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Abstract

Electromagnetic emissions 3 and 4 at the third and fourth harmonics of the plasma frequency ωp were observed
during the occurrence of type II and type III solar radio bursts. Two-dimensional particle-in-cell simulations are
performed using a weak beam, high space and time resolutions, and a plasma with density fluctuations of a few percent,
for parameters relevant to regions of type III bursts. For the first time, a detailed study of the different wave coalescence
processes involved in the generation of 3 and 4 waves is presented and the impact of density fluctuations on the
wave interaction mechanisms is demonstrated. Energy ratios between the second, third, and fourth harmonics 2 , 3 ,
and 4 are consistent with space observations. It is shown that, in both homogeneous and inhomogeneous plasmas, the
dominant processes generating 3 ( 4 ) are the coalescence of 2 ( 3 ) with a Langmuir wave, in spite of the random
density fluctuations modifying the waves’ resonance conditions by energy transport in the wavevector space and of the
damping of Langmuir waves. The role of the backscattered (forward-propagating) Langmuir waves coming from the
first (second) cascade of the electrostatic decay of beam-driven Langmuir waves is determinant in these processes.
Understanding such wave coalescence mechanisms can provide indirect information on Langmuir and ion acoustic
wave turbulence, the average level of density inhomogeneities, and suprathermal electron fluxes generated in solar wind
regions where the harmonics manifest. Causes for the rarity of their observations are discussed.

Unified Astronomy Thesaurus concepts: Solar electromagnetic emission (1490); Solar wind (1534); Radio
bursts (1339)

1. Introduction

Electromagnetic emissions at the third harmonic of the
plasma frequency ωp have been reported during the occurrence
of type II (Bakunin et al. 1990; Kliem et al. 1992; Zlotnik et al.
1998; Brazhenko et al. 2012) and type III solar radio bursts
(Kundu 1965; Takakura & Yousef 1974; Zlotnik 1978;
Cairns 1986; Reiner et al. 1992; Reiner & MacDowall 2019),
even if rarely and sometimes controversially. The first
unambiguous and clear observation of electromagnetic harmo-
nics at nωp (n= 3−5) during type III bursts was performed by
the satellite ISEE1 in the solar wind and Earth’s foreshock
region (Cairns 1986). Recently, the Wind spacecraft detected
several events exhibiting third harmonic emissions in inter-
planetary type III bursts observed locally near 1 au (Reiner &
MacDowall 2019). Missions such as Parker Solar Probe and
Solar Orbiter should be able to detect locally generated type III
harmonic emissions at nωp (n> 2) with intensities above the
remote radiation (Reiner & MacDowall 2019).

In this Letter, we give evidence for the mechanisms of
generation of the third 3 and fourth 4 electromagnetic
harmonics, as well as the impact of background plasma density
fluctuations on such emissions. Note that the difficulty in
observing such waves, excluding the instrumental limitations, is
partly due to the weakness of the electron beams generating
Langmuir wave turbulence in the bursts’ source regions and to the
presence of plasma density irregularities, which can prevent
wave–wave interactions from proceeding efficiently. To date,

three main nonlinear processes have been proposed to explain the
generation of 3 (e.g., Zheleznyakov & Zlotnik 1974; Zlot-
nik 1978; Cairns 1988; Yin et al. 1998; Zlotnik et al. 1998; Ziebell
et al. 2015), i.e., (i)–(ii) the coalescences of the second
electromagnetic (electrostatic) harmonic 2 ( 2 ) with a Langmuir
wave of frequency ωp (Cairns 1986, 1988; Yi et al. 2007; Zlotnik
et al. 1998), or (iii) the merging of three Langmuir waves (Zlotnik
et al. 1998). For type III bursts, the last process is less effective
(Zlotnik et al. 1998).
Using particle-in-cell (PIC) simulations, some authors

studied the excitation, by a strong beam propagating in a
homogeneous plasma, of electromagnetic and electrostatic
harmonic waves emitted at nωp (up to n= 4) and discussed the
possible mechanisms of generation (Rhee et al. 2009).
Moreover, third harmonic excitation was also considered in
the framework of electromagnetic weak turbulence theory
(Ziebell et al. 2015). In the present work, 2D-PIC simulations
are performed using a weak beam, high space and time
resolutions, and an inhomogeneous plasma with density
fluctuations of a few percent, as in the solar wind. For the
first time, a detailed study of the role played by wave
coalescence processes in the generation of 3 and 4
electromagnetic harmonics is presented and the impact of
density fluctuations on these mechanisms is shown. Under-
standing such processes can provide indirect information on the
population of nonthermal electrons, as well as the Langmuir
and ion acoustic wave turbulence generated in source regions
of harmonic waves.

