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ABSTRACT

A competitive mathematical model for the growth of Streptococcus mutans and Streptococcus
sanguis is developed in this study. The main goal of this paper is to investigate the roles of
two different growth laws: The logistic growth and the Smith growth to determine the competition
outcome between two organisms in a given micro-ecological domain. We demonstrated that the
competitive exclusion of a food limited bacteria is inevitable based on resource availability of species
following the logistic growth. If the resource utilization capacity is equal then there is a possible
coexistence and both bacteria co-operate with each other. This model can be used as a basic
competition model for the prediction of the outcome of growth between any others microorganisms.
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1 INTRODUCTION

Comprehensive level of competition among
various species is prevalent in every parity of
natural world [1]. Human body harbors a
diverse collection of microbial species, which
undergoes fierce competition with one another
for the establishment of successful colonization
[2, 3, 4]. Numerous experiments with pure
and mixed cultures have demonstrated various
mechanisms by which bacteria can impair or
kill other microorganisms [1, 3]. The deadly
battle for survival in the resource limited habitat
and the transfer of genes to the next generation
serve as a driving force for diversification among
the competing organisms [1]. Stunning level of
microbial diversity has been observed by novel
molecular techniques such as metagenomic
sequencing and deep microbial tag sequencing
[4]. Human oral cavity is one of the rich habitats
for microbial colonization and it is estimated that
> 700 species are present in this microecological
niche [5, 6]. It is also regarded as the
most dynamic microbial habitat in our body due
to repeated cycles of food and water intake,
frequent variation of temperature, pH, osmotic
and oxygen tension [7].

Streptococcus mutans is the most dominating
oral microbial species and is regarded as
the primary causative agent of various dental
diseases under certain conditions, although this
bacterium exists as a normal microflora in dental
biofilm community [6, 8, 9]. To establish a
successful colonization in the oral cavity, this
bacterium undergoes intense competition with
other bacteria and this process is aided by
its ability to produce acids from carbohydrate
metabolism, to adhere and form biofilm on
tooth surface, to tolerate the low pH and
different environmental stresses in this fluctuating
environment [7]. In addition, S. mutans can
produce antimicrobial peptides to inhibit the
growth of other competing species [10, 11]. It
has been reported that S. mutans can inhibit
the growth of other oral streptococci such as
S. pyogenes, S. gordonii, S. sanguis, S. oralis,
Lactococcus lactis, by producing antimicrobial
peptides [10].

S. sanguis (sanguinis), which is also a member
of the Gram positive, microaerophilic oral biofilm
community as like S. mutans [12] and generally
considered as a beneficial bacterium in oral
habitat and coexist with other oral bacteria
including S. mutans [13, 14]. However,
S. sanguis can produce hydrogen peroxide
to counter S. mutans [7]. This rivalry
between S. mutans and S. sanguis at the
microecological niche has been well-known for
long times. Previous studies demonstrated
that early colonization and increased numbers
of S. sanguis in an infants oral cavity hinder
the growth and colonization by S. mutans [14].
Likewise, high levels of S. mutans in the
oral habitat correlate with reduced levels of S.
sanguis [15]. Competitive exclusion between S.
mutans and S. sanguis was also observed in
germ-free rats model depending on inoculation
pattern [16]. Thus coexistence and competition
between S. mutans and S. sanguis depends
on multiple factors [7]. Clinical studies have
revealed that patients colonized by hydrogen
peroxide producing S. oligoformans has reduced
incidence of dental caries, caused by S. mutans,
which instigated the need for investigation of the
interaction between S. mutans and other oral
streptococci [17].

Therefore, when a pathogenic species such as
S. mutans is present in oral habitat with other
non-harmful microorganisms, it would be difficult
to predict the outcome of the interaction in
terms of growth kinetics. A basic mathematical
model for the growth of competing microbes
would be important tool to describe the possible
outcome [18]. In order to develop a basic
model regarding the competition between two
species, we need to consider two species for
simplicity. Only after the establishment of a
basic model for two competing species, further
development of multispecies model would be
possible. Several previous studies have reported
the growth of a food-borne pathogen present in
food using mathematical models [18, 19, 20]. A
model for competition was developed between
Listeria monocytogenes and Lactococcus lactis
by considering the concentrations of lactic acid
and pH [21]. Recently, a competition model
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has been proposed based on the logistic model
for L. monocytogenes and L. lactis, which could
successfully describe the growth kinetics of these
microorganisms [22]. However, the competition
among n species has been reported for a regular
reaction-diffusion model and it showed that the
slow diffuser is the sole winner [23]. Instead
of random diffusion, recently a new type of
competitive and cooperative reaction-diffusion
model has been developed [24, 25]. These
models established some fundamental theories
for any organisms with similar characteristics as
long as the species diffuses according to per
capita available resources.

