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Abstract

In this paper, we study strong and weak convergence results of a two step iterative process
with errors for a pair of asymptotically non-expansive mapping in the intermediate sense.Our
results generalize the corresponding results due to Hou and Du [4] by taking the class of
asymptotically non-expansive mapping in the intermediate sense.We have also studied weak and
strong convergence results under specific conditions.
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1 Introduction and Preliminaries

Let C be a non empty subset of a Banach space E, and let T : C → C be a mapping. Then T is
said to be non-expansive [1] if

‖ Tx− Ty ‖≤‖ x− y ‖, for all x, y ∈ C.

In 1972, Geobel and Kirk [2] introduced the class of asymptotically non-expansive mappings as:

A self mapping T is said to be asymptotically non-expansive if there exists a sequence {kn} ⊂ [1,∞)
with kn → 1 as n→∞ such that

‖ Tnx− Tny ‖≤ kn ‖ x− y ‖, for all n ≥ 1 and x, y ∈ C.

Clearly the class of asymptotically non-expansive includes the class of non-expansive mappings as
a proper subclass.

In 1993, Bruck, Kuczumov and Reich [3] introduced the class of asymptotically non-expansive in
the intermediate sense as:

A self mapping T is said to be asymptotically non-expansive in the intermediate sense provided T
is uniformly continuous and satisfies the following inequality:

limsupn→∞(‖ Tnx− Tny ‖ − ‖ x− y ‖) ≤ 0, for all x, y ∈ C.

If we take ξn = max{0, supx,y∈C(‖ Tnx− Tny ‖ − ‖ x− y ‖)},
then ξn → 0 as n→∞. Hence, we obtain

‖ Tnx− Tny ‖≤‖ x− y ‖ +ξn, for all n ≥ 1, x, y ∈ C.

It follows that asymptotically non-expansive mappings in the intermediate sense is more general
than that of the asymptotically non-expansive mappings.

Example 1.1. Let X = R be a normed linear space and h ∈ (0, 1). For each x ∈ X, we define

T (x) =

{
hx
2
, if x 6= 0

0, if x = 0.

Then

‖ Tn − Tny ‖= hn

2n
‖ x− y ‖≤‖ x− y ‖, for all x, y ∈ X,n ∈ N.

Then T is an asymptotically non-expansive mapping with the constant sequence 1. Now
limsupn→∞(‖ Tnx− Tny ‖ − ‖ x− y ‖)

= limsupn→∞{h
n

2n
‖ x− y ‖ − ‖ x− y ‖} ≤ 0.

because limn→∞h
n = 0 for all x, y ∈ H,n ∈ N . Hence T is asymptotically non-expansive mapping

in the intermediate sense.

In this paper we shall consider the following iterative scheme with error given by Hou and Du [4],
For x0 ∈ C,

xn = anxn−1 + bnT
nyn + cnS

nxn + enun,
yn = a

′
nxn−1 + b

′
nxn + c

′
nS

nxn−1 + d
′
nT

nxn + e
′
nvn(1.1)
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where {an}, {bn}, {cn}, {en}, {a
′
n}, {b

′
n}, {c

′
n}, {d

′
n}, {e

′
n} are sequences in [0, 1] with an + bn + cn +

en = 1, a
′
n +b

′
n +c

′
n +d

′
n +e

′
n = 1, and T, S : C → C are both non-linear mappings and {un}, {vn} ∈

C.

Now we recall the following concepts:

A mapping T with domain D(T ) and range R(T ) is said to be demiclosed at a point p ∈ E if
whenever {xn} is a sequence in D(T ) such that {xn} converges weakly to x ∈ D(T ) and {Txn}
converges strongly to p, then Tx = p.

A mapping T is said to be semicompact if for any sequence {xn}∞n=1 in C such that limn→∞ ‖
xn − Txn ‖= 0, there exists a subsequence {xnj} of {xn} such that {xnj} converges strongly to
some u ∈ C.

A Banach space E is said to satisfy Opial’ s condition [5] if whenever {xn} is a sequence in E which
converges weakly to x, then

liminfn→∞ ‖ xn − x ‖≤ liminfn→∞ ‖ xn − y ‖, for all y ∈ E, y 6= x.

Let C be a subset of a Banach space E. Two mappings S, T : C → C are said to satisfy condition
condition (A

′
)[6]ifthereexistsanon−decreasingfunction f: [0,∞)→ [0,∞) with f(0) = 0, f(r) >

0 for all r ∈ (0,∞) such that

1
2
(‖ x− Tx ‖ + ‖ x− Sx ‖) ≥ f(d(x, F ))

for all x ∈ C where d(x, F ) = inf{‖ x− x∗ ‖ : x∗ ∈ F (T ) ∩ F (S)}.