2. Generation of Electromagnetic Harmonics

In a 2D simulation box of size L L 1448 1448 ,x y D
2l´ = ´

an electron beam with velocity vb= 0.25c and density
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nb/n0= 5 × 10−4 (n0 is the density of the background ions)
propagating along the x-axis generates Langmuir wave
turbulence in (i) an inhomogeneous plasma typical of
type III bursts’ regions in the solar wind, with background
random density fluctuations δn of average level

N n n 0.050
2 1 2 ( )dD = á ñ and wavelengths much larger

than those of the Langmuir waves, and (ii) the same plasma
but without the initially applied density fluctuations. The 2D3V
version of the code SMILEI (Derouillat et al. 2018) is used to
provide calculations over almost 104 plasma periods. Details on
the physical and numerical parameters were given in recent
papers (Krafft & Savoini2021, 2022).

The beam radiates Langmuir waves  at frequency ωk;ωp,
which are in turn involved in two cascades of electrostatic decay,
i.e.,    ¢ + ¢ and S ¢   + , where ¢ and  (S¢ and
S″) are backscattered and forward-propagating Langmuir (ion
acoustic) waves, respectively. Meanwhile, electrostatic harmonics
of these high-frequency waves are produced, designated below as

n , n¢ , and n , with n indicating the frequency nωp at which
they are excited. Figure 1(a) presents the spectral electric energy
density |Exk|

2 at ωk;ωp, in a homogeneous plasma and at
asymptotic times, showing the beam-driven Langmuir waves 
(kxλD 0.06), the backscattered waves ¢ (kx< 0), and the
forward-propagating waves ¢¢ (0.02 kxλD 0.06) (see also
Krafft et al. 2015).

Three main nonlinear wave processes were proposed to explain
the generation of the harmonics n (n� 3): (i) the fusion of n
Langmuir waves and (ii)–(iii) the coalescence of the n 1 th( )-
electrostatic (electromagnetic) harmonic wave n 1 - n 1( )- with a
Langmuir wave, i.e., the process n n1 1  + -
( n n1 1  + - ) (Cairns 1988; Yin et al. 1998; Zlotnik et al.
1998), where 1 designates , ¢, or . For type III bursts, the
first process is supposed to be very weak, whereas the third one,

n n1 1  + - , should be dominant compared to the second
one (Zlotnik et al. 1998). However, no convincing proof of such
assumptions and no description of the contributions of each
coalescence channel to the generation of 3 and 4 have been
provided to date for type III bursts.

Electromagnetic emissions at frequencies nωp (n� 1) are
clearly observed in the simulations presented hereafter, when the
plasma is homogeneous or contains external density fluctuations
with ΔN; 0.05. Figures 1(c)–(d) show, at asymptotic times, the
spectral electromagnetic energy density |Bzk|

2 in the plane
(kx, ky), at ωk; nωp (n= 3, 4) and ΔN= 0 (homogeneous case).
Note that the spectra are consistent with those obtained by Rhee
et al. (2009). The dispersion relations k ck p n

2 2 2 2
n

w w= + of the
n waves appear as circular rings, with the wavevector moduli

kn matching the theoretical values k n v c1n th D T,
2 1 2( )l = -

(k3,thλD; 0.056, k4,thλD; 0.077); vT is the plasma thermal
velocity. These distributions exhibit some angular dependence;
for n= 3, the intensity is maximum within a cone
110° θ3 250° ( k kcos x3 3 3q = ), corresponding to waves
propagating with a negative parallel wavenumber k3x< 0, which
can be observed starting from ωpt; 4000; those can only be
produced, according to the wavevectors’ resonance conditions of
the process 2 1 3  +  , when 1 = ¢. In a plasma with
density fluctuations, the waves ¢ also arise from transforma-
tions of the waves  on inhomogeneities. A smaller enhance-
ment is visible for−45° θ3 45°, i.e., for 3 waves with k3x>
0, (Figure 1(c)), due to the contribution at late times of waves 
(see also Figure 2(e)). Figure 1(g) shows the loci where the
resonance conditions for the wavevectors involved in the process

