the cases listed. 
 

(i)  for some positive integer m.  

(ii) T is normal and either or 

 

(iii) T is normal and either  or . 

 
 
Corollary 4 
 

If  has a closed range  

and it’s either one-to-one or ,  then  

in each of the statements listed. 
 

(i)  for some positive integer m.  

(ii)  is normal and either or 

 

(iii)  is normal and either  or . 
 
 

Proof 
 

From Theorem D, each of the conditions  

implies that  is an EP operator. Since  is either 

injective or has closed range which is dense in H, then 
the proof of Theorem 2 carries through. 
 
 

Lemma E (Anderson [2011]) 
 

If T  is bounded from below, then: 
 

(i)  and R(T) is closed. 

(ii)  and R(T) is closed. 
 
 

Remark 4 
 

From Lemma E, it is worth noting that if an operator is 
bounded from below then the operator is one-to-one and  
has a closed range. Also, if it is normal with closed range, 
it is an EP operator. 
 
 

Corollary 5 
 

If  is normal and bounded from below, then 

.  



 
 
 
 
Proof  
 
By Lemma E, T is one to one with a closed range and if 
normal, then it is an EP operator. Thus, the proof of 
Theorem 2 carries through. 
 
 

Proposition F (Israel and Greville (2003)) 
 
The statements that follow implies the other for 

 with dense domain. 
 

(i)  is closed 

(ii) is closed 

(iii)  is bounded 

(iv)  is closed 

(v)  is closed 
 
 

Corollary 6  
 

If  is a densely defined normal operator with 

 then  if either R  or 

 are closed or  is bounded. 
 
 

Proof 
 
The aforementioned conditions imply that T has a closed 
range and if its normal, then it is an EP operator. Again, if 

, then the proof of Theorem 2 carries through. 

 
 
Theorem 3 
 

If  R- quasi –EP operator bounded from 

below, then . 

 
 
Proof 
 

If  is R- quasi- EP operator then from definition T 

commutes with and . This 

implies .  

Also, and . Since T is 

linear, then  and . Since 

T bounded from below by Lemma E,  implying 

 and . Consequently, 

and . Hence, . 

 
 
Corollary 7 
 

If   is a partial isometry  which  is  bounded  from  
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below and  is quasinormal, then T is unitary. 

 
 
Proof 
 

From definition of a partial isometry . If  is 

quasinormal, we have   Substituting 

we have Thus, the proof 

of Theorem 3 carries through. 
 
 
Theorem 4 
 

If  is L- quasi – EP operator with a closed and 

dense range, then . 

 
 
Proof 
 

If  is L - quasi- EP operator then from definition T 

commutes with  Thus . Since 

exists, then  Thus . 

This implies  T. Hence 

 and . Also, 

 and . Since , 

then  as well as . Thus, 

and  implying . If T has a 

closed range that is dense in H, 

then  

In view of Theorem 4, we extend the result of Mwanzia 
et al. (2021) in Corollary G for the case of partial 
isometries. 
 
 
Corollary G (Mwanzia et al. (2021)) 
 

Let  be partial isometry such that . If T 

is quasinormal, then  is unitary. 

 
 
Corollary 8 
 

Let  be a partial isometry with closed range. If T 

is quasinormal with , then . 

 
 
Proof 
 

From definition of partial isometry,  

and . Substituting we have, 

. Since T has a closed range with 

, the proof of Theorem 4 carries through. 
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Remark 5 
 
In the sequel, we study the relation between the range 
and null spaces of operators and derive the Moore-

Penrose inverse of (T+S) where and  

or  with  being a perturbation 

of . Frigyes and Bela (1955) gave the following result 

which helps in showing the relation between the ranges 
of operators in Hilbert space. 
 
 

Proposition H (Frigyes and Bela (1955)) 
 

If  are densely defined and , then 

 
 
 

Theorem 5 
 

If  and , where P and Q are 

densely defined with closed ranges. Then 
  

  

(ii) if and only if  
 
 

Proof 
 

Let  and  This means  

Thus for . Thus,  implying 

 Next, if  then  is an 

orthogonal projection onto . This means,  

 

 That is  

Conversely, let    then  

By Proposition H above,  

Hence, . 
 
 

Remark 6  
 

From results of Theorem 5, and 

 under the said conditions. 