A competition model was also introduced by
considering the concept of critical population
density for lactic acid bacteria against a
competing bacterium [26]. However, these
models were highly specific for the species of
concern and can’t be applied to other microbial
species. Therefore, the goal of the present
study was to develop a basic competition model
based on S. mutans UA159 and S. sanguis ATCC
10556, which can be applied to other strains,
for example S. mutans UA140 and S. sanguinis
NY101. This model can also be applied for other
species such as S. pneumoniae, S. gordonii, S.
pyogenes, S. mitis, and S. sobrinus in mixed
culture. This study offers three novel phenomena
such as:

1. The new idea of modeling, where two
species follow different growth laws and
competing with each other.

2. By considering two bacterial populations,
we observed the interactions between two
organisms and established the results for
coexistence of both species and extinction
of one by the other.

3. The effect of crowding tolerance while the
carrying capacities vary as well as the
effects of intrinsic growth rates.

2 MATHEMATICAL MODEL
AND METHODOLOGY

Taking into account of these microbial species as
discussed in the previous section, we considered

two microbial species for logistic [27] and food-
limited growth functions [28], using the following
system of nonlinear differential equations

du
dt

= r1
K1

u(t) (K1 − u(t)− w(t))

dw
dt

= r2w(t)

(
K2 − u(t)− w(t)

K2 + β(u(t) + w(t))

) (2.1)

where, u(t) is the concentration of microbial S.
mutans UA159 and follows the logistic growth
while w(t) is the density of biomass of S. sanguis
ATCC 10556 and satisfies the food limited growth
function. For simplicity, throughout the paper
we have omitted the strain numbers of bacteria,
instead just mentioned the two species only.
From biological literature, we defined all the
parameters of (2.1) as follows:

−K1 is the phase of the organism u and is
growing at its maximum growth rate.

−K2 is the phase of the organism w and is
growing at its maximum growth rate.

−r1 and r2 are the specific growth rate for
organisms u and w, respectively. In fact, the
constants ri, (i = 1, 2), in this system are
named the basic reproductive rate of population.
It represents the instantaneous rate of change of
population. However, after small modification of
the model (2.1), the term containing the constant
µ = ri/Ki is the mortality. The parameter µ
contributes negatively to the rate of change of the
population and tends to make the population to
be decreased.

−β > 0, a resource utilization factor and
depending on the numerical value of β, it is
determine which species is better competitor or
whether coexistence is possible [29].

To expand the competition model, there are
numerous examples of growth functions; as
described by Gompertz and Gilpin-Ayala [30, 31].

2.1 Method of Analysis
For further mathematical analysis of the system
(2.1), we considered the well known theorem
established by Hartman-Grobman as described
below:

Theorem 1. [32, 33] If the linearization matrix
has no zero or pure imaginary eigenvalues
then the phase portrait for the system near the
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equilibria (u, v) can be obtained from the phase
portrait of the linear system via a continuous
change of coordinates.

Generally, it is a challenging task, even
sometimes impossible to construct an analytic
formula for the solution of (2.1). Instead, we
consider the numerical solution or analyze
the qualitative behavior of the solutions by
considering the phase portrait (u,w). In many
cases, the qualitative study is convenient to
make the platform for constructing the numerical
solutions. For further analysis, we considered the
following solution methodologies:

1. Qualitative study of system (2.1), and

2. Numerical simulations in a series of
examples.

For simplicity, we introduced the following two
functions

f(u,w) =
r1
K1

u(t) (K1 − u(t)− w(t))

h(u,w) = r2w(t)

(
K2 − u(t)− w(t)

K2 + β(u(t) + w(t))

)
and rewrite the problem (2.1) in the following
path:

du

dt
= f(u,w)

dw

dt
= h(u,w).

(2.2)

We also considered the possible solution of the
system (2.2)

v(t) =

(
u(t)
w(t)

)
and it can be thought of as a parametrized
curve and referred to as an integral curve of the
problem. To show the outcome graphically in later
sections the following factor is important.

• The vector form (du/dt, dw/dt) is tangent
to the solution path defined by (u(t), w(t)).

• The phase portraits that represent the
family of solutions can be generated
numerically or from the direction field.

It is remarked that the only limitations of either
numerical approach or the direction filed are that
the parameters in (2.2) need to be specified.