2 1 3  +  can be satisfied, i.e., the angle θ3 as a function of
the wavenumbers kx and ky of the Langmuir waves 1 . When
110° θ3 250° (−45° θ3 45°), resonance conditions are
only possible if kx< 0 (0< kxλD 0.06), i.e., for 1 = ¢
( 1 = ), in agreement with Figure 1(c).
For n= 4 (Figure 1(d)), the spectrum of 4 exhibits a quasi-

uniform distribution with a larger wave intensity
within−45° θ4 45°. Moreover, electrostatic harmonics n
and n¢ are also observed in Figures 1(b), (e)–(f) that present
|Exk|

2 at ωk; nωp (n= 2, 3, 4); one observes therein, between
the electrostatic emissions at larger kx∣ ∣, a circular ring at small
kx representing the electric contribution to n . The role of the
waves 2,3 and 2,3¢ in the generation of the harmonics 3,4 is
discussed below.

Figure 1. Homogeneous plasma (ΔN = 0) at asymptotic time ωpt = 8760; ((a)-(f)): wave spectra in the plane (kx, ky); (g): resonance conditions in the plane (kx, ky).
(a) |Exk|

2 at ωk ; ωp, with Langmuir waves ,  (kx > 0) and ¢ (kx < 0). (b) |Exk|
2 at ωk ; 2ωp, with electric field contribution to 2 (central ring) and electrostatic

harmonics 2 (k2x > 0) and 2¢ (k 0x2¢ < ). (c) |Bzk|
2 at ωk ; 3ωp: wave 3 . (d) |Bzk|

2 at ωk ; 4ωp: wave 4 . (e) |Exk|
2 at ωk ; 3ωp, with electric field contribution to 3

(central ring) and electrostatic harmonics 3 (k3x > 0) and 3¢ k 0x3( ¢ < ). (f) |Exk|
2 at ωk ; 4ωp, with electric field contribution to 4 (central ring) and electrostatic

harmonics 4 (k4x > 0) and 4¢ (k 0x4¢ < ). (g) Angle θ3 ( k kcos x3 3 3q = ) in degrees, as a function of kx and ky of the Langmuir waves , ,1   = ¢ , showing the loci
where wavenumber resonance conditions are satisfied for 2 1 3  +  . All variables are normalized. (a)–(f): logarithmic scales; (g): linear scale.
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Figure 2(a) presents the time variations of the magnetic
energies W= (1/2)∫∫B2(x, y)dxdy of the waves ,2 3 , and 4
(see also Krafft & Savoini 2021, 2022). They reach asympto-
tically the levels W W0.013 2  and W W0.054 3  , which
are consistent with observations of type III bursts (Cairns 1986)
and estimates obtained in the framework of weak turbulence
theory (Ziebell et al. 2015). Figure 2(b) and (c) show the time
evolution of the energies W= (1/2)∫∫E2(x, y)dxdy of the
Langmuir waves , ¢, and , as well as of the harmonic
waves ,2 2 ¢ and ,3 3 ¢ . In order to find resonant interactions
between these waves leading to the generation of 3
and 4 waves, we search proportionality relations like
W t W t W ti j k  ( ) ( ) ( )µ , with i, j= 2, 3, 4; i≠ j; and k= 1, 2,
3. In order to provide clear evidence owing to the curves’
superimposition, products W t W tj k ( ) ( ) are multiplied by a
coefficient proportional to the waves’ coupling factors. For
simplicity, we suppress below in our notations the time
dependency. For a given interaction process (e.g.,