 
 
Corollary 9 
 

If  is densely defined and is bounded 

from below, then . 
 
 

Proof  
 

If   then  by  Theorem  5,   is  a  projection  on  

 
 
 
 

. That is . Thus,  implying 

 and  Since  is 

bounded from below then by Lemma E, P has a closed 

range and . Thus,  and 

. This implies  is an orthogonal projection 

on  

 
 
Proposition I (Kulkarni and Ramesh (2015)) 
 

If ) be densely defined, then: 

 

(i) . 

(ii) . 

 
 
Lemma J (Israel et al (2003)) 
 

If ) and  then (  is bijective. 

 
 
Corollary 10 
 

Let  where P and Q are densely defined 

operators with closed ranges. If  is surjective and 

 satisfies ,  and 

hen . 

 
 
Proof 
 
From Theorem 5,  
 

.                                                          (1) 
 

Next, let  for ) thus . From Lemma 

J, if  then 

.  

Since  is surjective and  exists, then 

 is surjective. Thus, there exist  

such that Thus: 

 

 

    

.    

     

     

    . 

That is  implying . Hence,  
 

                                                          (2) 



 
 
 
 

From  we have .  

 
 
Theorem 6 
 

Let where  is densely defined operator 

and bounded from below. If  satisfies 

,  and  , 

then  

 
 
Proof 
 

For  we have  

 

Since  then  is invertible 

and . Since P is bounded from 

below then by Lemma E above, P is injective and thus  

  

 
 implying 

 
 

Next, let , then 

  

. 

That is . Since P is injective, then 

 Also if  then 

 exists implying is injective. 

Thus,  implying . Hence,  

 implying  

 

 

From  and , then . 

 
 
Corollary 11 
 

If  where P is bounded from below with 

dense domain, then . 

 
 
Proof 
 

For  means . Since P is 

bounded  

from below then Lemma E,  is injective implying  

Hence  implying . Hence, 

 

                                                                (i) 
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Next, let  This means  implying 

. Since  is injective then . That is 

 implying: 

 

                                                            (ii) 

 

From (i)  (ii) we have . 

 
 
Theorem 7 
 

Let  where P and Q are densely defined 

operators with closed ranges. If Q is surjective and 

 satisfies  ,  and 

 then 

 

(i)  is closed. 

(ii) . 

 
 

Proof 
 

From Corollary 10,  Thus if  is 

closed, then  is closed and exist. Also 

  

Thus,  If  then by 

Lemma J,  is bijective and 

. Thus, 

. This equation satisfies 

the properties of Moore-Penrose as follows: 
 

Let  This 

implies that for  we have 

. Multiplying each side by  

from the left we have, . 

Since is an orthogonal projection onto  we 

have  and 

. Thus . 

Since is an orthogonal projection onto  we 

have 
 

 
+  

 

 
 

Also,  implying . 

Thus  That is  
 

       (i) 
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Next, we let . This 

implies , there exist  such that 

. Multiplying each side from the left 

by  we have . By definition 

of Moore-Penrose inverse is an orthogonal 

projection onto implying  

and . 

Thus . Since  is an 

orthogonal projection on , then we have: 

  

. 

. 

 
. 

 

Thus  

This implies: 
 

    (ii) 
 

Lastly, from Proposition H, ) is densely 

defined operator then 
 

                                          (iii) 
 
Equations (i), (ii) and (iii) justify the results.  
 
 
Corollary 12  
 

Let  where P and Q are densely defined 

operators with closed ranges. If Q is surjective and 

 satisfies ,  and 

, then  . 

 
 
Proof 
 
From Theorem 7, we have 

. Since  is onto then, 

 and multiplying both sides from the left by 

 we have, . 

Following the steps of Theorem 7, 

 satisfies the properties of 

Moore-Penrose inverse. 
 

 

Corollary 13 
 

Let  where P and Q are densely defined 

operators with closed ranges. If P is bounded from below,  

 
 
 
 

Q is surjective and  satisfies , 

 and  then: 

  

. 

 
 

Proof 
 

From Theorem 7, . 

Since and  are injective then multiplying 

both sides of the preceding equation by  

we have .  

 
Following the steps of theorem 7, we have: 
 

 satisfies the properties of 
Moore- Penrose inverse. 
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