2.2 Equilibria and Linearization
As like first order non-linear system (2.2), we
can obtain the solutions pattern near an steady
state through linearization. Since (u∗, w∗) is an
equilibrium, f(u∗, w∗) = 0 and simultaneously
h(u∗, w∗) = 0 and the critical points are of (2.2)
are

(u∗, w∗) = {(0, 0), (K1, 0), (0,K2)}.

It is seen that the coexistence steady state
(us, ws) of (2.2) is not straightforward; just hold
on until numerical simulations as prescribed in
Section 3.

At first, we rearrange the functions f(u,w) and
h(u,w) in the following way,

f(u,w) =
r1(uK1 − u2 − uw)

K1

h(u,w) = r2

(
K2w − uw − w2

K2 + βu+ βw

) (2.3)

and we obtained the linearized system

u′ = fu(u
∗, w∗)u(t) + fw(u

∗, w∗)w(t)

w′ = hu(u
∗, w∗)u(t) + hw(u

∗, w∗)w(t).

To find the partial derivatives of f(u,w) and
h(u,w), we employed

fu(u,w) =
r1(K1 − 2u− w)

K1

fw(u,w) = −r1u

K1

hu(u,w) = − r2K2w(1 + β)

(K2 + βu+ βw)2

hw(u,w) =
r2(K

2
2 −K2u− 2K2w + βuK2 − 2βuw − βu2 − βw2)

(K2 + βu+ βw)2
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which yields the Jacobian matrix:

J(u,w) =

(
fu fw
hu hw

)
.

We also tested the stability analysis of (2.2) at the
equilibira.

3 RESULTS AND DISCUSSION

Since we cannot solve the system (2.2) with
demography analytically but it is possible to
obtain some information about the behavior of the
solutions. As the long-run behavior of solutions
is important, following subsections deals with the
matter of phase-plane analysis.

3.1 Qualitative Analysis
We considered phase portrait by considering the
solution curves in the (u,w) plane.

1. Equilibrium (0, 0): At the trivial equilibrium,
the partial derivatives are

fu(0, 0) = r1; fw(0, 0) = 0;

hu(0, 0) = 0 and hw(0, 0) = r2

which yields the linear system

du

dt
= r1u

dw

dt
= r2w

(3.1)

and the corresponding Jacobian matrix at (0, 0)
is

J(0,0) =

(
r1 0
0 r2

)
.

The eigenvalues of J(0,0) are λ1 = r1 > 0,
λ2 = r2 > 0. Put r1 = 10 and r2 = 5 which
gives λ1 = 10, λ2 = 5 and the eigenvectors(

1
0

)
and

(
0
1

)
,

respectively.

Since both eigenvalues of the matrix J(0,0) are
real and positive which includes that the trivial
steady state is always unstable. In the biological
point of view, it means, when both of the bacterial
organisms are present for competition in the

same ecological habitat, they will repel and leave
the sub-space of the niche until unless other
factors are considered (Fig. 1).

2. Equilibrium (0,K2): After calculating the
following terms

fu(0,K2) =
r1(K1 −K2)

K1
; fw(0,K2) = 0;

hu(0,K2) = − r2
(1 + β)

and hw(0,K2) = − r2
(1 + β)

the linearization matrix at (0,K2) is

J(0,K2) =

(
r1(K1−K2)

K1
0

− r2
(1+β)

− r2
(1+β)

)
.

As seen, the eigenvalues of the matrix J(0,K2) are
λ1 = −r2/(1+β) < 0 and λ2 = r1(K1−K2)/K1,
where λ2 is strictly positive while K1 > K2 and
strictly negative for K1 < K2. As an example,
let us consider β = 2, r1 = 3, r2 = 5 and for
K1 = 4,K2 = 3, we obtain λ1 = −5/3, λ2 = 3/4
and the corresponding eigenvectors(

0
1

)
and

(
−29/20

1

)
,

respectively. The two eigenvalues of the matrix
J(0,K2) are both real and have opposite signs.
Thus the steady state is in the class of unstable
saddle point as depicted in the left panel of
Fig. 2. In oral microbial habitat, if S. mutans
consumes higher level of resources, it will out-
compete S. sanguis following the food limited
growth. In this circumstance, S. mutans will utilize
the resources and express genes required for
bacteriocin production to inhibit the other bacteria
and establish biofilm life style in the oral cavity.
In a similar manner with identical β, r1 and r2
as above, let us assume K1 = 3, K2 = 4, and
we have λ1 = −5/3, λ2 = −1 with respective
eigenvectors (

0
1

)
and

(
−2/5
1

)
.

Since both eigenvalues are negative, the
equilibrium (0,K2) is an asymptotically stable
node, see the right panel of Fig. 2. Thus, while
S. sanguis has more accessibility to the natural
resources, the bacteria S. mutans is in extinction.