,2 1 3  +  1 = , ¢, ), we have to find all possible
time intervals where the relations W W W2 3 1  µ ,
W W W3 2 1  µ , and W W W1 2 3  µ are satisfied, taking into
account that beforehand resonance conditions for frequencies
and wavevectors should be fulfilled (e.g., Figure 1(g)). Note that
during the time evolution, the waves 3,4 can interact
successively and/or simultaneously with several different pairs

of waves, and thus the number of possibilities to search for is
large.
One can see in Figure 2(d) that W W W2 3  µ¢ during the

time range T 1700 3600 ,p
1 [ – ]wD - whereas W W W2 3  µ ¢

and W W W3 2  µ ¢ can be observed in Figures 2(e)–(f) within
1700 4500 p

1[ – ]w- and 4600 5600 p
1[ – ]w- , respectively. This

shows the occurrence of the process 2 3  ⟶+ ¢ during
the stage of growth of 3 , which is coherent with the spectral
enhancements at k3x< 0 observed in Figure 1(c), as
k k k k kx x x x x3 2 2 ∣ ∣= + = -¢ ¢ is mostly negative, according
to the ranges of values of the wavenumbers (k¢ is the
wavevector of ¢). However, other Langmuir waves also
contribute to this coalescence, as W W W2 3  µ within
5400 7000 p

1[ – ]w- (Figure 2(b)), W W W2 3  µ  within

6300 7700 p
1[ – ]w- (Figure 2(e)), and W W W3 2  µ  within

4800 5800, 7000 7500 p
1[ – – ]w- (Figure 2(f)); the corresponding

coalescence 2 3  ⟶+  occurs mainly within the range
4800 ωpt 7500 and thus participates to the energy growth
of 3 waves at later times. The waves  play a smaller role, at
times when their amplitudes reach those of the waves ¢, i.e.,
4500 ωpt 5500, as W W W2 3  µ and W W W3 2  µ are
found, during 4000 6000 p

1[ – ]w- and 4500 5800 p
1[ ]w- - , respec-

tively (Figures 2(e)–(f)); in this case, the waves 2 have to

Figure 2. Homogeneous plasma: time variations of wave energies (black curves) and products between them (color curves). (a)–(g): logarithmic scale; (h): linear
scale. (a) Time variations of W ,2 W 3 , and W 4 (black). (b) Time variations of W , W ,¢ and W (black), and of W W3 4  and W W ,2 3  labeled by H3

*H4 (green) and
H2

*H3 (red). (c) Time variations of W 2 and W 3 (solid black), W
2¢
and W

3¢ (dotted black), and W W3  and W W ,4  labeled by H3
*L (green) and H4

*L (green).
(d) Time variations of W and W¢ (black), W W ,3 4  and W W2 3  , labeled by H3

*H4 (green) and H2
*H3 (red). (e) Time variations of W 2 (black), as well as W W ,3 

W W3 ¢, and W W3 , labeled by H3
*L (green), H L3* ¢ (blue), and H3

*L″ (red); the blue curve is duplicated (i.e., multiplied by another coupling factor) to show the
relation W W W2 3  µ ¢ occurring at different times. (f) Time variations of W 3 (black), as well as W W ,2  W W2 ¢ and W W2 , labeled by H2

*L (green), H L2* ¢
(blue), and H2

*L″ (red). (g) Time variations of W 3 (black), as well as W W ,4  W W4 ¢, W W4  and W W
2 ¢ , labeled by H4

*L (green), H L4* ¢ (blue), H4
*L″ (red) and

L L2*¢ (orange); the red curve is duplicated (i.e., multiplied by another coupling factor) to show the relation W 3 µ W 4 W¢¢ occurring at different times. (h) Time
variations of W 4 (black), W W3 ¢ and W W

3 ¢ , labeled by H L3* ¢ (blue) and L L3*¢ (orange); the two latter curves are smoothed, due to oscillations. Energies are
normalized by the initial beam kinetic energy.
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satisfy k2x< 0 and k x has to belong to the smallest parallel
wavenumbers of the waves  for the process 2 3  ⟶+
to take place, reducing its probability of occurrence. In some
time ranges, 2 and 3 interact with the three Langmuir waves