Lemma 1.2. [7]Let { an} and {bn} be two sequences of nonnegative real numbers satisfying
an+1 ≤ an + bn for all n ≥ 1.

1. if
∑∞

n=1 bn <∞, then limn→∞an exists.

2. if
∑∞

n=1 bn <∞, and {an} has a subsequence converging to zero, then limn→∞an = 0.

Lemma 1.3. [1] Let E be a uniformly convex Banach space satisfying Opial’s condition and let
C be a non-empty closed convex subset of E. Let T : C → C be a non-expansive mapping. Then
(I − T ) is demiclosed with respect to zero.

Lemma 1.4. [8] Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1 for all positive
integers n.Also suppose that {xn} and {yn} are two sequences of E such that limsupn→∞ ‖ xn ‖≤ α,
limsupn→∞ ‖ yn ‖≤ α, and limsupn→∞ ‖ tnxn + (1 − tn)yn ‖= α, holds for some α ≥ 0. Then
limn→∞ ‖ xn − yn ‖= 0.

2 Main Results

Lemma 2.1. Let H be a non-empty convex subset of a uniformly convex Banach space X and let
T1, T2 : H → H be asymptotically non-expansive mappings in the intermediate sense. Let {xn} be
the sequence defined by (1.1) with the following conditions:

1. an → 0, en → 0, a
′
n → 0, b

′
n → 0, e

′
n → 0, as n→∞;

2. bn, cn, c
′
n, d

′
n ∈ [δ, 1− δ] for some δ ∈ (0, 1);

3. c
′
n, d

′
n ≤ β for some β ∈ (0, 1).
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If F = F (T1) ∩ F (T2) 6= φ, then we have

1. limn→∞‖xn − p‖ exists for all p ∈ F and {xn}, {Tn
1 xn}, {Tn

2 xn} are all bounded.

2. limn→∞‖xn − Tn
1 xn‖ = 0 = limn→∞‖xn − Tn

2 xn‖.

Proof. For any p ∈ F we have

‖ xn − p ‖ = ‖ anxn−1 + bnT
nyn + cnS

nxn + enun − p ‖
= ‖ an(xn−1 − p) + bn(Tnyn − p) + cn(Snxn − p) + en(un − p) ‖
≤ an ‖ xn−1 − p ‖ +bn ‖ Tnyn − p ‖ +cn ‖ Snxn − p ‖
+ en ‖ un − p ‖

≤ an ‖ xn−1 − p ‖ +bn ‖ yn − p ‖ +bnξ
′
n + cn ‖ xn − p ‖

+ cnξ
′′
n + en ‖ un − p ‖ (2.1)

Now

‖ yn − p ‖ = ‖ a
′
nxn−1 + b

′
nxn + c

′
nS

nxn−1 + d
′
nT

nxn + e
′
nvn − p ‖

≤ a
′
n ‖ xn−1 − p ‖ +b

′
n ‖ xn − p ‖ +c

′
n ‖ Snxn−1 − p ‖

+ d
′
n ‖ Tnxn − p ‖ +e

′
n ‖ vn − p ‖

≤ a
′
n ‖ xn−1 − p ‖ +b

′
n ‖ xn − p ‖ +c

′
n ‖ xn−1 − p ‖

+ c
′
nξ

′′
n + d

′
n ‖ xn − p ‖ +d

′
nξ

′
n + e

′
n ‖ vn − p ‖

≤ [a
′
n + c

′
n] ‖ xn−1 − p ‖ +[b

′
n + d

′
n] ‖ xn − p ‖ +c

′
nξ

′′
n

+ d
′
nξ

′
n + e

′
n ‖ vn − p ‖ (2.2)

Now from (2.1) and (2.2) we have

‖ xn − p ‖ ≤ an ‖ xn−1 − p ‖ +bn[a
′
n + b

′
n] ‖ xn−1 − p ‖

+ bn[b
′
n + d

′
n] ‖ xn − p ‖ +bnc

′
nξ

′′
n + bnd

′
nξ

′
n + bne

′
n ‖ vn − p ‖

+ b
′
nξ

′
n + cnξ

′′
n + cn ‖ xn − p ‖ +en ‖ un − p ‖

≤ [an + bn(a
′
n + b

′
n)] ‖ xn−1 − p ‖ +bn(b

′
n + d

′
n) ‖ xn − p ‖

+ cn ‖ xn − p ‖ +en ‖ un − p ‖ +bne
′
n ‖ vn − p ‖

+ [bnc
′
nξ

′′
n + bnd

′
nξ

′
n + bnξ

′
n + cnξ

′′
n ]

≤ [an + bn(a
′
n + b

′
n) ‖ xn−1 − p ‖ +[bn(b

′
n + d

′
n) + cn] ‖ xn − p ‖

+ en ‖ un − p ‖ +bne
′
n ‖ vn − p ‖

+ [bnc
′
nξ

′′
n + bnd

′
nξ

′
n + bnξ

′
n + cnξ

′′
n ](2.3)

From equation (2.2) and (2.3) we conclude that

‖ xn − p ‖≤‖ xn−1 − p ‖ (2.4)

and hence by lemma (1.2), limn→∞ ‖ xn − p ‖ exists for all p ∈ F .