3. Equilibrium (K1, 0): At the coordinates point
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(K1, 0), the produced expressions translate to
the linear system

fu(K1, 0) = −r1; fw(K1, 0) = −r1;

hu(K1, 0) = 0 and hw(K1, 0) =
r2(K2 −K1)

(K2 + βK1)
.

and the converted Jacobian matrix at (K1, 0) is

J(K1,0) =

(
−r1 −r1
0 r2(K2 −K1)/(K2 + βK1)

)

-4 -2 0 2 4
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K u
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Fig. 1. The vector filed alongside the solutions of (3.1) near (0, 0)
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Fig. 2. The vector filed alongside the solutions of linear system for β = 2
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The respective eigenvalues are λ1 = −r1 and
λ2 = r2(K2 −K1)/(K2 + βK1), where λ2 > 0 if
K2 > K1 and λ2 < 0 for K2 < K1. Choosing
the parameters r1 = 3, r2 = 5, β = 3, and
for K1 = 3,K2 = 4, yields the eigenvalues
λ1 = −3, λ2 = 5/13 with eigenvectors(

1
0

)
and

(
−39/44

1

)
,

respectively. The eigenvalues of the matrix
J(K1,0) are both real and have oppsite sign.
Hence, according to theorem 1, we conclude
that this critical point is an unstable saddle point
as designed in the left diagram of Fig. 3. In
terms of biology, S. mutans will be extinct at this
competition scenario in this ecological niche. S.
sanguis will have better resource access and it
will activate its genetic machineries to produce
hydrogen per oxide to kill S. mutans. Likewise, we
have λ1 = −3, λ2 = −5/13 for K1 = 4,K2 = 3
with the equivalent parameters as defined above,
and respective eigenvectors are(

1
0

)
and

(
−39/34

1

)
.

At this point, both eigenvalues are negative, and
we can summarize the equilibrium (K1, 0) is an
asymptotically stable point (Fig. 3 (right). So, in
this circumstance, S. sanguis will be extinct from
the given habitat.

Remark 1. One can consider the same study for
0 < β < 1 to check the qualitative behavior of

solutions and we left it to the reader. But wait
until to check the numerical examples, where we
consider this case for further investigation of the
solutions.

Remark 2. For phase plane analysis, we
used the software Wolfram MATHEMATICA 8
programming language.

3.2 Numerical Examples
In the following series of examples, different
strategies were considered to select the
parameters; sometimes carrying capacities are
time-dependent and intrinsic growth rates as well.
Here we observed few examples to check the
solutions structure for various combinations of
constant and periodic functions.

Example 1. At first, we considered r1 = r2 =
2.0, β = 2.0 and identical carrying capacity,
K1 = K2 = 3. For equal initial densities u0 =
w0 = 0.4, both S. mutans and S. sanguis are
coexisting and the steady state solution (us, ws)
is shown in Fig. 4. Both bacteria are cooperating
with each other when their resource distributions
are equal even though the growth functions are
different. Biologically, when nutrient become
depleted, both of the strains will be affected and
will be eradicated. But in the oral cavity, this
scenario is unrealistic because we always take
some food and drinks which replenish the nutrient
scarcity and hence both species will persist.
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Fig. 3. The vector filed alongside the solutions of linear system for β = 3
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Example 2. In this example, we considered r1 =
r2 = 2.0 and two different periodic carrying
capacities in left and right panels, see the caption
in Fig. 5 for β > 1 and 0 < β < 1. The results
are plotted in Fig. 5 and the figure suggests that
the species (S. sanguis) following the food-limited
growth persists only. The main effect shows here
for β and we conclude that the extinction rate
of species w is faster for β > 1; for example
β = 2. Moreover, the bacterial population
exhibits oscillatory curves since the resource
compositions and availability always fluctuates in
the oral cavity, therefor it is realistic to show the
solutions in a periodic pattern instead of smooth

growth while the selected resource functions are
fluctuating.

Example 3. At the current stage, we wanted
to check the density level controlled by intrinsic
growth rates by considering equal resource and
identical local densities.