1 simultaneously; then, for example, interactions within the
triplet ( , ,2 3  ¢) modify the exchanges of energy within the
triplets ( , ,2 3  ) and ( , ,2 3  ), not to mention interac-
tions with the beam electrons; meanwhile, the decays
   ¢ + ¢ and   ¢   +  also occur, which transport
part of the energy to low frequencies. Then, Langmuir wave
energy is shared with several waves simultaneously. This
circumstance makes the existence of the proportionality
relations found within large time intervals very convincing.
Thus, one can state that 2 waves coalesce with different
Langmuir waves, depending on time, to generate the 3 waves;
the waves ¢ play the most important role, as mentioned above
regarding Figures 1(c) and (g).
Moreover, coalescence of 1 with n 1¢ > waves also occurs.

One finds that W W W
2 3  µ¢ within 5500 ωpt 8000

(Figure 2(c)) and that W W W3 2  µ ¢ within a in a shorter time
range (Figure 2(g)), but the relation W W W

2 3  µ ¢ cannot be

found. In turn, the wave 3¢ plays a role in the growth of 4 , via
the coalescence channel 3 4  ⟶¢ + , as W W W

3 4  µ¢

within 6800 9000 p
1[ – ]w- (Figure 2(c)) andW W W4 3  µ ¢ within

5000 5600 p
1[ – ]w- (Figure 2(h)).

For ωpt 4000, the coalescence 3 4  ⟶+ ¢ occurs as
W W W3 4  µ ¢ within 4000 4700 p

1[ – ]w- (Figure 2(g)),
W W W3 4  µ¢ within 6100 6700 p

1[ – ]w- (Figure 2(d)) and
W W W4 3  µ ¢ within 6800 7500 p

1[ – ]w- (Figure 2(h)) are
satisfied. The process 3 4  ⟶+  takes place within
5400 ωpt 8800, as W W W3 4  µ (Figure 2(b)) and
W W W3 4  µ  (Figure 2(g)) during this time interval, whereas

3 4  ⟶+ occurs only during the time range
5900 ωpt 6800 (Figure 2(g)).
In conclusion, if for the generation of 3 the coalescence

2 1 3  ⟶+ is clearly dominant, the process
2 3  ⟶¢ + also occurs. Moreover, the process

H3 1 4  ⟶+ ( 3 1 4  ⟶ )¢ + certainly (likely) takes
place, where ,1  = ¢  ( ,1  = ¢). Moreover, examples of
cross sections of the auto- and cross-bicoherence bc calculated
using the magnetic and electric fields are shown in the parallel
wavenumber (kx1, kx2) and frequency (ω1, ω2) spaces in the left
column of Figure 3. Most wave coalescence processes shown
in Figure 2 present significant levels of bc, in the time intervals
where they appear, supporting the above results.

3. Impact of Density Fluctuations

When the plasma is randomly inhomogeneous, one expects
significant changes compared to the results obtained above for
a homogeneous plasma. Indeed, at times when the harmonics

3 and 4 grow, the Langmuir waves 1 , n , and n¢ damp
(Figures 4(b)–(c)) so that the probability of efficient wave–
wave interactions decreases. Figure 4(a) shows the time
variations of the magnetic energies of the waves ,2 3 , and

4 , with asymptotic amplitudes W W0.0063 2  and
W W0.54 3  presenting orders of magnitude compatibility
with those reported during type III bursts’ observations
(Cairns 1986).
The corresponding spectra are presented at asymptotic times

for ωk; nωp in Figures 5(a)–(f) (compare with Figures 1(a)–(f));

Figure 3. Examples of cross sections of the auto- and cross-bicoherences bc of the
magnetic and electric fields in the parallel wavenumber and frequency planes. The left
(right) column refers to homogeneous (inhomogeneous) plasma. For each panel, the
bottom shows the maxima of bicoherence (bc), their location in frequency (ω1, ω2) and
wavenumber (kx1, kx2) spaces, and the corresponding coalescence processes. Note that,
as mentioned in the text, theory provides for our parameters the following values for
the wavevectors’ moduli of 2 , 3 , and 4 : k2λD; 0.035, k3λD; 0.056, k4λD;
0.077. Note that for ΔN= 0.05, spectral broadening due to density fluctuations can
shift wavenumbers from their theoretical values. (a)ΔN= 0, ωpt= 3292, bc; 0.75,
(kx1; 0.217, kx2;− 0.187), k k k k 0.03 ;x x x x1 2 2 1 2   ( ) ( ) ( )¢+  +
bc; 0.6, (kx1; 0.0564, kx2; 0.0347), k k k 0.091x x x2 2 1 2  ( ) ( )+ - - - ¢