Also {xn} is bounded and so {Sxn} and {Txn} are both bounded and hence {Snxn} and {Tnxn}
are also bounded.

Now suppose that limn→∞ ‖ xn − p ‖= β for some β > 0.

By inequalities (2.4) and (2.3) we have,
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limsupn→∞ ‖ yn − p ‖≤ β(2.5)

From the iterative process (1.1), we have

‖ xn − p ‖ = ‖ bn[Tnyn − p+ an(xn−1 − Snxn) + en(un − Snsn)]

+ (1− bn)[Snxn − p+ an(xn−1 − Snxn) + en(un − Snsn)](2.6)

Since an → 0, {xn}, {Snxn} and {Tnxn} are bounded. It follows from lemma (1.4) that,

limn→∞ ‖ Tnyn − Snxn ‖= 0(2.7)

Now by inequality (2.1) and (2.4) we have,

‖ xn − p ‖ ≤ an ‖ xn−1 − p ‖ +bn ‖ yn − p ‖ +cn ‖ xn − p ‖

+ en ‖ un − p ‖ +bnξ
′
n + cnξ

′′
n

(1− cn) ‖ xn − p ‖ −an ‖ xn−1 − p ‖ −en ‖ un − p ‖ −bnξ
′
n − cnξ

′′
n ≤ bn ‖ yn − p ‖

Taking liminf on both sides in the above inequality we have

β ≤ liminfn→∞ ‖ yn − p ‖≤ limsupn→∞ ‖ yn − p ‖≤ β

which yields limn→∞ ‖ yn − p ‖= β(2.8).

Also

‖ yn − p ‖ = ‖ c
′
n[(Snxn−1 − p) + a

′
n(xn−1 − Tnxn) + e

′
n(vn − Tnxn)]

+ ‖ (1− c
′
n)[(Tnxn−1 − p) + a

′
n(xn−1 − Tnxn) + e

′
n(vn − Tnxn)]

Since a
′
n → 0, e

′
n → 0, {xn}, {Snxn} and {Tnxn} are bounded.

It follows from lemma (1.4) that,

limn→∞ ‖ Snxn−1 − Tnxn ‖= 0(2.9)

Now by iteration scheme (1.1) we have,

‖ xn − Tnyn ‖ = an ‖ xn−1 − Tnyn ‖ +cn ‖ Snxn − Tnyn ‖
+ en ‖ un − Tnyn ‖

Since an → 0, en →∞ as n→∞ and using the inequality (2.9), the above inequality becomes

limn→∞ ‖ xn − Tnyn ‖= 0 (2.10)

From inequalities (2.7) and (2.10) we can write,

‖ xn − Snxn ‖ ≤ ‖ xn − Tnyn ‖ + ‖ Tnyn − Snxn ‖
→ 0asn→∞.(2.11)

Also

‖ yn − xn ‖ = ‖ a
′
nxn−1 + b

′
nxn + c

′
nS

nxn−1 + d
′
nT

nxn + e
′
nvn − xn ‖

= ‖ a
′
nxn−1 + (1− a

′
n − c

′
n − e

′
n)xn + c

′
nS

nxn−1

+ d
′
nT

nxn + e
′
nvn − xn ‖

≤ a
′
n ‖ xn−1 − xn ‖ +c

′
n ‖ Snxn−1 − xn ‖

+ d
′
n ‖ Tnxn − xn ‖ +e

′
n ‖ vn − xn ‖ (2.12)

5
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Now

‖ xn − Tnxn ‖ ≤ ‖ xn − Snxn ‖ + ‖ Snxn − Tnyn ‖ + ‖ Tnyn − Tnxn ‖

≤ ‖ xn − Snxn ‖ + ‖ Snxn − Tnyn ‖ + ‖ yn − xn ‖ +ξ
′
n

≤ ‖ xn − Snxn ‖ + ‖ Snxn − Tnyn ‖

≤ a
′
n ‖ xn−1 − xn ‖ +c

′
n ‖ Snxn−1 − xn ‖

+ d
′
n ‖ Tnxn − xn ‖ +e

′
n ‖ vn − xn ‖ +ξ

′
n

As a
′
n → 0, e

′
n → 0, ξ

′
n → 0, as n → ∞ and using (2.7), (2.11), (2.10) in the above inequality we

have

limn→∞ ‖ xn − Tnxn ‖= 0

This completes the proof.