The Fig. 6 illustrates that the density of S. mutans
is too low compare to the species S. sanguis due
to the effect of r2 = 5 and 0 < r1 < r∗ < r2 while
β = 0.5. Biologically, the expectation is to get
the higher population level for second microbial
species since the growth rate is high.
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0.0

0.5
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1.5

2.0

2.5

u
w

Fig. 4. Numerical solutions of (2.1) for β = 2.0, r1 = r2 = 2.0 and K1 = K2 = 3.0, with initial
values u0 = w0 = 0.4, where vertical directions represent the number of bacteria while time is

in hours
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Fig. 5. Numerical solutions of (2.1) for r1 = r2 = 2.0 and (left) β = 2.0, K1 = K2 = 2.0 + sin(t),
(right) β = 0.5, K1 = K2 = 3

2+sin(t)
, with u0 = w0 = 0.4
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Example 4. Over the long term, it is interesting to
observe the result for different carrying capacities
as long as one is periodic rational and the rest is
constant. For r1 = r2 = 2.0 and unequal carrying
capacities, K1, K2, the solution of the logistic
equation coincides with the carrying capacity K1,
while the solution of the Food-limited equation
tends to 0 for β = 0.5 (see Fig. 7). In this
example, we choose the carrying capacity K1 for
first species in a specific form and biologically it
is interesting and meaningful in the sense that it
varies with time. Since the resource is always
limited in the environment, so we consider the
function K1 such that 0 < K1 ≤ c, where c
is a constant and approximately 6.6. It means

that the resource is always bounded, positive
and variable with time. Our model suggests
that even though one population is in extinction
or minimum in number, the other population will
fluctuate. It is justified in the perspective of oral
cavity because this area is continuously expose
to different nutrient intake, rapid flushes due
to drinks, mechanical tooth brushing and anti-
microbial agents used in toothpastes and mouth
washes.

Example 5. Finally, by considering the function
when both intrinsic growth rates and resource
distributions are time-dependent for positive
parameter β < 1. Two carrying capacities are

t (hours)

Sp
ec

ie
s 

u 
an

d 
w

0 5 10 15 20 25
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
u
w

Fig. 6. Numerical solutions of (2.1) for β = 0.5, r1 = 1
2+sin(t)

, r2 = 5.0 and K1 = K2 = 3.0, with
u0 = w0 = 0.4
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Fig. 7. Numerical illustrations of (2.1) for β = 0.5, r1 = r2 = 2.0 and K1 = 3(2+cos(t))
2+sin(t)

, K2 = 2.0,
with initial values u0 = w0 = 0.4
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Fig. 8. Numerical solutions (2.1) for β = 0.5, r1 = r2 = 1
(2+sin(t))

and
K1 = (2 + cos(t)), K2 = 2− e−t, with initial values u0 = w0 = 0.4

K1 = (2 + cos(t)), K2 = 2 − e−t and local
population density (u0, w0) = (0.4, 0.4) with
equal growth rate. The results are depicted in
the diagram 8 for densities of species u, w
with respect to time. The plot focused that
initially, the density of S. mutans is oscillating in
the increasing rate and S. sanguis is eventually
decreasing, density is too low and very close
to zero. After certain time interval, the second
species converges to the carrying capacity K2

and the first one, u is in extinction. In this
situation, S. mutans will face set back due to
changed chemical environment or introduction
of S. mutans specific bacteriophage which
will cause the drastic reduction of its number
whereas this changed environment will provide
an opportunity for the growth of S. sanguis.

Remark 3. For numerical simulations, first we
used the programming language FORTRAN
(version plato 90/95 ) to produce the data and
then to analyze the data, we consider TECPLOT
360 to draw the figures. It is also noted that
we introduced the Runge-Kutta higher order
numerical method to solve the non-linear system.

4 CONCLUSION

In this study, we described a new mathematical
model to predict the possible outcome of a
growth competing bacteria in a multi-species
environment where they coexist or compete

each other. We considered a system of non-
linear equations with different growth laws.
The considered model suggests that resource
function plays an important role in determination
of the competition outcome between two
organisms in a given micro-ecological niche. If
the carrying capacity is equal, there is a possible
coexistence and both bacteria co-operate each
other to sustain a multi-species biofilm life style.
Moreover, it is remarkable that the parameter β
and intrinsic growth rates are important factors
to figure out the density level of populations.
This model can also be applicable for other
bacterial species in any habitats. Further
microbiological experiments to investigate the
effects of bacteriocin production capacity, biofilm
formation ability, hydrogen peroxide production,
resistance mechanism of the bacteria to these
growth inhibitory agents on the competitive
outcome should be performed to validate the
proposed models. Finally, we have some open
problems to the readers for further analysis:

1. To introduce different growth laws, for
example Malthus and Gilpin-Ayala in (2.1)
and study the problem;

2. To estimate the numerical values of β∗

with β ∈ (0, β∗] such that the species
following the logistic growth law will persist
only;

3. To add the diffusion term for both species
in the problem (2.1) and analyze the
revised model.
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