kx3 1 ( )- . (b)ΔN= 0, ωpt= 4867, bc= 0.9, (kx1; 0.074, kx2;− 0.11),
k k k k 0.036 ;x x x x1 2 2 1 2   ( ) ( ) ( )+ ¢  + - bc= 0.76, (kx1; 0.134, kx2;

− 0.099), k k k k 0.035 ;x x x x1 2 2 1 2   ( ) ( ) ( )+ ¢  + bc; 0.62, (kx1; 0.0911, kx2;
− 0.0564), k k k k0.035 ;x x x x2 2 1 1 3 2  ( ) ( ) ( )+ + ¢ -  bc= 0.7 (kx1; 0.052,
kx2;− 0.078), k k k k0.13 .x x x x3 1 2 1 4 2  ( ) ( ) ( )+ ¢ - -  (c) ΔN= 0, ωpt=
2743, bc= 0.7, (ω1= 2.93, ω2= 2.01), 2 2 3 1  ( ) ( )w w+ ¢  . (d) ΔN= 0,
ωpt= 4858; (bottom): bc= 0.76, (ω1= 3.02, ω2= 2.00), ;2 2 1 3 1  ( ) ( )w w+ 
(top): bc= 0.32, (ω1= 4.01, ω2= 3.01), 3 2 1 4 1  ( ) ( )w w+  . (e)ΔN= 0.05,
ωpt= 2369, bc= 0.56, (kx1; 0.0564, kx2;− 0.031), k kx x2 2 1 ( ) (- + ¢ - +
k k0.087 ;x x2 3 1 ) ( )-  - bc; 0.51, (kx1; 0.06, kx2;− 0.035),

k k k k0.025x x x x2 1 1 2 2  ( ) ( ) ( )+ + ¢ -  . (f) ΔN= 0.05, ωpt= 3917, bc=
0.85, (kx1; 0.161, kx2;− 0.126), k k k k 0.035 ;x x x x1 2 2 1 2   ( ) ( ) ( )+ ¢  +
bc= 0.78, (kx1; 0.0347, kx2;− 0.065), k k k 0.099x x x2 1 1 2  ( ) ( )+ ¢ - + - 

k ;x3 2 ( ) bc= 0.52, (kx1; 0.047, kx2;− 0.078), k k kx x x3 1 1 2  ( ) (+ ¢ - +
k0.125 x4 2) ( )-  . (g) ΔN= 0.05, ωpt= 2108, bc= 0.4, (ω1= 3.00, ω2=

2.01), .2 2 1 3 1  ( ) ( )w w+  (h) ΔN= 0.05, ωpt= 4421; (bottom): bc= 0.6,
(ω1= 2.97, ω2= 1.98), 2 2 1 3 1  ( ) ( )w w+  ; (top): b 0.4,c 1(w= =
3.96, 2.95 ,2 3 2 1 4 1  ) ( ) ( )w w w= +  . All variables are normalized.

4

The Astrophysical Journal Letters, 934:L28 (7pp), 2022 August 1 Krafft & Savoini



Figure 4. Inhomogeneous plasma (ΔN = 0.05): time variations of wave energies (black curves) and products between them (color curves). (a)–(d): logarithmic scales;
(e)–(f): linear scales. (a) Time variations ofW ,2 W 3 , andW 4 (black). (b) Time variations ofW , W ,¢ andW for ωpt > 4800 (black), and ofW W3 4  ,W W2 3  , and
W W4 3 ¢ , labeled by H3 ∗ H4 (green), H2 ∗ H3 (red), and H L4 3* ¢ (orange); the green curve is duplicated to show both W W W3 4  µ and W W W3 4  µ . (c) Time
variations ofW 2 andW 3 (solid black),W