Theorem 2.2. Let E be a uniformly convex Banach space and C be a non-empty bounded subset
of it. Let S, T : E → E be two asymptotically non-expansive mappings in the intermediate sense
and {xn} be the sequence defined by the iterative procedure (1.1).If F = F (T ) ∩ F (S) 6= φ and if
one of the mapping S and T is semi compact then {xn} converges strongly to a common fixed point
of S and T .

Proof. Since one of the S and T is semi compact so by definition there exists a subsequence {ynj}
of {xn} such that such that such that such that {ynj} converges strongly to γ.C is closed hence
γ ∈ C. Now continuity of S and T implies that

‖ Snynj − Snγ ‖→ 0 and

‖ Tnynj − Tnγ ‖→ 0 as nj →∞

Now from lemma (2.1)

‖ Tnγ − γ ‖= 0 ⇒‖ Tγ − γ ‖= 0. Similarly ‖ Sγ − γ ‖= 0. Hence γ ∈ F . Also lemma (2.1) yields
that limn→∞ ‖ xn − p ‖ exists for all γ ∈ F . Therefore {xn} must itself converge to γ ∈ F. This
completes the proof.

Theorem 2.3. et E be a uniformly convex Banach space and C be a non-empty bounded subset
of it. Let S, T : E → E be two asymptotically non-expansive mappings in the intermediate sense
and {xn} be the sequence defined by the iterative procedure (1.1).If F = F (T ) ∩ F (S) 6= φ and if

mappings S and T satisfy the condition A
′

then {xn} converges strongly to a common fixed point
of S and T .

Proof. From lemma (2.1) limn→∞ ‖ xn − p ‖ exists for all p ∈ F .Let limn→∞ ‖ xn − p ‖= β.
If β = 0 then the result holds obviously.So let β ≥ 0. Now by lemma (2.1)

limn→∞ ‖ xn − Tnxn ‖= 0 = limn→∞ ‖ xn − Snxn ‖

Now by equation (2.4)

‖ xn − p ‖≤‖ xn−1 − p ‖

and hence

infp∈F ‖ xn − p ‖≤ infp∈F ‖ xn−1 − p ‖

⇒ d(xn, F ) ≤ d(xn−1, F )

6
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Hence from lemma (1.2) limn→∞d(xn, F ) exists.Now by condition A
′
limn→∞f(d(xn, p)) = 0 for

all p ∈ F.

Now we take a subsequence {xnj} of {xn} and {yj} ⊂ F such that

‖ xnj − yj ‖≤ 2−j

Next we claim that {yj} is a cauchy sequence in F. Now

‖ yj+1 − yj ‖ ≤ ‖ yj+1 − xnj ‖ + ‖ xnj − yj ‖

≤ 2−j + 2−j

= 2−j+1

which shows that {yj} is a cauchy sequence and hence convergent. Let yj → y ∈ F . Again by
lemma (2.1) limn→∞ ‖ xn − y ‖= 0. Hence xn → y ∈ F. This completes the proof.

Theorem 2.4. Let E be a uniformly convex Banach space satisfying Opial’s condition ans C be
its non-empty convex subset. Let S, T : C → C be two asymptotically non-expansive mappings in
the intermediate sense and {xn} be the sequence defined by the iterative procedure (1.1).If F =
F (T ) ∩ F (S) 6= φ then {xn} converges weakly to a common fixed point of S and T .

Proof. By lemma (2.1) limn→∞d(xn, p) exists for p ∈ F. Since every bounded subset of a uniformly
convex space is weakly compact hence there exists a subsequence {xnj} of the bounded sequence
{xn} such that {xnj} converges weakly to a point β ∈ C.Now from lemma (2.1)

limnj →∞ ‖ Tnxnj − xnj ‖= 0

By lemma (1.3), (I − T ) is demiclosed and hence q ∈ F (T ). By the similar arguments β ∈ F (S).
Hence β ∈ F (T ) ∩ F (S).

Uniqueness: Let if possible there exists a subsequence {xnj} of the sequence {xn} such that {xnj}
converges to point β∗ ∈ C. Now by the above arguments we have β∗ ∈ F (T ) ∩ F (S). By lemma
(2.1) limn→∞ ‖ xn − β ‖ and limn→∞ ‖ xn − β∗ ‖ exists.

Since E satisfies Opial condition, therefore

limnj→∞ ‖ xnj − β ‖≤ limnj→∞ ‖ xnj − β∗ ‖ (2.13)

limnj→∞ ‖ xnj − β∗ ‖≤ limnj→∞ ‖ xnj − β ‖ (2.14)

By (2.13) and (2.14) we have β = β∗.

Hence {xn} converges weakly to a common fixed point of S and T .

3 Conclusion

The class of mapping used in this article is more general than that of non-expansive and asymptotically
non-expansive mappings. Therefore the fixed point results derived by us are generalization of the
previous results given in the existing literature.
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