2¢
andW

3¢ (dotted black), andW W4 , labeled by H4 ∗ L (green). (d) Time variations ofW 2 (black),W W ,3  W W3 ¢, and
W W3 , labeled by H3 ∗ L (green), H L3 * ¢ (blue), and H3 ∗ L″ (red). (e) Time variations of W 3 (black), W W2 , W W2 ¢, and W W4 , labeled by H2 ∗ L (red),
H L2 * ¢ (blue), and H4 ∗ L (green); the green (red) straight line results from the linear interpolation ofW W4  (W W2 ). (f) Time variations ofW 4 (black) andW W3 ,
interpolated by a green line labeled by H3 ∗ L. Energies are normalized by the initial beam kinetic energy.

Figure 5. Inhomogeneous plasma (ΔN = 0.05) at asymptotic time ωpt = 7150: wave spectra in the plane (kx, ky). (a) |Exk|
2 at ωk ; ωp; the spectral domains of the

waves  and  (kx > 0) are overlapped. (b) |Exk|
2 at ωk ; 2ωp with electric field contribution to 2 (central ring) and electrostatic harmonics 2 (k2x > 0) and 2¢

(k 0x2¢ < ). (c) |Bzk|
2 at ωk ; 3ωp: wave 3 . (d) |Bzk|

2 at ωk ; 4ωp: wave 4 . (e) |Exk|
2 at ωk ; 3ωp with electric field contribution to 3 (central ring) and electrostatic

harmonics 3 (k3x > 0) and 3¢ (k 0x3¢ < ). (f) |Exk|
2 at ωk ; 4ωp, with electric field contribution to 4 (central ring) and electrostatic harmonics 4 (k4x > 0) and 4¢

(k 0x4¢ < ). All variables are normalized. Logarithmic scales are used.
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due to the waves’ transformations on inhomogeneities, they
exhibit scattering, broadening, and isotropization (also at earlier
times). The circular rings representing the electromagnetic waves

3 and 4 can be clearly observed (Figures 5(c)–(f)).
Figures 4(b)–(c) present the time variations of the waves 1 , n ,

and n¢ . It was not possible to calculate with good accuracy the
energy of the waves  for ωpt 4800 as, due to Langmuir wave
scattering on density fluctuations, their spectral domain largely
overlaps that of the waves  (Figure 5(a)). Figures 4(b) and (d)
show thatW W W2 3  µ¢ andW W W2 3  µ ¢ during the stage of
growth 700 2000 p

1[ -- ]w- of 2 , whereas W W W3 2  µ ¢
(Figure 4(e)) can be observed a little later but only during shorter
time periods. One observes in Figures 4(d)–(e) thatW W W2 3  µ
andW W W3 2  µ are satisfied within 5000 8400 p

1[ – ]w- , whereas
W W W2 3  µ cannot be found; the green and red straight lines in
Figure 4(e) represent linear interpolations of the oscillating products
W W2  and W W4 . Note that W W W2 3  µ  can be observed
within 4800 7400 p

1[ – ]w- (Figure 4(d)) but not W W W2 3  µ
and W W W3 2  µ . Moreover, it appears that the process

3 4  ⟶¢ + is likely possible as W W W4 3  µ ¢

(Figure 4(b)) and W W W
3 4  µ¢ (Figure 4(c)) are fulfilled after

Langmuir wave energy saturation. In turn, W W W3 4  µ
(Figure 4(b)), W W W3 4  µ (Figure 4(e)) and W W W4 3  µ
(Figure 4(f)) are clearly observed in the same range of late times,
i.e., roughly 4800 7000 p

1[ – ]w- , corresponding to the occurrence of
the process 3 4  ⟶+ .

In conclusion, 3 and 4 can be generated by wave
coalescence in spite of density fluctuations responsible for the
early damping of all the Langmuir waves’ energies. The dominant
processes are the same as for the homogeneous plasma, i.e.,

,2 1 3  ⟶+ with ,1  = ¢, and 3 1 4  ⟶+ , with
.1 = Note the more important role played by the beam-driven

waves  when the plasma is inhomogeneous. To support this
conclusion, some examples of cross sections of the auto- and
cross-bicoherences bc are presented in the right column of Figure 3
for ΔN= 0.05, showing wave–wave interactions occurring in
agreement with Figure 4.

4. Conclusion

The third and fourth electromagnetic harmonics 3 and 4
are observed in two-dimensional PIC simulations modeling the
propagation of a weak electron beam generating Langmuir
wave turbulence in solar wind plasmas with density fluctua-
tions of average levels of a few percent. For comparison, the
case of a homogeneous plasma with the same physical
parameters, relevant to type III solar radio bursts’ regions, is
studied jointly. For the first time, a detailed study of the role
played by different nonlinear wave coalescence processes in
the generation of these harmonics is presented, and the impact
of density fluctuations on these mechanisms is demonstrated.

The energy ratiosW W3 2  andW W4 3  are consistent with
observations of type III radio bursts. The presence of density
fluctuations reduces by less than one order of magnitude the
energies carried asymptotically by the electromagnetic
harmonics.

It is shown that, in the homogeneous plasma, the dominant
process generating the harmonic 3 is the coalescence of 2
with a Langmuir wave and, more precisely, with a back-
scattered wave ¢ coming from the first cascade of the
electrostatic decay   ⟶ ¢ + ¢ and, at later times, with
the forward-propagating wave  produced by the second

cascade   ⟶¢  + . The same conclusions can be stated
for the generation of the harmonic 4 . Moreover, other less
prominent processes occur, i.e., the coalescence of a beam-
driven Langmuir wave  with the decay product 2¢ ( 3¢ ) of the
second (third) electrostatic harmonic 2 ( 3 ) through the
channel 2 3  ⟶¢ + ( 3 4  ⟶¢ + ). There is no
evidence for the coalescence process of three Langmuir waves.
When the plasma contains density fluctuations, the energies

of Langmuir waves damp after saturation. Nevertheless, the
harmonics 3 and 4 can be generated by wave coalescence
despite the inhomogeneities randomly modifying the resonance
conditions of the waves by energy transport in k-space. The
dominant processes are the same as for the homogeneous
plasma, i.e., the coalescence of harmonics 2 ( 3 ) with a
Langmuir wave generating 3 ( 4 ). The role of the back-
scattered Langmuir waves ¢ is decisive in such process, so it
should be accompanied by low-frequency emissions. The
coalescence involving electrostatic harmonics could also be
identified, for the generation of 4 .
This paper sheds light on the nonlinear wave processes

occurring in plasmas with random density fluctuations that are
relevant to type III solar radio bursts’ conditions. Under-
standing wave coalescence mechanisms can provide indirect
information on Langmuir and ion acoustic wave turbulence, the
average level of density inhomogeneities, and suprathermal
electron fluxes generated in solar wind regions where harmonic
waves manifest. Indeed, their presence is likely due to unusual
type III beam conditions leading to the generation of intense
beam-driven Langmuir waves and low-frequency emissions.
The latter mostly arise from the first cascade of the electrostatic
decay of beam-driven waves, which also produces back-
scattered Langmuir waves, whose role in the wave coalescence
processes of generating higher electromagnetic harmonics

n 2 > has been shown to be decisive by the present simulations.
According to wave–wave resonance conditions, the coales-
cence 2 3  ⟶+ ¢ requires that the exciter beam’s velocity
overcomes the threshold

V c
m c T T

m k T
2 2 3

2

3

1 3
,b

e i e

i B e

2 2

,max

1
⎛

⎝
⎜

⎞

⎠
⎟ ( )

+ +
+

-

which, in coronal conditions with T MK3e,max » and Ti/Te≈ 1,
is around 0.17c. This threshold lies much above the median
values of type III beams in the corona as shown by recent
measurements and analyses by Krupar et al. (2015; see Figure 4
therein). This condition could explain, together with the
instrumental limitations reported by some authors during
observations of higher harmonics in the foreshock and the
solar wind (Cairns 1988; Reiner & MacDowall 2019) and with
the hot plasma sources required for the second harmonic’s
generation (Melrose 1982), the scarcity of observations of such
higher harmonic waves. Anyway, those are the signatures of
the simultaneous presence of exciter beams around twice as fast
as the average, of hot plasma sources, and significant low-
frequency emissions.
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